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Driving behaviour in mixed traffic conditions is chara-
cterized by vehicle heterogeneity and lane-less move-
ment. In such traffic conditions, the following response 
of a vehicle may be discontinuous and gets triggered 
when certain thresholds on relative speed and spacing 
with the leaders are crossed. In this context, the pre-
sent study segments vehicular response into driving re-
gimes using vehicle trajectory data based on relative 
speed and position. Acceleration models are formulat-
ed by featuring driving regimes and their interactions 
with mixed traffic attributes. These models are used to 
study the differences in the following behaviour of 
two-wheelers and cars. The proposed models capture 
the asymmetric behaviour and account for differences 
across driving regimes, resulting in a significantly bet-
ter fit and realistic representation of mixed traffic. 

 
Keywords: Acceleration models, driving regimes, mixed 
traffic attributes, local area concentration, vehicle trajec-
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DRIVING behaviour of vehicles under a mixed traffic envi-
ronment involves complex interactions due to vehicle het-
erogeneity and weak lane discipline. There are wide 
variations in static and dynamic characteristics of vehicles 
that share the same road space, leading to multifaceted 
manoeuvres. On many urban roads in Indian cities, mo-
torized two-wheelers (TWs) and passenger cars constitute 
the major share of vehicle composition. The driving beha-
viour and vehicle characteristics of both these vehicle 
types are noticeably different from each other, which 
warrants careful studies. In this context, the present study 
examines the dissimilarities and interactions between TWs 
and cars by developing longitudinal acceleration models 
with specifically focusing on asymmetric behaviours across 
driving regimes. Driving regimes are a collection of actions 
by the subject vehicle resulting from imperfect perception 
and discontinuous response based on the thresholds of 
stimuli like visual angle, speed and spacing1–4. These 
driving regimes can influence the decision-making pro-

cess of the subject vehicle. This study analyses the sensi-
tivity of cars and TWs in mixed traffic to different driv-
ing regimes by developing acceleration models based on 
vehicle trajectory data. 
 Previous studies have calibrated Wiedemann’s driving 
behaviour model parameters from field data for different 
traffic facilities2, vehicle types3,4 and leader–follower 
combinations5 for homogeneous traffic conditions. A few 
studies have also been carried out for calibrating these para-
meters for multiple vehicle types in heterogeneous traffic 
conditions6. However, acceleration models for mixed 
traffic conditions from vehicle trajectory data, consider-
ing the effect of driving regimes along with mixed traffic 
attributes like leader–follower interactions, surrounding 
vehicle concentration and staggered following are yet to 
receive adequate research attention. The longitudinal res-
ponse of a subject vehicle under different driving regimes 
and the variations in the sensitivity of the subject vehicle 
to relative speed and gap under each regime have not 
been examined for mixed traffic conditions. 
 To address these gaps, the following objectives are 
pursued in this study: (i) To develop a longitudinal response 
model of a subject vehicle by modelling its acceleration 
using trajectory data with due consideration to driving re-
gimes. (ii) To examine the role of mixed traffic attributes 
like leader–follower interactions, surrounding vehicle con-
centration and staggered following on the time-varying 
longitudinal response of the subject vehicle using the above 
model. (iii) To examine and quantify the differences in 
driving behaviour between cars and TWs. 

Literature review 

Microscopic modelling captures the actions and reactions 
of vehicles under different situations, including car-follow-
ing, lane changing and gap acceptance7–18. Car-following 
models describe the acceleration characteristics of the fol-
lowing vehicle in response to the actions of its leader19. 
Several theories have been proposed to model car-follow-
ing behaviour. These can be divided into five classes based 
on behavioural assumptions, namely stimulus-response 
models, safety distance/collision avoidance models, action 
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point/psycho-physical models, optimal velocity models and 
cellular automata models20. These models have been deve-
loped for homogeneous lane-based conditions. Their ap-
plicability and transferability to mixed traffic condition, 
however, have been questioned in the literature21. 
 Within the microscopic modelling scheme, the psycho-
physical models aim to provide a more realistic represen-
tation of driving behaviour by allowing for imperfect per-
ception and discontinuous response, based on thresholds 
on the visual angle, which in turn are influenced by rela-
tive speed and spacing. In this line of work, Michaels22 
defined the presumption of a driver to identify the ap-
proaching or receding leader depending upon the changes 
in the apparent size of the vehicle. Lee23 gave thresholds 
for the perception of visual angle and found that drivers 
cannot distinguish small changes in visual angles, and the 
response occurs intermittently whenever visual angle 
thresholds are crossed. Two sets of models that explain 
the following state of a vehicle in response to the relative 
speed and spacing with the leader are Wiedemann 74 
model for urban roads and Wiedemann 99 model for free-
ways24. Numerous studies attempted to calibrate these para-
meters from field data according to the traffic facilities 
(such as freeways, highways, intersections) and depend-
ing on vehicle types2–5. 
 The calibration of car-following models is done to 
match the macroscopic parameters like stream speed, 
travel time, delay and capacity. It is found that multiple 
types of interactions at the microscopic level can arrive at 
the same traffic flow parameters at macroscopic levels25. 
Zheng et al.26 used NGSIM trajectory data to build vehicle 
type-dependent car-following models using the visual ima-
ging model (VIM). He et al.27 developed non-parametric 
car-following models which could reproduce the trajectory 
of vehicles and traffic parameters from NGSIM data. Fan 
et al.28 studied the impact of driving memory on car–
following theory and found that the historical driving  
 
 

 
 

Figure 1. Screen shot of the study corridor with gridlines overlaid. 

memory results in different types of regimes and mano-
euvres. However, these studies have seldom considered 
the development of acceleration models incorporating 
driving regimes and their interaction with relative speed 
and gap from vehicle trajectory data. 
 Among mixed traffic modelling methods, Gunay29 
modified the Gipps car-following equation to incorporate 
a non-lane-based following by incorporating an off-centred 
following of vehicles. Measures like traffic concentration 
and area occupancy have also been used to model hetero-
geneous traffic conditions with no lane discipline30. Kana-
garaj et al.31 studied the influence of composition, intra-
class variability and lack of lane discipline on traffic flow 
characteristics in mixed traffic with significant motorized 
TW volumes. Ravishankar and Mathew32 developed a model 
that incorporates vehicle-type-dependent behaviour by 
modifying the Gipps model. Metkari et al.33 modified this 
model by incorporating the off-centred car-following state 
proposed by Gunay29. In a mixed traffic environment, the 
availability of trajectory data for various traffic facilities 
is limited. Due to the limited data and difficulty in data 
extraction, only a few studies have attempted to model 
the complex vehicular interactions (like vehicle follow-
ing, lane changing, overtaking and gap-acceptance) that 
exit in heterogeneous, non-lane-based traffic34–40. Most of 
the acceleration models developed until now have con-
sidered the relative speed and spacing between the leader 
and follower as explanatory variables. However, these 
studies did not develop an acceleration model from tra-
jectory data by holistically incorporating mixed traffic at-
tributes like staggered following, surrounding vehicle and 
leader–follower interactions along with driving regimes. 
The dissimilarity in following behaviour of cars and TWs 
has seldom been modelled and analysed in previous stu-
dies. 

Data collection and extraction 

For this study, a methodology for extracting mixed traffic 
trajectory data has been developed using Python’s graphi-
cal user interface. Data were collected from a six-lane  
divided mid-block section on Mount Poonamalee Road, 
Chennai, Tamil Nadu, India. The chosen mid-block stretch 
is 250 m long with a carriageway width of 10.5 m (in the 
direction of flow; Figure 1). 
 The trajectory data of 4720 vehicles were obtained dur-
ing a 40 min time period using videographic method. The 
longitudinal and lateral positions of each vehicle were 
recorded at a frame resolution rate of 1 sec, which provides 
a total of 91,754 data points. The total distance travelled 
by the vehicle was 1180 km. From the vehicle positions, 
finite difference method was used to compute speed and 
acceleration. The extracted data at the microscopic level 
can be used for classifying the vehicle at each time step 
into the subject and surrounding vehicles. 
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Table 1. Inequalities used for segmenting the data into different driving regimes 

   Conditions for regimes 
 

Subject  
vehicle 

 
SDVclosing 

 
SDVopening 

Emergency  
braking 

 
Free driving 

 
Acceleration 

 
Deceleration 

 
Following regime 

 

     4.8 m < ∆x ≤ 10.0 m 
 

Car (∆x – 0.523)/ 
6.79 

(∆x – 0.460)/ 
–7.60 

∆x ≤ 4.8 m ∆x > 10.0 m ∆ν ≤ SDVopening ∆ν ≥ SDVclosing SDVopening < ∆ν  
< SDVclosing 

     1.06 m < ∆x ≤ 10.7 m 
 

Two-wheeler  
 (TW) 

(∆x – 0.0034)/ 
6.77 

(∆x + 0.00274)/ 
–7.54 

∆x ≤ 1.06 m ∆x > 10.7 m ∆ν ≤ SDVopening ∆ν ≥ SDVclosing SDVopening < ∆ν  
< SDVclosing 

∆x and ∆V represent relative position (spacing) and relative speed between the leader and follower respectively. SDVclosing and SDVopening are the 
maximum difference in velocity for following during closing and opening respectively. 
 
 
Definition of terms and exploratory analysis 

This study models the acceleration behaviour of vehicles 
with due consideration to driving regimes along with other 
mixed traffic attributes. 

Leader–follower pair identification 

Every vehicle in the stretch is considered as a subject vehicle 
for the duration of its presence in the study stretch. The 
vehicles surrounding the subject vehicle are identified 
based on the influence area concept. Influence area is de-
fined as the region of influence around the subject vehi-
cle, where the surrounding vehicles are present, which 
can fundamentally influence driving behaviour21. The  
vehicle within this influence area which is immediately 
ahead (nearest in terms of longitudinal gap) of the subject 
vehicle and laterally overlaps with it is considered as the 
leading vehicle. 

Categorization of driving regimes 

The response of a follower to the stimulus it receives 
from the leader may be discontinuous because of imper-
fect perceptions about relative speed and gaps. Only when 
the perceptions cross certain thresholds do these stimuli 
become perceived, which triggers a conscious change in 
the acceleration. The discontinuity in driving response 
can be captured using different driving regimes. The 
driver switches from one regime to another as soon as he/ 
she reaches a certain threshold that can be expressed as a 
function of the speed difference and space headway. The 
response of the subject vehicle while following the leader 
can result in various driving regimes, namely free driv-
ing, conscious reaction, unconscious reaction and emer-
gency braking (Figure 2). 
 The Wiedemann 99 model parameters (AX, Minimum 
distance headway in standstill condition; ABX, Minimum 
desired following distance to avoid collision; SDV, Maxi-
mum difference in velocity for following and SDX, Maxi-
mum desired following distance) were used as limiting

 
Figure 2. Figurative representation of Wiedemann 99 model calibra-
tion parameters. CC0 to CC9, Driving behaviour parameters; AX, Mini-
mum distance headway in standstill condition; ABX, Minimum desired 
following distance to avoid collision; SDV, Maximum difference in velo-
city for following; SDX, Maximum desired following distance1. 
 
 

factors to define the driving regimes of each leader–
follower pair based on relative speed and spacing. The in-
equalities were formulated for different thresholds based on 
the driving behaviour parameters for Chennai roads (Table 
1)1. These inequalities primarily divide the driving behav-
iour into four regimes (as given in Figure 2): (a) free 
driving (if gap > SDX), (b) emergency braking (if gap < 
ABX), (c) conscious reaction (if {ABX ≤ gap ≤ SDX} and 
{|Relative speed| > SDV}) and (d) unconscious reaction 
(if {ABX ≤ gap ≤ SDX} and {|Relative speed| < SDV}). 
The conscious response can lead to acceleration and decele-
ration regimes depending on the speed difference between 
the leader and the follower. Positive speed difference can 
lead to acceleration and negative speed difference to decel-
eration. Thus, driving regimes are categorized at every  
instance of time and used as categorical variables in esti-
mating the acceleration of the subject vehicle. 

Mixed traffic attributes considered in the study 

Two key features of mixed traffic that are likely to influ-
ence the following behaviour include staggered following 
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Figure 3. Plots showing variations in independent variables with driving regimes and size differential interactions. a, Leader–
follower pair combination; b, Longitudinal gap; c, Relative speed; d, Local area concentration; e, Lateral gap.  

 
and influence of the surrounding vehicles. These effects 
are captured using two variables, namely lateral offset 
and local area concentration (LAC). The off-centredness 
created between the leader and follower during staggered 
following manoeuvre is known as the lateral offset. It is 
the centre-to-centre lateral separation between a leader–
follower pair21. LAC is a measure of local density of  
vehicles around the subject vehicle, which depends on the 
type and composition of the surrounding vehicles in the 
influence area21. LAC is defined as the ratio of the sum of 
areas of surrounding vehicles to the total area of influ-
ence of the subject vehicle as in eq. (1). 
 

 1LAC  × 100,

N

i i
i

A

n A

T
==
∑

 (1) 

 
where LAC is the local area concentration expressed in 
percentage, N the total number of vehicles present in the 
vicinity of the subject vehicle in the influence area, ni and 
Ai are the number and area of different vehicle classes i 
present in the influence area respectively (i is the index 
for vehicle types) and TA is the total area of the influence 
region surrounding the subject vehicle. 

Variation in regressors across driving regimes and  
leader–follower pairs 

The variation in explanatory variables (longitudinal gap, 
relative speed, LAC and lateral gap) across driving regimes 

and vehicle pair combinations was studied. The four pos-
sible lead–lag combinations between cars and TW are: 
car–car, TW–TW, car–TW and TW–car (Figure 3 a). There 
was considerable variation in the explanatory variables 
across various lead–lag pairs as well as driving regimes 
(Figure 3 b–e). From Figure 3 b, the longitudinal gap is 
observed to be more for free driving regime and consi-
derably smaller for emergency braking regime. The gap 
maintained is high for cars and minimum for TWs under 
emergency braking regime. The relative speed regressor 
varied with regimes (Figure 3 c). The mean of relative 
speed was minimum for deceleration regime and maxi-
mum for acceleration regime. The local area concentration 
was highest for emergency braking regime and lowest for 
free driving, which is logical (Figure 3 d). The lateral gap 
maintained between the leader and follower was highest 
for the car–car pair and minimum for the TW–TW  
pair (Figure 3 e). For each vehicle pair, the lateral gap 
maintained was highest for the emergency braking re-
gime. 

Vehicle composition 

As shown in Figure 4, the composition of TWs is 71%, 
cars 24%, autos 2%, light commercial vehicles (LCVs) 2% 
and heavy commercial vehicles (HCVs) 1%. Thus, the 
TW–car pair contributes to 95% of the composition on  
this corridor. Due to small sample size of other vehicle 
types, the analysis in this study restricted to TW–car 
pairs. 
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Lateral position distribution across lanes 

The distribution of lateral positions of cars and TWs 
across the road width is displayed in Figure 5 a and b res-
pectively. The distribution pattern reveals that cars are 
placed mostly on the right side of the road, specifically in 
the median lane and middle lane. This is due to the speed 
advantage offered by the median lane. Although TWs are 
uniformly distributed across the width, they are concen-
trated more over the middle lane. This is because the 
middle lane offers better manoeuvrability to shift to neigh-
bouring positions, as it provides more freedom to shift to 
the left or right. When considering the median lane, the 
TWs move closer to the median, whereas cars generally 
stay away from the median. 

Descriptive statistics of microscopic traffic  
parameters in longitudinal direction 

Figure 6 a–c provides the summary statistics of speed, 
acceleration and deceleration of vehicles in the longitudi-
nal direction respectively. The mean and maximum speed 
are highest for TWs. Figure 6 b reveals that acceleration 
 
 

 
 

Figure 4. Vehicle composition. MTW, Motorized two-wheeler. 
 
 

 
 

Figure 5. Lateral placement distribution of (a) cars and (b) two-
wheelers (TWs). 

capability is high for TWs compared to cars. Longitudinal 
deceleration values in Figure 6 c shows that TWs have the 
highest mean value for deceleration compared to cars. 
When comparing the traffic parameters in the longitudinal 
direction, TWs have marginally higher values than cars, 
which can be explained by the build and model of the  
vehicles. 

Descriptive statistics of microscopic traffic  
parameters in lateral direction 

The key characteristics of mixed traffic are the presence 
of considerable lateral movement and the field data provide 
evidence for this. Figure 7 shows the descriptive statistics 
of the lateral movements and indicates substantial differ-
ences among vehicle types. The mean values of lateral 
speed and acceleration are almost comparable between 
cars and TWs. When considering the maximum values, the 
lateral speed and acceleration of TWs are nearly double 
those of cars. This shows that TWs have a greater lateral 
shifting tendency compared to cars. 
 The exploratory analysis demonstrates significant vari-
ations in microscopic driving attributes between cars and 
TWs, which make a compelling case to develop separate 
models of driving behaviour. Therefore, acceleration 
models have been formulated for cars and TWs with all 
possible leader–follower combinations. 
 
 

 
 

Figure 6. Disaggregate vehicular parameters in longitudinal direc-
tion. a, Longitudinal speed (m/s); b, Longitudinal acceleration (m/s2); 
c, Longitudinal deceleration (m/s2). 
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Formulation of the acceleration model 

Base model 

Different nonlinear models were tested including log–log, 
power law, box–cox transformed, and linear models with 
nonlinear transformation of variables as well as separate 
linear models for acceleration and deceleration condi-
tions. It was found that the multiple linear regression 
model (linear model with linear variables) had better  
explanatory power and was easier to interpret with better 
goodness of fit, than the more complex model structures. 
Therefore, the base model is the multiple linear regres-
sion equation with longitudinal acceleration of the subject 
vehicle as the response variable. The independent variables 
include relative speed and gap between the leader and the 
follower. The model structure is given in eq. (2). 
 
 as(t + τ) = β0 + β1νrel(t) + β2Slong(t) + ε, (2) 
 
where as(t + τ) is the acceleration or deceleration response 
of the subject vehicle s in the longitudinal direction at a 
time (t + τ), t the given instant of time, τ the reaction time 
of the subject vehicle, νrel (m/s) the relative speed bet-
ween the leader (l) and the subject vehicle (s) at time t 
(νrel(t) = νl(t) – νs(t)), Slong(t) the bumper-to-bumper gap 
(m) between the leader and the subject vehicle in the longi-
tudinal direction at time t, βx the parameter associated 
with variable x and ε is the error term that is assumed to 
be normally distributed. 

Modified acceleration model: effect of driving  
regimes and mixed traffic attributes 

The effect of driving regimes on the follower’s response 
was incorporated in the model. Categorical variable was 
used to represent different regimes in modelling the ac-
celeration of the subject vehicle, maintaining the accelera-
tion regime as the base condition. Free driving regime  
 
 

 
 

Figure 7. Vehicular parameters in lateral direction. a, Lateral speed 
(m/s); b, Lateral acceleration (m/s2). 

was not included in the model, as the follower response 
was not constrained by the leader. 
 Along with driving regimes, the mixed traffic attributes 
like staggered following and surrounding vehicle influence 
were also integrated into the model through lateral offset 
and LAC. The interaction effect of regimes with relative 
speed, gap and LAC was incorporated into the model to 
replicate the nonlinear behaviour of longitudinal response, 
and is given in eq. (3). 
 
 as(t + τ) = β0 + β1νrel(t) + β2Slong(t) + β3Slat(t) 
 
  + β4LAC(t) + β5δGW + β6δEB + β7δEBνrel(t) 
 

  + β8δEBSlong(t) + β9LAC(t)δEB + β10δDec 
 

  + β11δDecνrel(t) + β12δDecSlong(t) + β13LAC(t)δDec 
 

  + β14δFol + β15δFolνrel(t) + β16δFolSlong(t) 
 

  + β17LAC(t)δFol + ε, (3) 
 
where Slat(t) is the lateral separation between the leader and 
subject vehicle, LAC(t) the local area concentration, δGW 
the indicator variable for gap widening/gap closing repre-
senting positive or negative relative speed, δEB, δDec, δFol 
and δAcc are categorical variables representing emergency 
braking, deceleration, following and acceleration regimes 
respectively, βx the coefficient associated with variable x 
and ε is the error term that is assumed to be normally dis-
tributed. The findings from the above model are present-
ed below. 

Results and discussion 

Effect of leader–follower interactions 

The influence of leader–follower pair interaction was ana-
lysed using eq. (2) by comparing the unsegmented (aggre-
gate) and segmented (disaggregate) acceleration models for 
subject vehicles. Data were segmented into four inter-
actions based on leader–follower pairs: TW–TW, car–car, 
car–TW and TW–car. Empirical data were used to esti-
mate the model parameters. Table 2 shows these model 
parameters. Chow’s test was performed to test whether 
there is a statistically significant difference in the follow-
ing behaviour across the four segments40,41. The good-
ness-of-fit measure, R2 increased significantly from the 
combined model to pairwise leader–follower models (by 
3.5–5.2 times) and a decrease in the mean absolute error 
(by a factor of 2) was observed. The Chow test results 
confirm that segmenting based on leader–follower pair 
outperforms a model that neglects these interactions at 
1% significance level. For all these models, the dependent 
and independent variables are positively correlated, 
which is logical as the acceleration of the subject vehicle 
increases with increasing relative speed and spacing. 
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Table 2. Comparison of aggregate and disaggregate interaction models 

  Coefficients   
 

Leader–follower interaction models Sample size b0 (intercept) b1 (νrel) b2 (Slong) R2 MAE 
 

Aggregate model 49,899  0.053  0.244 0.003  0.078 1.606  
TW–TW 21,879 0.002* 0.295 0.005* 0.278 0.89 
Car–car 6755 0.003* 0.315 0.006 0.306 0.75 
Car–TW 9344 0.117 0.457 0.101 0.320 0.75 
TW–car 6198 –0.089 0.196 0.009* 0.398 0.71 

*Represents intercepts/variables not statistically significant at 5%. MAE, mean absolute error. 
 
 
 The magnitudes of coefficients varied across the four 
segments showing dissimilarities in the following behav-
iour based on the type of leader–follower pair and the size 
difference. There was significant difference in the magni-
tude and sign of the intercepts as well. For car–car and 
TW–TW pairs, the intercept was found to be insignificant 
showing the follower to maintain the same speed if the 
relative speed difference was zero for a given longitudinal 
spacing. However, for the same condition, the sign of the 
intercept for the car–TW pair was positive (0.117) and for 
the TW–car pair it was negative (–0.089). This suggests 
that when a smaller vehicle follows a larger leader (as in 
car–TW), it will try to seek lateral gaps and thus avoid 
following behaviour. Instead, if a larger follower like a 
car follows a smaller leader like a TW, the car will try to 
decelerate and adjust its speed with the leader as the gap-
seeking tendency get restricted due to its larger size. The 
intercept of combined unsegmented model, however, was 
positive and different from the segmented model. Thus, 
the combined model failed to capture the behavioural dif-
ferences between cars and TWs when following leaders 
of different sizes. 
 Comparing the coefficients of relative speed across 
leader–follower interactions, their sign was positive for all 
the cases, which is logically sound. This suggests an in-
crease in longitudinal response of the subject vehicle with 
increase in the leader’s speed compared to the follower. 
The magnitude varied across interactions with the highest 
value for the car–TW pair (0.457). The lowest relative 
speed coefficient magnitude was for the TW–car pair 
(0.196). The magnitude of relative speed coefficient for 
the car–car pair (0.315) and TW–TW pair (0.295) was bet-
ween these two values. This suggests that for a given 
spacing and relative speed difference, the following vehicle 
will decelerate more when the leading vehicle is larger in 
size. This is because of the increased confinement posed 
by the larger leader. The combined model failed to capture 
these behavioural differences across segments. 
 The responsiveness of the dependent variable to the 
longitudinal gap also varied across different segments. 
Longitudinal gap was statistically significant only for the 
car–TW (0.101) and car–car (0.006) pairs. When a car 
becomes the leader (for both car–car and car–TW pairs), 
the response of the subject vehicle is affected by the gap, 
as its manoeuvrability is restricted by the larger width of 

the lead vehicle (than when the lead vehicle is a TW). 
The above model shows that the following behaviour not 
only depends on the type of the subject vehicle, but also 
on the leader type. 
 The next section extends the above model to explicitly 
account for different driving regimes, staggered follow-
ing and the presence of surrounding vehicles. 

Effect of driving regimes and mixed traffic attributes  
on longitudinal response of subject vehicle 

The interactions between cars and TWs were analysed using 
the regression model by considering the response of the 
subject vehicle under different driving regimes. The hete-
rogeneity and lane-less movement of vehicles in mixed 
traffic were integrated into the model using variables like 
leader–follower interactions, lateral offset and LAC. The 
modified model is represented by eq. (3) and Tables 3 and 4 
show the estimated parameters. The results from this model 
were considerably superior to the base model, both statis-
tically and logically. Besides, the mean absolute error value 
had also considerably reduced due to the inclusion of non-
lane-based variables and asymmetry in the driving regimes. 
 A comparison of the modified model (eq. (3) with driv-
ing regimes and mixed traffic attributes) and the base 
model (eq. (2)) was done to evaluate whether the addition 
of dependent variables could improve the model. An F 
test42 was performed to compare the restricted (base) 
model with the unrestricted (modified) model using eq. 
(4)42. The F-statistics calculates how much of the variance 
in the dependent variable the base model is unable to ex-
plain compared to the modified model, which is expressed 
as a fraction of the unexplained variance from the modified 
model42. The F-test implies that the modified model (with 
driving regimes and mixed traffic attributes) is superior 
to the base model at 5% significance level. 
 

 

base modified

modified base
statistic

modified

modified

RSS RSS

,
RSS

k k
F

n k

 −
 − =

 
 − 

 (4) 

 
where RSSbase and RSSmodified are the residual sum of the 
squares of base-restricted and modified unrestricted models 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 122, NO. 12, 25 JUNE 2022 1448 

respectively, kbase and kmodified are the number of estimated 
parameters in the restricted and unrestricted models res-
pectively, and n is the total number of data samples. 
 

Effect of driving regimes: For the different vehicle-pair 
combinations, the coefficients of relative speed were found 
to be realistic – the acceleration of the subject vehicle  
increased with an increase in the relative speed and vice-
versa. The longitudinal gap was statistically insignificant 
for acceleration and following regimes, but significant for 
emergency braking and deceleration regimes. The accel-
eration regime occurs when a leader is faster than the 
subject vehicle. During the following regime, the subject 
vehicle unconsciously switches between acceleration and 
deceleration with positive and negative relative speed 
with the leader. In both these regimes, the longitudinal 
gap was found to be statistically insignificant, whereas it 
was significant for the emergency braking and decelera-
tion regimes. The coefficient was positive, which indicates 
the acceleration of the subject vehicle with increasing 
longitudinal gap and deceleration with a shrinking longitu-
dinal gap, and it is intuitive. Significant differences in the 
following behaviour were observed depending on the 
 
 

Table 3. Modified acceleration model coefficients 

 Leader–follower interaction models 
 

Coefficients TW–TW Car–car Car–TW TW–car 
 

b0 (intercept) –1.09* –0.946 –1.086 –1.273 
b1 (νrel) 0.15 0.129 0.276 0.100 
b2 (Slong) 0.00* –0.002* –0.023* 0.022* 
b3 (Slat) 0.00* 0.060 0.110 0.180 
b4 (LAC) 0.005 0.016 0.010 0.010* 
b5 (δGW) 1.98 1.709 1.923 1.836 
b6 (δEB) 0.24* 0.484 0.305* 0.533 
b7 (δEB * νrel) 0.099 0.070 –0.227 –0.035* 
b8 (δEB * Slong) 0.45 0.011* 0.317* –0.061 
b9 (δEB * LAC) –0.01* –0.028 –0.006* –0.015 
b10 (δDec) 0.93 0.857 0.961 0.700 
b11 (δDec * νrel) 0.20 0.311 0.093 0.292 
b12 (δDec * Slong) 0.035 0.062 0.069 0.081 
b13 (δDec * LAC) –0.01 –0.047 –0.012 –0.038 
b14 (δFol) 0.67 0.586 0.610 1.153 
b15 (δFol * νrel) –0.65 –0.488 –0.786 –0.477 
b16 (δFol * Slong) –0.02* 0.001* 0.006* –0.077 
b17 (δFol * LAC) –0.01 –0.026 0.000* –0.017 

*Represents intercepts/variables not statistically significant at 15%. 
 
 
 

Table 4. Goodness of fit of modified acceleration model 

Leader–follower interaction 
models 

 
Sample size 

 
R2 

 
MAE 

 

TW–TW 10,187 0.363 0.97 
Car–car  3504 0.423 0.84 
Car–TW  4179 0.329 1.01 
TW–car  3067 0.446 0.79 

following and leading vehicle types and based on driving 
regimes. 
 The key difference across different leader–follower pairs 
lies in the correlation of the dependent variable to relative 
speed and gap. The coefficient of relative speed varied 
with the leader–follower pair and regimes. Considering 
conscious reaction regimes, the relative speed coefficient 
was highest for the deceleration regime, followed by the 
emergency braking and acceleration regimes. The signs 
of relative speed coefficients for different vehicle-pair 
combinations are meaningful (positively correlated with 
response of the subject vehicle) for these three regimes. 
During the deceleration regime, the subject vehicle closes 
in with the leader with respect to the reduction in speed 
difference between the two (gap-narrowing). However, in 
the emergency braking regime, the subject vehicle becomes 
more alert about the spacing and shows increased sensi-
tiveness towards the longitudinal gap compared to the de-
celeration regime. The coefficient of longitudinal gap of the 
TW–TW pair for the emergency braking regime (0.45) 
was 12.8 times that of the deceleration regime (0.035). 
This suggests that when a TW follows another TW, the 
influence of longitudinal gap in deciding the acceleration 
is highest for the emergency braking regime, followed by 
the deceleration regime. 
 During the deceleration regime, the coefficient of relative 
speed was more for the car–car pair (0.44), followed by 
the TW–car pair (0.392). The relative speed coefficient 
was minimum for the TW–TW pair (0.35). For the emer-
gency braking regime, the coefficient of relative speed 
was high for the TW–TW pair (0.249), followed by the car–
car pair (0.199). In the acceleration regime, for the car–
TW pair (0.276), the subject vehicle was most responsive 
to relative speed compared to other vehicle pairs. From 
this, it can be inferred that for a TW–TW pair, the subject 
vehicle becomes cautious during THE emergency braking 
regime to the relative speed and longitudinal gap with the 
leader, compared to other regimes. However, for the car–
car pair, the alertness to relative speed with the leader is 
high during the deceleration regime. Thus, it can be con-
cluded that in mixed traffic conditions, the alertness of a 
vehicle towards different regimes varies with vehicle-pair 
combinations between the leader and the follower. 
 
Effect of local area concentration and its interaction  
with driving regimes: In addition to the relative position 
and speed between leader–follower pairs, the surrounding 
vehicles also influenced the response parameter due to 
weak lane-disciplined conditions. This effect can be cap-
tured by LAC, which estimates the density of vehicles in 
the surrounding area of the subject vehicle. A higher value 
of LAC implies a more compact packing of vehicles in the 
neighbourhood. The responsiveness of the subject vehicle’s 
LAC varied with driving regimes. During the acceleration 
regime, LAC and subject vehicle response were positively 
correlated. This indicates that if the concentration of the 
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surrounding vehicles increases, the longitudinal response 
of the subject vehicle also increases. Considering the 
emergency braking regime, LAC and longitudinal re-
sponse were negatively correlated for the subject vehicle 
car and positively correlated for TWs. Interestingly, this 
variable significantly affects the response of both cars 
and TWs, but in two different ways. Cars were found to 
decelerate with higher values of LAC because of greater 
confinement in deceleration cases. During deceleration, 
the magnitude of response of both cars and TWs was 
negatively correlated with LAC and the responsiveness 
was high for the TW–car pair followed by the car–car 
pair. However, when the subject vehicle was a TW, the 
coefficient of LAC was 6.2–19 times smaller compared to 
cars under the emergency braking regime. During the  
following regime, LAC was negatively correlated with 
acceleration for TW–TW, car–car and TW–car pairs, 
whereas it was positively correlated for the car–TW pair. 
The coefficient was highest for the TW–car pair. Thus, 
the influence of the surrounding vehicle on the subject 
vehicle varied based on the leader–follower pair and driv-
ing regimes. 
 
Effect of staggered following behaviour: Due to size dif-
ferences and the lack of lane discipline, the following vehi-
cle may not be exactly aligned with the leader in front. 
The lateral offset was included as an explanatory variable 
to account for the effect of staggered following between 
the leader and the follower. The lateral offset was statisti-
cally significant for all vehicle pairs, except TW–TW. 
This coefficient was high when a car followed a TW. This 
may be due to the unpredictable and frequent shifting 
manoeuvres of the TW as a leader, which could make the 
following vehicle more cautious of the changes in lateral 
gap with the TW. 
 The present study provides evidence of gap-seeking 
behaviour of TWs and following behaviour of cars. The 
responsiveness of both vehicles to different regime condi-
tions also varied significantly. The concentration of the 
surrounding vehicles resulted in a reduction in speed for 
cars, whereas the TWs still managed to increase their 
speed with increasing LAC. The lateral gap maintained 
with the leader is a decisive factor for a longitudinal res-
ponse when the leading vehicle is a TW. These findings 
prove that in mixed traffic, there exist strong and asym-
metric interactions between TWs and cars that vary with 
driving regimes. 

Summary and conclusion 

In this study, we have developed a longitudinal response 
model of vehicles in mixed traffic under various driving 
regimes for various leader–follower interactions between 
cars and TWs. The model incorporating these parameters 
was found to be superior to the base model, both statisti-
cally and realistically, and can serve as a building block 

towards a full-fledged micro-simulation model. In partic-
ular, longitudinal equations have been developed for differ-
ent pairs of leader–follower combinations. This will enable 
the computation of acceleration of different vehicle types 
when following different kinds of leaders based on gap, 
relative speed difference, driving regime, concentration 
of vehicles in the neighbourhood, etc. 
 The asymmetry in the driving environment in mixed 
traffic can be captured using the driving regime variable. 
Strong and asymmetric interactions between TWs and 
cars were observed in this study, which varied with driving 
regimes. It can also be concluded that in mixed traffic, 
the alertness of vehicles in different regimes varied with 
the leader–follower pair based on their types and size dif-
ferences. The present study provides evidence that the 
behaviour of cars and TWs is noticeably different. Consi-
dering the impact of the lead vehicle, the alertness of the 
subject vehicle is high when the leader is a car than when 
it is a TW. With respect to the following behaviour, a car 
adjusts its acceleration in accordance with a relative posi-
tion and speed with the leader, whereas a TW is only sen-
sitive to the relative speed. For all the regimes under 
consideration, the sensitivity of the response variable was 
more for a car than for a TW. Similarly, the responsive-
ness to relative speed and spacing was found to vary with 
the leading vehicle, and it was high for a leading car than 
for a TW. The influence of the surrounding vehicle con-
centration varied depending on the regime as well as 
leading and following vehicle types. The effect of lateral 
offset parameter was also found to change with the lead-
ing and following vehicle characteristics. 
 Thus, it can be concluded that there exists asymmetric 
following behaviour across driving regimes, which varies 
with the leading and following vehicle types. This model-
ling scheme could reasonably segregate the performance 
of cars and TWs in a mixed traffic environment. In the 
present study, driving behaviour has been captured more 
realistically by considering the regimes of driving, leader–
follower interactions and LAC. The use of trajectory data 
in deriving mixed traffic attributes and driving behaviour 
modelling adds novelty to the state-of-the-art car following 
models for mixed traffic conditions and can find potential 
applications in micro-simulation. The developed equa-
tions will be helpful in the vehicle movement phase of 
micro-simulation by computing acceleration values, and 
further numerically integrating them to update the speed 
and position of a vehicle. Such micro-simulation models 
will help in a more realistic evaluation of level of service, 
safety and capacity. Thus, the models and findings from 
this study can be useful for developing simulation-based 
traffic management and operation strategies in future stu-
dies. 
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