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In spite of advanced modelling techniques, the current 
prediction of ocean parameters along the ocean coasts 
remains a formidable challenge. The traditional meth-
ods of using mass and momentum equations to solve 
the physics of flow have helped us understand the 
oceans better, but their accuracy remains a problem. 
This article examines the ability of Delft3D to study 
freshwater plumes along the northern Bay of Bengal 
(BoB). Whereas the near shelf is primarily driven by 
tides and local winds, the far shelf is influenced by the 
freshwater-driven density circulation and monsoonal 
ocean currents. The prediction of far shelf waters is well 
represented by employing an artificial neural network. 
By tuning the parameters properly, we can better pre-
dict the freshwater currents in the BoB with a correlation 
of 0.957 and 0.986 for u and v velocities respectively. 
 
Keywords: Artificial neural network, Bay of Bengal, 
freshwater plume, ocean modelling, multiple linear regres-
sion. 
 
COASTAL monitoring is vital in the operational manage-
ment of ports and harbours, and proper weather predic-
tion plays a major role in this. The weather forecast helps 
in the smooth movement, berthing and docking of ships 
and plays a major role in the safety and financial man-
agement of ports. Nowadays, weather prediction is made 
in a timely and routine manner using various ocean and 
atmospheric models. These models predict the velocity, 
temperature and wave conditions accurately so that we 
may use them for further practical applications. Now with 
tools like machine learning and artificial intelligence, the 
model-predicted values are more accurate and this is the 
topic of the present article. 
 For a one-dimensional (1D) analysis of the development 
of thermal structures, a 1D turbulence model called the 
general ocean turbulence model (GOTM) was adopted1,2. 
Regional ocean modelling system (ROMS) and geophysi-
cal fluid dynamics lab (GFDL) modular ocean model 
(MOM) have also been used in real-time prediction. 
ROMS is a terrain-following, free-surface primitive equa-
tions ocean numerical model that solves Reynolds-
averaged Navier–Stokes equations using hydrostatic and 
Boussinesq approximations. Rao and Sivakumar3 studied 

the circulation features, storm surges and associated water 
levels along the Kalpakkam coast, Tamil Nadu, India using 
an advanced two-dimensional, depth-integrated, finite-
element model called ADCIRC. Despite being successful, 
these models had several limitations related to the assum-
ptions, the lack of initial/boundary conditions and uncer-
tainties regarding other forcing variables. Besides this, 
parameters like bathymetry, heat exchange, wind drag, etc. 
are sensitive to the model outcomes. 
 Recent applications using soft computing, artificial intel-
ligence, machine learning and data mining have been 
found to handle the complex patterns in the data better4. 
Artificial neural network (ANN) is one such method used 
here to study the thermohaline circulation in the head Bay 
of Bengal (BoB). Though the concept of ANN was intro-
duced in the 1940s, it was well-received after several algo-
rithms were proposed for training the data5. Wasserman6, 
and Bose and Liang7 have discussed the applications of 
these neural networks in certain fields. 
 Several studies described successful applications of ANN 
on various oceanographic parameters like wave height, 
wave period, wave direction, tidal levels, sea-level, tem-
perature, wind speed, etc.8–12. Deo17 showed that ANN 
surpasses several numerical models in terms of result accu-
racy, in spite of the effort put in for training and structur-
ing the network. Dauji et al.22 showed that very high 
accuracy in results could be obtained when the networks 
are properly trained. 
 In oceanography and coastal engineering, scientists 
primarily use the feed-forward type of ANN when trained 
with a more resilient back-propagation algorithm6,23. 
Here, the input data are run through hidden nodes which 
transform the results using a transfer function24. This is 
fed through multiple hidden layers and appropriate learn-
ing skill is developed for the algorithm. 
 ANNs have the inherent advantage that they are not 
heavily constrained, as the laws of physics might allow, 
but are more flexible and adaptive in their applications, 
especially for coastal velocities25 and SSTs in ocean engi-
neering. This article deals with the current velocity analy-
sis in the far shelf region using a combination of the 
numerical model Delft3D and ANN, which is then used 
to observe the spread of freshwater plumes, a prominent 
feature of the Northern BoB. 
 The region of concern in this study is the BoB, which 
is the northeastern part of the Indian Ocean, encompassed 
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by a closed boundary in the north, a semi-enclosed East 
Indian Coastal Current (EICC) boundary in the east and 
west, and an open boundary in the south (Figure 1). This 
region experiences freshwater discharge of variable char-
acteristics26 and magnitude from various rivers such as 
the Ganges, Brahmaputra, Mahanadi, Krishna and Cau-
very27. In addition to the high fresh-water input, the BoB 
is also unique in the seasonal reversing coastal currents28 
and the phenomenon of coastal seasonal upwelling29,30, 
which is the motive for the present study. 

Materials and methods 

Study area 

The study area extends from 20° to 24°N and 87° to 92°E, 
comprising the continental shelf region in the northern 
BoB. The bathymetry of the region has been taken from 
GEBCO 08 (Figure 2). 
 Several rivers discharge into the BoB at a seasonally 
varying rate (Figure 3)27. These outfalls produce a low  
saline environment in the northernmost bay, with fresh-
water spread over the continental shelf. Trying to model 
these coastal waters without taking into account the fresh- 
 
 

 

 
 

Figure 1. The Bay of Bengal (BoB) with major rivers. 

water density-driven circulation is highly erroneous. So, 
including these thermohaline circulations in modelling 
the Bay forms the motivation for this work. Such thermo-
haline plumes are found in many parts of the world31. 

Validation dataset 

Ocean surface current–analysis real-time (OSCAR) con-
tains near-surface ocean current estimates derived using 
quasi-linear and steady-flow momentum equations. It uses 
data like sea surface heights, surface wind vectors and SST, 
from several satellites such as TOPEX/POSEIDON altime-
ters, Jason, Poseidon-2 altimeter, DMSP–F8,10,11 spe-
cial sensor microwave imager (SSM/I) and several in situ 
instruments to estimate the current velocities. According 
to Bonjean and Lagerloef32, the OSCAR data are auto-
matically computed from gridded fields of surface topog-
raphy and wind derived from the satellite altimeter and 
scatterometer employing methods developed at Earth and 
Space Research (ESR), USA. The data have a spatial res-
olution of one-third degree and temporal resolution of 
five days. 
 The open-ocean circulation (basin-scale) in the BoB is 
highly modulated by seasonal winds (northeast and south-
west winds), and it primarily affects the density-driven 
flow of freshwater plumes. It spreads seasonally, with the 
EICC carrying it to the southwest during the winter mon-
soon33,34 and to the northeast during the summer mon-
soon. The validation in the far shelf is, therefore, between 
the OSCAR and Delft3D outputs augmented by ANN. Ay-
dogan et al.35 reported that to determine the oceanographic 
parameters, one station would suffice for an accurate pic-
ture of the shelf. 

Numerical model – Delft3D 

Delft3D-FLOW is a multi-dimensional, hydrodynamic-
transport numerical program which calculates flow that 
results from tidal and meteorological forcing on a particular 
grid. In 3D simulations, the vertical grid follows the σ-co-
ordinate algorithm. 
 The study area was generated with a grid size of 0.01° × 
0.01° in the spherical coordinate system with bathymetry.  
 
 

Table 1. Mesh and input variables for Delft3D 

Variable Details 
 

Bathymetric chart GEBCO_08  
Temperature and salinity Reynolds and Smith 
Wind QuikSCAT scatterometer 
Domain of simulation 20°–24°N; 87°–92°E 
Horizontal resolution 0.01° 
Vertical resolution 2 m 
Domain grids 500 × 405 
Tide TPXO 7.1 
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Figure 2. Study area with domain grid and bathymetry. 
 
 

 
 

Figure 3. Monthly variability of river discharge into the BoB45,46. 

The grid generation and bathymetry generation were done 
using the Delft Dashboard. The simulation was done from 
1 January 2018 to 31 October 2018 at 120 min intervals. 
The 11 tidal constituents were imported from the TPXO 
7.1 global tidal model. Table 1 provides detail of mesh 
and input variables. 

Artificial neural network 

ANN performs data analysis and manipulation by mimi-
cking the brain of living systems. It is a complex process 
which makes complete visualization of any dataset possi-
ble. When we collect datasets with dependent and inde-
pendent variables, we can use ANN to form a cause–effect 
relationship between them. 
 In this study, ANN was used to examine far shelf cur-
rent velocities. Figure 4 shows the network set-up. The 
independent parameters: um, vm are Delft3D velocities at 
300 m (89.56°E, 21.33°N); ρ density from Delft3D at the 
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same grid; ub, vb represent basin-scale velocities from 
OSCAR, say at 2000 m. The target parameters ut, vt are the 
OSCAR (satellite) velocities at 300 m. The thermohaline 
plumes are a response to rivers and precipitation/evapo-
ration36. 

Multiple linear regression 

Multiple linear regression (MLR) is a statistical technique 
used to predict the outcome of a variable based on the 
value of two or more variables. The formula for MLR is 
as follows 
 
 yi = β0 + β1xi1 + β2xi2 + … + βpxip, 
 
where for i = 1 … n observations, yi are the dependent 
variables, xi the explanatory variables, β0 the y-intercept 
(constant term) and βp is the slope coefficients for each 
explanatory variable. 

Results and discussion 

The correlation coefficient (R) and root mean square error 
(RMSE) were estimated to evaluate the accuracy and per-
formance of the network. The continental shelf region in 
the northern BoB is divided into near shelf and far shelf 
on the basis of depth. Up to 50 m depth, the tides and local 
winds strongly influence the movement of the freshwater 
plume, which is the near shelf region. Beyond 50 m and 
up to 500 m, where the flow is driven mainly by the deep 
ocean waters and salinity-driven velocity patterns, is the 
far shelf. 
 Sumangala36 and Warrior37, reported that the Delft3D 
output results containing depth-averaged velocities in the 
near shelf region showed good similarity with the OSCAR 
velocity with good R values of 0.8 and 0.7 for u and v ve-
locities respectively (Figure 5 a and b), ascertaining the 
 
 

 
 

Figure 4. Neural network set-up. 

dominance of tides and local winds. Whereas, Figure 6 a 
and b shows that the R value is low and RMSE values are 
high (0.3–0.4 m/s), implying that Delft3D is not a suitable 
simulation method to reproduce the far shelf phenome-
non. 
 As mentioned previously, from 50 to 500 m isobaths, 
using model-velocity parameters alone is insufficient to 
study freshwater plumes in this region, as basin-scale velo-
cities are more dominant than tides. Due to this error in 
Delft3D, it is customary to use models like ROMS to 
study physical processes. An alternative is to augment-
Delft3D with ANN to improve coastal predictions. 
 The data having inputs (Delft3D velocity outputs, den-
sity, open-basin velocities) and the target data (OSCAR 
velocity) were divided into training and testing using the 
train–test split from the Scikit-learn library38. While 80% 
of the data was used for training, 20% was used for test-
ing. Random Search class from Keras Tuner was used for 
hyperparameter tuning (layers, neurons, learning rate) of 
the model. After optimization, the learning rate obtained 
was 0.001. Table 2 shows the network architecture. 
 ReLU activation40 was employed for the hidden layers 
and the weight initialization technique used was the nor-
mal41; the output layer contained two neurons with a linear 
activation function. Adam optimizer was used42 for re-
ducing the loss function. The training set was divided in-
to 10 k-folds (using the repeated k-fold technique) and 
trained for 1000 epochs. Each k-fold was used as a vali-
dation set. The average loss function, here the mean abso-
lute error, was plotted for the trained and validation sets 
(Figure 7). An MLR model was also developed with the 
same dataset. Table 3 lists the MLR coefficients. 
 Figure 8 is a Taylor diagram for the three models show-
ing which among them is more realistic. Table 4 shows their 
respective values. It can be seen that RMSE values have 
decreased and R values have improved when the numerical  
 
 

Table 2. Artificial neural network architecture 

Hidden layer Neurons 
 

1 40 
2 45 
3 30 
4 50 
5 50 
6 40 
7  30 
8 40 
9 30 
Output layer Neurons 
1  2 

 
 

Table 3. Multiple linear regression coefficients for the test set 

 B0 B1 B2 B3 B4 B5 
 

u –386.607 –0.263 0.211  0.376  0.448 0.261 
v  335.665  0.074 –0.0134 –0.327 –0.086 0.196 
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Figure 5. a, R for Delft3D versus OSCAR for u velocity at 45 m (ref. 36). b, R for Delft3D versus OSCAR for v velocity at 45 m (ref. 36). 
 
 

 
 

Figure 6. R for Delft3D versus OSCAR for u velocity at 450 m (ref. 36). b, R for Delft3D versus OSCAR v velocity at 450 m (ref. 36). 
 
 

 
 

Figure 7. Loss history plot. 
 
model and ANN are combined, compared to the standalone 
Delft3D and MLR models. This shows that combining  
the velocities with density in ANN predicts the thermoha-

line circulation spread by seasonal open-ocean circula-
tion. 

Freshwater plume spread – an observational study 

The data for sea surface salinity were taken from the Natio-
nal Indian Ocean Atlas (NIOA), which is the climatologi-
cal atlas for the Indian Ocean region42,43. The spread of 
freshwater plume was observed by isolating 31 practical 
salinity units (psu) isohaline and considering the same as 
the limit of saline water. 
 The location for validating the velocity was chosen at 
300 m depth and the results were compared with the ANN 
results. Figure 9 shows that during March–May, there is the 
lowest spread of freshwater plume because of less river 
input to the Bay. The spread increases during the south-
east monsoon to a larger area and is associated with higher 
freshwater flow during the rainy season. During June–
August, the freshwater is mainly constrained at the coast



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 123, NO. 1, 10 JULY 2022 78 

Table 4. Standard deviation (SD), root mean square error (RMSE) and R at 300 m 

 STD RMSE R 
 

Model u v u v u v 
 

Delft3D 0.0609 0.0775 0.1510 0.1252 –0.0026 –0.0186 
MLR 0.0787 0.0566 0.1153 0.0815 0.5500 0.5419 
Delft3D + ANN 0.1386 0.0966 0.0401 0.0158 0.9579 0.9866 

 
 

 
 

Figure 8. Taylor diagram for (a) u and (b) v velocities. 
 
 
since EICC flows north. By September, EICC starts revers-
ing its direction and started to move south. The extent 
reaches a maximum by October/November and decreases 
thereafter. Thus, it can be concluded that the density-
driven flow peaks in October/November because of the 
very high river input and EICC also starts flowing south-
wards, bringing the freshwater south. Here we see the in-
teraction and feedback between density-driven flow and 
EICC transport. After December, there is a decrease in 
the river input and spread. 

Seasonality of open-ocean circulation 

The open-ocean features have less influence on the velo-
cities in the near shelf coast region. This can be seen in 
Figure 4 a–d of Sumangala and Warrior36, where Delft3D 
simulates the total velocity fields well compared to 
OSCAR. We observed that the velocity of the freshwater 
plume from the Delft3D model had a bias of about 
0.02 m/s with the OSCAR data. Hence the currents seem 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to be primarily tide-driven, unlike on the far shelf. The 
meridional currents change their direction seasonally in 
response to the rhythm of monsoons. The plume spread in 
the head BoB follows the current characterized by EICC 
that flows southwards from November to February, with 
maximum spread along the coast during November (Figure 
9). From March to September, it flows northwards, with 

 
 

Figure 9. Observations of freshwater plume spread. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 123, NO. 1, 10 JULY 2022 79 

maximum intensity near the coast during April. The spread 
of the plume varies on a monthly basis according to 
EICC, which reverses its direction twice a year during 
November and February. The northeast monsoon is a period 
of low freshwater outfall from the rivers. Therefore, the 
density-driven circulation is less; hence the spread is less. 
Thus, it can be surmised that the freshwater plume (which 
is density-driven) takes its origin from the river outfall 
but is also strongly modulated by the seasonally reversing 
basin-scale circulation (EICC). 

Conclusion 

This study is an exercise to precisely model the velocity 
of waters on the far shelf of the head BoB. Flow in the 
Bay is found to be primarily determined by tidal veloci-
ties closer to the coast and by basin-scale, seasonally var-
ying circulation combined with density-driven flows in 
the far shelf. Though Delft3D is a good hydrodynamic 
tool for shallow waters, it is unsuitable for predicting far 
shelf flows. A very high correlation of 0.957 and 0.986 
for u and v velocities respectively, using density as an in-
put in ANN indicates that Delft3D coupled with ANN 
predicts the freshwater plume spread and its velocity 
more accurately compared to the numerical model alone. 
 The density of waters in far shelf of the BoB is mainly 
determined by the freshwater and thus the low-saline water 
flow is the primary driver. The prediction of flow is a 
complicated phenomenon with the combined interactions 
of many features like topographic, wind-induced, climatic 
phenomena and various types of waves, for which aug-
menting a numerical model with ANN will give an ad-
vanced level of accuracy and computational clarity. 
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