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The blasting technique is mainly used for breaking the 
rock mass. It is also required to control blast-induced 
ground vibrations for the safety of nearby habitats. This 
study was conducted in two different mines and 56 blast 
vibration data were collected from overburden benches. 
During trial blasts, it was confirmed that the study 
benches had similar geology. Analysis of blasts data was 
done using advanced data analysis software such as 
MATLAB-based artificial neural network (ANN) and 
Waikato Environment for Knowledge analysis (WEKA) 
and compared with the empirical equations. The ANN 
prediction model gave a significantly high R2 = 0.92 with 
a low root mean square error (RMSE, 0.67), while WEKA 
gave a comparatively low R2 = 0.86 with a high RMSE 
(1.11). 
 
Keywords: Artificial neural network, blast design para-
meters, empirical equations, ground vibration, statistical 
analysis. 
 
THE combination of drilling and blasting is cost-effective 
in civil construction and rock excavation in mining. The 
blast nuisances, such as ground vibration, air blasts, fly 
rocks, back breaks and air overpressure are unavoidable, 
but can be certainly minimized up to permissible levels1. 
With the optimization of fragmentation, ground vibration 
is considered to be one of the most critical environmental 
effects2. As a result of research on blasting vibration velo-
city, seismic peak particle velocity (PPV) is often used as 
a safety criterion to assess blasting vibration-associated 
damages3. Researchers have proposed several vibration 
prediction equations. PPV is determined mainly by the 
maximum charge per hole and the distance between the 
blast face and the monitoring point4. Agrawal et al.5 found 
that explosive energy utilization is very low during blast-
ing and that the percentage of explosive energy converted 
into seismic energy is about 3%–20%, which is highly dan-
gerous for nearby structures. If ground vibration is higher 
than the permissible limits, it is a matter of concern and 
must be controlled. Currently, the maximum charge per delay 
is restricted for controlling ground vibration. However, in 
reality, a large number of variables influence ground vibra-
tion. 

 This study considers the effective blast design parameters 
to predict PPV using artificial intelligence tools and empi-
rical equations. The tools helped predict PPV with minimum 
errors. In this study, several empirical equations have been 
used to predict PPV and make a comparison with other 
modern tools such as Artificial Neural Network (ANN) and 
Waikato Environment for Knowledge Analysis (WEKA). 

Materials and methods 

This study was conducted at the overburdened benches of 
two open-cast coal mines (mines A and B). These mines 
are located in the eastern part of Jharia Coalfield, Bharat 
Coking Coal Limited (BCCL), Jharkhand, India. The mines 
are being worked by mechanized drilling and blasting 
with 5–7 m high benches and bench angles close to 80°–
85°. Crawler-mounted Down the Hole (DTH) drills of 
160 mm are used to drill blast holes. It was found that the 
powder factor varied between 0.9 and 1.0 m3/kg at mine A 
and was 1.8 m3/kg at mine B. The number of blast holes 
per round varied from 11 to 52. 
 The blasting area and vibration-monitoring points were 
both at the same elevation. The monitoring points and bla-
sting patches were separated by 67–296 m. A seismograph 
(Mini-Seis) with a geophone for ground vibration and a 
microphone for air-overpressure measurement was used to 
monitor blasting vibrations. It was ensured that vibration 
sensors were plastered to the intact surface of the rock. The 
location of the monitoring points was adjusted appropri-
ately to ensure the accuracy of the measurements. Figure 1 
shows a view of the mines, measuring point, designed blast 
hole section and blast firing pattern. 

Artificial neural network 

ANN is an intelligence technique used to solve complex 
problems. The neural network can be studied from the ac-
quainted pattern. This pattern is trained with an adequate 
number of sample datasets. The prediction of ANN is based 
on previous learning, where the output is related to new 
input datasets of similar pattern6. 
 ANN is a computing model with layers of connected 
nodes that resemble the networked structure of neurons in 
the brain. Data are used to identify patterns, categorize data 
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Figure 1. (a) Mine view of eastern Jharia coalfield, (b) blast monitoring point, (c) blast hole section and (d) blast firing pattern (diagonal). 
 
 

Table 1. Prediction of ground vibration using 
 empirical predictors 
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and predict future events using ANNs. The input is broken 
down into layers of abstraction by a neural network. This 
network can be trained over many examples to recognize 
patterns. By connecting its elements by strength or weight, 
it defines its function. A specified learning rule adjusts these 
weights during training until the neural network completes 
the required task. 

Waikato environment of knowledge analysis 

In data mining and machine learning, WEKA is an important 
system7. It was developed in response to the perceived 
need for a unified workspace where researchers could easily 
access state-of-the-art machine-learning techniques8. It 

consists of data-mining algorithms for machine learning. 
Java code can call the algorithm directly on a dataset or 
direct it to the dataset itself. There are many features in 
WEKA, including pre-processing, classification, regression, 
clustering, association rules and visualization. 
 Data preparation results in a dataset with X1, X2, X3, Xn 
and Y attributes for each record. We aim to derive a func-
tion f : (X1, …, Xn) → Y and then use this function to predict 
Y for a given input record (x1, ..., xn). In this classification: 
Y is a discrete attribute, called the class label whether pre-
diction: Y is a continuous attribute. Classification is called 
supervized learning because true labels (Y-values) are 
known for the initially provided data. 

Empirical equations 

Since the 1950s, several empirical equations have been 
proposed to describe blast vibration attenuation. Table 1 
summarizes the PPV prediction equations proposed by 
different researchers. The distance from the free face and 
maximum charge weight per delay is usually considered 
for PPV prediction. The predictor equations are derived 
from PPV and scaled distance regression analysis. In the 
equation for vibration propagation, k and β are empirical 
constants, where k is PPV at the y-axis intercept and β is 
the slope of the curve. Researchers refer to these empirical 
constants as site factors, site constants or site-specific con-
stants9–11. 
 The strategies to each variable impacts the ground vibration 
were developed and optimized the blast design considering 
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Table 2. Summary of blast parameters monitored at mines A and B 

Mine A Mine B 
 

Input Output Input Output 
 

 
B (m) 

 
S (m) 

MCPD  
(kg) 

TCPD  
(kg) 

 
R (m) 

 
S/B 

PPV  
(mm/s) 

 
B (m) 

 
S (m) 

MCPD  
(kg) 

TCPD  
(kg) 

 
R (m) 

 
S/B 

PPV  
(mm/s) 

 

2 2.6 35 910 94 1.3 6.15 3.5 4 65 1400 82 1.14 10.7 
2 2.6 35 910 85 1.3 10.8 3.5 4 65 1400 115 1.14 5.21 
2 2.6 35 910 153 1.3 2.79 3.2 3.5 37 1147 197 1.09 2.26 
2 2.5 35 770 87 1.25 9.85 3.2 3.5 37 1147 177 1.09 1.74 
2 2.5 35 770 119 1.25 8.33 3.2 3.5 37 1147 97 1.09 8.38 
2 2.5 35 770 67 1.25 19.8 3.2 3.5 37 1221 198 1.09 1.98 
2 2.5 35 760 127 1.25 1.98 3.2 3.5 37 1221 155 1.09 2.25 
2 2.5 35 760 102 1.25 1.65 3.2 3.5 37 1221 108 1.09 6.35 
2.5 3 40 1040 115 1.2 5.66 3.2 3.5 37 1332 200 1.09 1.82 
2 2.5 25 440 287 1.25 0.91 3.2 3.5 37 1332 195 1.09 1.12 
2 2.5 25 440 173 1.25 2.36 3.5 3.8 38.5 1309 163 1.09 3.37 
2 2.5 25 440 296 1.25 1.14 3.5 3.8 38.5 1309 201 1.09 3.02 
2 2.5 35 500 197 1.25 2.96 3.5 3.8 38.5 1309 148 1.09 2.29 
2 2.5 35 500 83 1.25 7.6 3.5 3.5 38.5 963 149 1.00 3.96 
2 2.5 35 500 205 1.25 1.65 3.5 3.5 38.5 963 125 1.00 4.64 
2 2.5 35 350 204 1.25 0.91 3.5 3.5 38.5 963 126 1.00 3.43 
2 2.5 35 350 184 1.25 2.52 3.2 3.5 38.5 1270 166 1.09 3.99 
2 2.5 35 350 75 1.25 5.33 3.2 3.5 38.5 1270 214 1.09 1.91 
2 2.5 25 310 185 1.25 0.738 3.2 3.5 38.5 1270 150 1.09 2.03 
2.5 2.5 35 520 180 1 1.33 3.5 3.5 77 1309 154 1.00 4.51 
2.5 2.5 35 520 68 1 9.6 3.5 3.5 77 1309 205 1.00 2.77 
2.5 2.5 35 520 227 1 1.52 3.5 3.5 77 1309 156 1.00 2.16 
2 3 40 630 126 1.5 3.07 3.5 4 77 1848 160 1.14 3.02 
2 3 40 630 102 1.5 3.56 3.5 4 77 1848 141 1.14 3.74 
3 3.2 120 1760 147 1.07 9.45 3.5 4 77 1848 114 1.14 6.48 
3 3.2 120 1760 249 1.07 3.18 3.2 3.8 77 2002 126 1.19 7.1 
2.5 3 80 2040 230 1.2 2.33 3.2 3.8 77 2002 122 1.19 5.98 
2.5 3 80 2040 105 1.2 3.18 3.2 3.8 77 2002 107 1.19 11.2 

B, Burden; S, Spacing; MCPD, Maximum charge per delay; TCPD, Total charge per delay; R, Radial distance; PPV, Peak particle velocity. 
 
 

 
 

Figure 2. The 4-4-1 architecture of artificial neural network (w and b 
are weight and biases respectively). 
 

vibration12. The particle speed was measured vertically, 
transversely and longitudinally, and the reported PPV value 
represents the maximum magnitude of these three compo-
nents. From the spectrum of the measured vibration, the 
dominant frequency of the ground vibration signal is cal-
culated. While cracking and structural damage are associ-
ated with a wide range of frequencies and amplitudes (PPV), 
it is generally considered that they depend on ground vibra-
tions13. The limitation of ground vibration (PPV) is fixed 
by the measured dominant frequency at the point of interest. 

Summary of monitored blasts and analysis 

Table 2 shows the ground vibration monitored at mines A 
and B. 

Analysis of blast vibration using ANN tool 

As shown in Figure 2, a feed-forward back-propagation 
neural network with three layers, namely an input layer, a 
hidden layer and an output layer, was developed. Due to 
its ability to handle extensive input data and solve complex 
problems, this four-layered neural network can predict blast-
induced ground vibrations. With regard to ‘feed-forward 
back-propagation’, the inputs are activated in a forward di-
rection, while errors in weight adjustment are propagated in 
the backward direction. In MATLAB, the ANN model was 
generated as follows: (i) Loading data into the command 
window. (ii) Establishing a network using ‘nntool’ function. 
(iii) Training, validation and testing. 
 For study investigation, 56 datasets were divided into 
training datasets (40 data) and testing datasets (16 data). 
The data were imported into MATLAB using the command 
window and the network was built with the ‘nntool’ func-
tion. The network window was opened by typing the nntool 
command in the command window, which allows to import 
and export of neural networks and data. The feed-forward 
back-propagation network was chosen for training because 
it is ideal for nonlinear fits. The Trainlm training function 
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Table 3. Selection of the number of neurons based on the statistical standard R2 

  Run 1 Run 2 
 Nodes in the   
Model no. hidden layer Training Testing Training Testing 
 

1 1 0.727 0.6492 0.692 0.64 
2 2 0.512 0.7129 0.543 0.724 
3 3 0.744 0.7649 0.74 0.7534 
4 4 0.9017 0.92 0.832 0.817 
5 5 0.71 0.7865 0.703 0.783 
6 6 0.709 0.7126 0.7 0.692 
7 7 0.69 0.723 0.72 0.743 

 
 

 
 

Figure 3. Artificial Neural Network analysis of training, testing and validation data. 
 
 
was selected since it is the quickest back-propagation algo-
rithm in the toolbox. The Trainlm function uses Leven-
berg–Marquardt optimization to update weight and bias 
parameters. Since this function requires numerous inputs, 
the learning functionality used is Learngdm. To build the 
network, the performance functions such as mean square 
error (MSE), number of neurons, number of layers and 
transfer functions, such as tansig were chosen carefully. 
Following the completion of a network, the next stage was 
to train the same. 
 The Levenberg–Marquardt back-propagation algorithm 
was used to train the network since it is very fast. A set of 
targets was determined for the provided set of inputs. The 
network calculates some outputs using transfer functions 
utilizing random weights (i.e. tansig and logsig). The net-
work error was calculated by comparing the computed re-
sults with the predetermined objectives. Validation and 
testing were done to determine the accuracy of the net-
work. The optimal network architecture was chosen follow-
ing training, validation and testing with multiple network 
topologies. For the best model, the number of neurons in 

the hidden layer was determined by trial and error. Table 
3 shows the R2 values as a function of the number of neu-
rons in the hidden layer. 
 Figure 3 depicts a regression curve illustrating the link 
between training, validation and testing outputs and tar-
gets. There is an excellent correlation of roughly R2 = 0.90 
between the output and target datasets for the training, 
validation and testing stages. 
 Table 4 shows how the optimal network was used to 
forecast 16 new datasets with known outputs. The predicted 
outcome was then compared with the available results to 
determine the optimum model accuracy. The observed 
outputs were compared with the predicted values (Figure 4). 
 The coefficient of determination (R2) for Figure 4 is 
close to 0.92, suggesting that the projected and measured 
values for the output parameters utilizing the optimal ANN 
tool are highly correlated. The optimum ANN model pre-
dicts the actual physical field behaviour, as evidenced by a 
strong correlation between the predicted and measured 
outputs; thus, the ANN model can predict outputs in the 
field based on known input data. 
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Data analysis using WEKA 

A total of 56 datasets were used for the study. The data 
were divided into a training dataset and a testing dataset 
manually. The training dataset contained 40 instances with 
five attributes, while the testing dataset contained 16 in-
stances with five attributes. The data were loaded either in 
‘ARFF’ format or ‘CSV’ format. The input parameters 
used for the experiment were (i) Total charge per round 
(TC), (ii) distance between the blast sites and the monitoring 
station (R), (iii) maximum charge per delay (MCPD) and 
(iv) spacing/burden ratio (S/B). Among several parameters, 
the four chosen input parameters are known from the liter-
ature to significantly influence ground vibration14,15. Thus, 
data analysis was carried out with these four input parame-
ters and one output parameter (PPV) for the 56 different 
blast datasets. The inputs were enumerated as follows. After 
loading the data into explorer, they are refined, also known 
as data cleaning. Figure 5 shows pre-processing of the data-
set. Figure 6 shows the relationship between measured 
PPV and predicted PPV using the WEKA software. The 
 
 

Table 4. Measured and predicted PPV 

Measured PPV (mm/s) Predicted PPV (mm/s) 
 

2.29 3.48 
3.96 3.56 
4.64 4.86 
3.43 4.78 
3.99 3.73 
1.91 1.67 
2.03 3.37 
4.51 4.06 
2.77 1.77 
2.16 2.34 
3.02 3.14 
3.74 3.8 
6.48 6.06 
7.1 6.98 
5.98 5.9 
11.2 10.90 

 
 

 
 

Figure 4. Relation between predicted and measured peak particle velo-
city using ANN. 

graph has high coefficient of determination (R2 = 0.86) 
values, signifying a strong correlation between the pre-
dicted and measured output parameters. 

Analysis of blast vibration using empirical  
equations 

Various empirical equations were used to predict ground 
vibration as proposed by several researchers (Table 5). In 
this analysis, the same data were divided into training and 
testing. The equations were expressed in linear by a loga-
rithmic transformation of variables. By plotting the graph 
between log-transformed PPV and the log-transformed  
 
 
Table 5. Coefficients related to the empirical models used in this study 

Predictor equations k β 
 

Duvall and Fogelson predictor (1962) 350.83 1.50 
Langefors and Kihlstrom predictor (1963) 2.02 2.49 
Ambraseys–Hendron predictor (1968) 1207.7 1.59 
Indian Standard predictor (1973) 2.067 1.24 
 

 

 
 

Figure 5. Result window showing WEKA running information. 
 
 

 
 

Figure 6. Measured and predicted PPV using WEKA. 
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scaled distances, the site-specific constants k and β are 
generated (Table 5). Figure 7 shows the correlation bet-
ween PPV and scaled distance. 
 Using empirical predictors, Figure 8 establishes the re-
lationship between measured and predicted PPVs. On the 
other hand, the trend lines have low R2 values, indicating a 
weak relationship between measured and predicted PPVs. 
The lack of a good relationship is due to the inability of 
the empirical equations to account for the inherent com-
plexities in the input parameters, necessitating the use of 
the ANN model. 

Results and discussion 

Table 6 summarizes R2 and root mean square error (RMSE) 
for ANN and various conventional vibration prediction 
equations. Here, the maximum RMSE obtained by the 
Ambrasey–Hendron equation predictor is 1.31, which is 
high compared to both the models (ANN and WEKA). 
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RMSE ,

N

i i
i

N
=

−

=
∑

  

 
where Predicted is the predicted output, Actual is the mea-
sured output and N is the number of input–output data pairs. 
 
 

 
 

Figure 7. PPV and scaled distance on log–log scale by predictor equa-
tions. 

 
 

 
 

Figure 8. Measured and predicted PPV using predictor equations. 

 Table 6 shows a higher coefficient of determination (R2) 
for the ANN predictor and WEKA model. Compared to the 
other empirical predictors and the WEKA model, ANN 
shows the highest coefficient of determination (R2 = 0.92) 
with low RMSE (0.67). This indicates that ANN is the most 
suitable tool for predicting PPV. 

Statistical analysis 

The factorial regression was analysed between design para-
meters (PPV vs MCPD, TCPD, S/B and R) to examine the 
effectiveness of the blast designed parameter. Many corre-
lations such as coefficient analysis, normal distribution, 
interaction plot and Pareto chart analysis16 were determined 
between the blast parameters using the mini-tab software. 
Coefficient analysis was used to analyse the effective para-
meter (‘effect’ column) and P-value between the blast pa-
rameters in Table 7. 
 In the factorial regression in Table 7, the parameter R 
and interaction parameters MCPD*TCPD*R show a more 
significant effect on ground vibration as the P-value is less 
than 0.1 after considering the 90% confidence level of the 
interval. Also, the column ‘effect’ defines the magnitude 
of the individual and combined effects on the ground vibra-
tion (PPV). The combined parameters MCPD*TCPD*R 
show a maximum correlative effect (45.91) on the positive 
side, while the individual parameters MCPD and R show the 
maximum effect on the positive (5.22) and negative (–25.18) 
side respectively, for the ground vibration. Positive and 
negative define the direct and indirect effects on the output. 
The results clearly demonstrate the effect of MCPD and 
radial distance on the ground vibration compared to other 
parameters. Figure 9 a–c also shows the effective relation-
ship between these parameters. 
 Figure 9 a shows the normal plot of the standardized  
effects. In this response analysis, the significant and non-
significant parameters can be easily determined. The inter-
action parameters MCPD, R and TCPD showed about 95% 
effect on the ground vibration compared to other parame-
ters. Also, the R parameter was effective on the negative 
side, indicating that with a decrease in R, PPV will in-
crease. The same is the case for the Pareto chart analysis; 
the interaction parameters MCPD*TCPD*R and individu-
al R cross the red dotted line, which is significant at a 95% 
confidence interval (Figure 9 b). From Figure 9 c, the interac-
tion between all the designed parameters can be easily  
 

Table 6. Results of the statistical and empirical models 

Predictors R2 RMSE 
 

ANN 0.92 0.67 
WEKA 0.86 1.11 
USBM 0.60 1.32 
Ambrasey–Hendron 0.64 1.31 
Langefors–Kihlstrom 0.40 1.81 
Indian Standard Predictor 0.40 2.28 
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Table 7. Coefficient analysis of blast design parameters 

 
Term 

 
Effect 

 
Coefficient 

Standard error (SE) 
of coefficient 

 
T-value 

 
P-value 

Variance  
inflation factor 

 

Constant  –0.45 3.40 –0.13 0.896  
MCPD (kg) 5.22 2.61 6.03 0.43 0.668 71.72 
TCPD (kg) 2.20 1.10 3.64 0.30 0.764 40.83 
R (m) –25.18 –12.59 5.31 –2.37 0.023 54.00 
S/B –5.21 –2.61 3.55 –0.73 0.467 23.86 
MCPD (kg)*TCPD (kg) 15.14 7.57 4.77 1.59 0.120 20.68 
MCPD (kg)*R (m) 14.64 7.32 8.97 0.82 0.419 94.42 
MCPD (kg)*S/B 12.93 6.46 8.06 0.80 0.427 79.46 
TCPD (kg)*R (m) 3.74 1.87 5.65 0.33 0.742 33.14 
TCPD (kg)*S/B –11.22 –5.61 6.46 –0.87 0.390 25.57 
R (m)*S/B –13.84 –6.92 8.19 –0.85 0.403 39.44 
MCPD (kg)*TCPD (kg)*R (m) –25.18 22.96 8.18 2.81 0.008 35.87 
MCPD (kg)*TCPD (kg)*S/B 4.54 2.27 7.66 0.30 0.768 19.05 
MCPD (kg)*R (m)*S/B 36.1 18.1 14.5 1.25 0.219 64.06 
TCPD (kg)*R (m)*S/B –16.0 –8.0 15.4 –0.52 0.606 46.85 

 

 

 
 

Figure 9. a, Normal distribution plot of standardized effects. b, Pareto 
chart of the standardized effects. c, Interaction plot of the parameters. 
 
 
determined. The two crossing lines show a strong correlation. 
The separate line shows no correlation, which demonstrates 
that the MCPD*R and TCPD*R interaction parameters have 
more impact on ground vibration. Only two parameters 
(MCPD and R) have been used to analyse ground vibra-
tion in this study. 

Conclusion 

The present study predicts PPV so that blast impacts can be 
minimized. The following conclusions can be drawn from 
the study: (i) ANN is a versatile tool for predicting PPV. 
High accuracy of prediction and fast computation are the 
two significant advantages of this method. The ANN model 
shows a substantial correlation of determination (R2 = 0.92) 
compared to the other applied models. (ii) In the perfor-
mance analysis, RMSE of ANN is significantly less (0.67) 
compared with the other prediction models (WEKA) and 
four equations (United States Bureau of Mines, Ambrasey, 
Langefors, Indian Standard). (iii) The Ambrasey–Hendron 
equation demonstrates a high correlation (R2 = 0.71) com-
pared to other empirical prediction models. (iv) In the stati-
stical analysis, the most significant parameters influencing 
PPV are MCPD and radial distance, which satisfy the selec-
tion of design parameters for ground-vibration analysis. 
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