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In a wide range of physical phenomena, we find surfaces 
Ωt evolving in time t, which need mathematical treat-
ment. Here, we briefly review the theory of a system of 
conservation laws known as the kinematical conserva-
tion laws (KCLs), which govern the evolution of these 
surfaces. KCLs are the most general equations in con-
servation form which govern the evolution of Ωt with 
physically realistic singularities. A special type of sin-
gularity is a kink, which is a point on Ωt when it is a 
curve in two dimensions and a curve on Ωt when it is a 
surface in three dimensions. Across a kink, the normal di-
rection n to Ωt and the normal velocity m of Ωt are dis-
continuous. This article is aimed at non-experts in the 
field. Readers may refer to the literature for more details. 
 
Keywords: Curves and surfaces, kinematical conserva-
tion laws, kink, ray theory. 
 
THE movement of a surface Ωt is determined by the move-
ment of its points according to a law depending on the 
medium in which Ωt evolves. The path of a point on Ωt is 
called a ray. In this article, for simplicity, we shall consider 
only an isotropic motion of Ωt which indicates that the ray 
velocity χ is in the direction of the normal n, i.e. χ = mn, 
where m is an appropriately defines the velocity of Ωt. 
 Consider Ωt in two-dimensions (2D) with a ray making 
an angle θ with the x-axis. Then the ray velocity is mn = 
m(cos θ, sin θ) and we can track the successive positions 
of Ωt by solving the ray direction equations  
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and the diffraction equation (the derivation requires the 
eikonal equation, which is a first-order PDE) 
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The operator on m on the right-hand side of eq. (2) repre-
sents the space rate of change along Ωt, showing that θ 
changes along the ray due to a gradient of m along Ωt. 
 When m is constant on Ωt, the rays are straight lines (as 
in the case of a wavefront in gas with uniform and con-
stant properties) and Ωt may develop a caustic (Figure 1 
left). However, when the rays have built in them, the effect 
of genuine nonlinearity (Genuine nonlinearity comes into 

play when m in the ray velocity depends on the amplitude 
of the wavefront. In this case, m is no longer constant, the 
rays stretch (implied by eq. (1)) and diffract (implied by 
eq. (2)). The concept of genuine nonlinearity and its effect 
on the distortion of the shape of a wave have been explai-
ned in two popular articles using the language of physics 
and only a few mathematical equations12,13.) of the equations 
governing a medium in which Ωt propagates, a new type 
of singularity, called kink appears on Ωt (ref. 14) (Figure 
1, right, where two kinks appear and are shown by dots). 
Both the ray theory and the level set theory to solve the 
eikonal equation are inadequate to study the formation and 
evolution of a kink. 
 The distinguishing feature of a kink is the appearance of 
a discontinuity in the normal direction n and the velocity 
m of Ωt across the kink. Examples of Ωt with discontinuities 
in n and m across a 2D surface on Ωt are plenty. They were 
observed in experimental results18 and we aimed to cap-
ture these results mathematically. When discontinuities in 
n and m appear on Ωt, the governing PDEs of Ωt, i.e. the 
eikonal equation and ray theory breakdown, then we need 
to go to the more basic formulation for the evolution of a 
curve or surface, which is kinematical conservation law 
(KCL). Conservation laws are formulated in terms of inte-
grals, which remain valid even if singularities (like dis-
continuities in functions) appear on Ωt. Two-dimensional 
KCL for the evolution of a curve was formulated in 1992 
by K. W. Morton, the present author (P.P.) and Renuka 
Ravindran, and has been extensively used to determine 
new properties of weakly nonlinear wavefronts and shock 
fronts. The results have been published in several impor-
tant journals. Three-dimensional KCL was first formulated 
in 1994 by Mike Giles, P.P. and Renuka Ravindran, but it 
was completed much later by K. R. Arun and P.P. Papers 
on 3D KCL and its applications have been published since 
2009 (see ref. 17 for details). We wish to emphasize that all 
these interesting and physically realistic results were ob-
tained without clearly identifying the density of the con-
served variable and flux for KCL. In the present article, 
we shall identify these and complete the KCL theory. 
 Readers not familiar with the theory of conservation laws 
may consult the literature12,13. Here we give an example of 
a conservation law. 

Conservation of mass in fluid mechanics 

Let us consider fluid flow in a one-dimensional pipe along 
the x-axis and two sections at the x and xr. Let ρ(x, t) 

mailto:phoolan.prasad@gmail.com


REVIEW ARTICLE 
  

CURRENT SCIENCE, VOL. 123, NO. 12, 25 DECEMBER 2022 1442 

 
 

Figure 1. (Left) Representing the linear theory which starts with a concave wedged shape front. (Right) The 
caustic of the linear theory is completely resolved by the presence of genuine nonlinearity present in kinematical 
conservation law (KCL) based weakly nonlinear ray theory. This is an exact solution. We find that two kinks 
have appeared. Across a kink directions of the tangents of the wavefront and directions of the rays suffer jumps. 
These features can be captured only by a KCL-based theory. 

 
 

List of some frequently used symbols and abbreviations 
 

x : (x1, x2, ..., xd) a point d, d-dimensional physical space or d-D. 
Ωt : It is the position of a moving surface at time t in x-space (we consider only d = 2, 3) (the results can  
   be extended easily to a surface in space of arbitrary dimensions16,17). 
KCL : A system of kinematical conservation laws which govern the evolution Ωt. 
d-D KCL :  KCL in d-dimensional x-space. 
WNLRT : Weakly nonlinear ray theory. 

 
 
represent the mass density and u(x, t) the fluid velocity (u 
can be positive or negative) as a function of space and 
time. The total fluid contained between the two sections at 
time t is ( , )d .rx

x tρ ξ ξ∫


 The flux (per unit time) of mass at x 
is ρ(x, t)u(x, t) and that at xr is ρ(xr, t)u(xr, t). When a fluid 
is not created or annihilated (for example, by a chemical 
reaction), a balance between the time rate of change of 
mass in these two sections and the fluxes at the two ends is 
expressed by the conservation law of mass of the fluid, 
which states that the rate of change of a fluid contained in 
any section is due to the flux through its ends. In mathe-
matical terms 
 

 d ( , )d ( , ) ( , ) ( , ) ( , ).
d

rx

r r
x

x t x x t u x t x t u x t
t

ρ ρ ρ= −∫


    (3) 

 
When the mass density and fluid velocity are differentiable, 
we can deduce from this  
 
 ρt + (ρu)x = 0,  (4) 
 
which gives the Euler’s equation of continuity 
 ρt + uρx + ρux = 0. (5) 

Remark 1.1. An important convention in the theory of con-
servation laws: equation (4) is assumed to represent the in-
tegral form, i.e. eq. (3) of the conservation law. This is only 
for the simplicity of notation. 

Ray coordinates (ξ, t) for an isotropic motion of a 
moving curve Ωt in the (x, y)-plane and 2D KCL 

Let the curve Ωt be represented by 
 
 Ωt : ϕ(x, y, t) = 0. (6) 
 
We write a parametric equation of Ωt: ϕ(x, y, t) = 0 in the 
form  
 
 Ωt: x = x(ξ, t),  y = y(ξ, t),  (7) 
 
where ξ is the parametric variable on Ωt at time t. 

Ray coordinates 

(ξ, t) forms ray coordinates in the (x, y)-plane such that in 
eq. (7), the constant values of t give the positions of the 
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propagating curve Ωt at different times and ξ = constant 
represents a ray. The results below are valid in a domain 
Dp, swept by Ωt, of the (x, y)-plane. Let g be the metric 
associated with the coordinate ξ, i.e. g dξ is an element of 
the distance along Ωt. Note that if m is the velocity of a point 
on the ray, then m dt is an element of the distance along a 
ray (Figure 2). Therefore, m is the metric associated with t. 
 In the ray coordinates (ξ, t), the time rate of change along 
a ray, i.e. d

d (cos sin )t t x ym θ θ∂ ∂ ∂
∂ ∂ ∂= + + becomes t

∂
∂  and the 

space rate of change along Ωt appearing on the right-hand 
side in eq. (2) becomes .g ξ

∂
∂  We can also show that gt = 

mθξ. Finally in the ray coordinates (ξ, t), eqs (1) and (2) 
(along with an equation for g) become  
 
 xt = m cos θ, yt = m sin θ. (8) 
 

 gt = mθξ, θt = 1 .m
g ξ−  (9) 

 
The results contained in eq. (9) are physically realistic. We 
verify it for an expanding circular curve Ωt with a centre at 
the origin and with a constant velocity m > 0 at a time, say 
at t = t0. Then it remains circular all the time. Since mξ = 0, 
eq. (9) (the second equation) implies that θ remains con-
stant along a ray, which is a straight line. Since θξ > 0, eq. 
(9) (the first equation) shows that g increases with t. This 
is consistent with the fact that the arc length dr gξ

ξ ξ∫


 of Ωt 
keeps increasing in the fixed interval (ξ, ξr). 
 We shall give the formulation of 2D KCL in terms of 
the density of ‘KCL conserved variable’ and ‘KCL flux’. 
Kinematics refers to the study of the motion of bodies 
without reference to mass or force. KCL involves purely 
geometric objects and is in the (ξ, t)-plane. 

Proposal for density of KCL conserved variable 

Associated with Ωt, there are two important vectors. 
 
(i)  Ray velocity (m cos θ, m sin θ) obtained by the normal 

direction n of Ωt (see eq. (1)) multiplied by the metric m. 
 

Ray coordinate system associated with Ωt: (ξ, t) 

 
 

Figure 2. In the (x, y)-plane, ξ = constant is a ray and t = constant is Ωt. 
(x, y) is a point on the moving curve Ωt at time t. θ is the angle which 
the ray at (x, y) makes with the x-direction. 

(ii)  A vector (–g sin θ, g cos θ) tangential to the curve Ωt. 
This is obtained by multiplying the metric g by the 
unit vector (–sin θ, cos θ)) along Ωt (see eq. (2)). 

 
 We propose that the conserved variable in KCL is the 
tangential vector mentioned in (ii) and the flux vector is 
the ray velocity mentioned in (i). 
 The balance between time rate of change of total conser-
ved quantity (now a tangential vector with two components 
on Ωt) from the point identified by ξ on Ωt to that identified 
by ξr on Ωt, and the flux from the two ends is expressed as 
a conservation law: 
 

d ( sin , cos )( , )d {( cos , sin )}( , )
d

r

l

g g t m m t
t

ξ

ξ

θ θ ξ ξ θ θ ξ− =∫   

     –{( cos , sin )}( , ).rm m tθ θ ξ  (10) 
 
If θ is a constant on Ωt, then the front is a straight line at 
time t. If m is a constant on it, then every point at time t 
moves with the same velocity. When both are constant on 
Ωt, the curve propagates as a straight line parallel to itself 
and eq. (10) shows that ( sin , cos )( , )dr g g tξ

ξ θ θ ξ ξ∫ −


 on Ωt 
between the points corresponding to ξ and ξr remains 
constant as time evolves, i.e. it remains conserved. 
 Symbolically, eq. (10) is denoted by (see Remark 1.1) 
 
 (g sin θ)t + (m cos θ)ξ, (g cos θ)t − (m sin θ)ξ = 0. (11) 
 
We wrote the form of KCL in our earlier article (by Morton, 
Prasad and Ravindran) without mentioning the density 
vector of the conserved quantity and the flux vector. The 
differential form of KCL eq. (11) is eq. (9), which has 
been derived from the ray equations. 
 Now we state an important theorem. 
 
Theorem: KCL and ray equations are equivalent for the 
evolution of a smooth Ωt. Full proof this theorem includes: 
 
(1)  KCL implies the ray equations. 
(2)  The ray equations imply KCL. 
 
A proof is available in ref. 15 (theorem 4, pp. 14–15). 

Three-dimensional system of KCL 

Unlike 2D KCL, the theory of 3D KCL is quite involved. 
Here, we describe the results briefly; the details of its theory 
and applications are available in the literature1–4,16. 

Ray equations in 3D space 

We denote the components of the unit normal to Ωt as 
 
 n = (n1, n2, n3), |n| = 1. (12) 
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For an isotropic evolution of Ωt the ray equations take 
simple forms 
 

 d ,
d
x m
t
= n  (13) 

 

 d : ( , )
d
n m m.
t
= − = − − 〈 〉L n n∇ ∇  (14) 

 
The operator L defined above is obtained by subtracting 
from the gradient ∇ its component in the normal direction 
n; hence it represents a tangential derivative on Ωt. 

Ray coordinate system 

Let the surface Ωt: ϕ(x1, x2, x3, t) = 0 at any time t be rep-
resented by 
 
 Ωt: x = x(ξ1, ξ2, t), (15) 
 
where ξ = (ξ1, ξ2) is a set of surface coordinates which also 
evolve with time t (Figure 3). At a fixed time t, the surface 
Ωt in x-space is generated by a two-parameter family of 
curves, the parameters being ξ1 and ξ2. Along a member 
of the first family of curves, ξ1 varies and ξ2 is a constant. 
Similarly, along a member of the second family of curves, 
ξ2 varies and ξ1 is a constant. Through each point ξ on Ωt 
a ray passes in the normal direction n. Let u and v be unit 
vectors along the ξ1 and ξ2 families of the coordinates 
(Figure 3). 

Density of the conserved vector and flux vectors  
for 3D KCL 

Let the metric associated with the surface coordinate ξp be 
gp, p = 1, 2. Then gpdξp (no sum over the repeated sub- 
 
 

 
 

Figure 3. A ray coordinate system of a surface Ωt. 

script here) is an element of distance along the coordinate 
line through which ξp varies. The speed of a point moving 
along the ray with velocity is m then, while moving with the 
ray velocity, mdt is the displacement along the ray in time 
dt. Thus m is the metric associated with the coordinate t. 
 As in the case of the 2D KCL, we take the density of the 
conserved vector along the family of coordinates to be g1u 
and that along the second family of coordinates to be g2v. 
We also propose the flux vectors along both families to be 
the ray velocity mn. 
 We first consider the formulation in the subspace of the 
(x1, x2, x3)-space in which ξ2 is a constant. This means we 
consider the formulation in the (ξ1, t)-plane of (ξ1, ξ2, t)-
space. The conserved density vector is g1u and flux is mn. 
The integral formulation of the first set of conservation 
laws is: 
 

 
1

1

1 1 2 1 1 2 1
d ( , , ) ( , , )d
d

r

g t t
t

ξ

ξ

ξ ξ ξ ξ ξ∫


u  

 = m(ξ1, ξ2, t)n(ξ1, ξ2, t) – m(ξ1r, ξ2, t)n(ξ1r, ξ2, t), 

 ξ2 = constant.  (16) 
 
Then we consider the formulation in the (ξ2, t)-plane of the 
(ξ1, ξ2, t)-space. The conserved density vector is g2u and 
flux is mn. Now we write the second set of conservation 
laws as 
 

 
2

2

2 1 2 2 1 2 2
d ( , , ) ( , , )d
d

r

g t t
t

ξ

ξ

ξ ξ ξ ξ ξ∫


u  

 = m(ξ1, ξ2, t)n(ξ1, ξ2, t) – m(ξ1, ξ2r, t)n(ξ1, ξ2r, t), 

 ξ1 = constant.  (17) 
 
The symbolic form of the conservation laws, viz. eqs (16) 
and (17) are  
 
 (g1u)t – (mn)ξ1 = 0, (g2v)t − (mn)ξ2 = 0. (18) 
 
u and v have three components each and hence the 3D KCL 
has six equations. 
 
Theorem 3.1. 3D KCL eq. (18) and the ray equations (eqs 
(13) and (14)) are equivalent for the evolution of a smooth 
Ωt. 
 We stated this theorem for 2D KCL earlier in the arti-
cle. Here too, we omit the proof since different proofs are 
available in the literature. 
 An explicit differential form of 3D KCL is available in 
ref. 1. 

Geometrical solenoidal constraint 

This is an interesting aspect of KCL in three and higher 
dimensions. Apart from 3D KCL eq. (18), we can easily 
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derive three more scalar equations contained in the vector 
equation 
 
 (g2v)ξ1 – (g1u)ξ2 = 0. (19) 
 
Equation (19) gives purely geometrical results, as m does 
not appear in it and we call it a geometrical solenoidal 
constraint. From eq. (18) we can show that (g2v)ξ1 – (g1u)ξ2 
does not depend on t. Hence, for any choice of coordinates ξ1 
and ξ2 on Ω0, eq. (19) is satisfied at t = 0, then it follows 
that the equation is satisfied on Ωt for all t > 0. 

Control of Jordan mode by geometrical solenoidal 
constraint 

We now mention some applications of KCL. If we consider 
KCL-based weakly nonlinear ray theory (WNRT) or shock  
 
 

 
 

Figure 4. Successive positions of an initially sinusoidal shock front 
(shown by continuous line) plotted at t = 0, 1, 2, 3, …, 40 and rays 
(shown by broken lines). Kinks appear after t = 1 and are shown by 
dots. In the figure we see a kink, 3, from a lower period moving upwards 
and another kink, say 1, from the upper period moving downwards result-
ing in interactions 31 → 13 occurring many times. The shock has 
become almost straight and rays are parallel to the x-axis from t = 31 to 
40 (reproduced from ref. 10). 

ray theory (SRT) (see refs 6 and 14, and any of the refer-
ences mentioned above), the 2D problems remain simple 
but 3D problems become complex. For example, the 3D 
WNLRT equation becomes degenerate. It has an eigen-
value 0 with a multiplicity 5, but the number of eigenvec-
tors is only 4. In such a case, unwanted Jordan mode 
generally appears in a numerical solution, which grows in 
time (for more details, see ref. 2). 

KCL-based WNLRT and SRT 

KCL contain a set of under-determined equations. For ex-
ample, the 2D KCL equations are two in number for three 
dependent variables m, θ and g. The 3D KCL equations are 
six in number for seven dependent variables (two independ-
ent components of u, two independent components of v, 
g1, g2 and m). When the moving curves represent a physi-
cally observable curve such as a wavefront or a shock 
front or the crest line of a curved solitary wave on the surface 
of water5, we hope to close the KCL system of equations. 
We do not go into details, but reproduce figures from some 
references mentioned above. 

Exact solutions showing resolution of a caustic  
in 2D by WNLRT 

Figure 1 (right) is an exact solution and has been reprodu-
ced from ref. 14. The results are briefly described in the 
figure caption and in the introduction of this article. 

Evolution of a shock front of periodic shape in  
two space dimensions 

For a shock front, we denote the normal velocity of the shock 
by M (this means we replace m with M). We take the ini-
tial shock front Ω0 to be in a periodic sinusoidal shape 
 

 0.2 0.2cos .
2
yx π = −  

 
  (20) 

 
We choose a smooth initial shock Mach number (appropri-
ately non-dimensionalized shock speed) to be uniform and 
as M0 = 1.2. Figure 4 (reproduced from ref. 10) gives the 
shape of the shock at various times. The dots represent 
kinks which appear later. Such a long tracking of a shock 
front with kinks is difficult by any method other than a 
KCL-based formulation. 

Evolution of a shock front of periodic shape in three 
space dimensions (reproduced from ref. 3) 

We consider here the initial shock front Ω0 to be of a periodic 
shape in x1- and x2-directions. 
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Figure 5. Initial shock front in the shape of a smooth periodic pulse. 
 
 

 
 

Figure 6. Shock front Ωt starting initially in a periodic shape with M0 = 1.2. It develops a complex pattern of kinks and ultimately becomes planar. 
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x xx k
a b
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  (21) 

 
with the constants κ = 0.1, a = b = 2. In Figure 5, we give 
the plot of the initial shock front Ω0, which is a smooth 
pulse without any kink lines. We choose the Mach number 
to be uniform and equal to 1.2 on Ω0. Though the initial 
shock front is smooth, a number of kink lines appear in 
each period as time evolves. 
 Now we describe an interesting process of interaction 
of these kink lines using a number of plots of the shock 
front at different instances. In Figure 6, we give the surface 
plots of the shock front Ωt at times t = 10, 20, 30, 40, 50, 
60 in two periods in each of x1- and x2-directions. As men-
tioned above, the initial shock front is smooth, with no kink 
lines. The front Ωt moves up in the x3-direction and devel-
ops several kink lines. Four kink lines parallel to the x1-
axis and four parallel to the x2-axis can be seen in the fig-
ure on the shock front at times t ≥ 10. These kink lines are 
formed before t = 10, say about t = 2. The amplitude at 
t = 0 is 0.2 and at t = 60, it is less than 0.05; thus, the 
shock front at t = 60 has almost become planar. 

Conclusion 

KCL is a purely geometric system of conservation laws 
that govern the evolution of a curve in 2 or a surface in 
3. The curve or surface, as the case may be, can admit 
singularities which are captured by the weak solutions of 
KCL. This article provides an exposition on the density of 
conserved variables of KCL, which involves the curved 
distances along the moving curve or surface. 
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