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The adoption rate of electric vehicles (EVs) is affected 
by the availability of charging stations (CS). The optimum 
location of CS in a city is a major part of the charging 
infrastructure for EVs. Factors like charging demand, 
charging time, investment cost, etc. affect the location 
decision of CS. This study presents a set cover problem-
based methodology to optimally locate fast-charging sta-
tions for mixed traffic flow in NCT-Delhi, India, by 
maximizing the coverage range of CS. The study area 
was divided into grid-like zones and geographical infor-
mation system (GIS) was used to analyse the distance 
matrix of the study-area grid map. For mixed traffic 
flow, different EV penetration rates were assumed to 
calculate the charging demands. We used origin and des-
tination data, distance matrix and mixed traffic flow data 
of NCT-Delhi. The different vehicle categories conside-
red from the mixed traffic flow in this study were two-
wheelers, three-wheelers, four-wheelers and commercial 
vehicles (CVs). The results show that when each CS has 
a coverage range of 3 km, a total of 62 CS are required. 
Further, a decrease in the coverage range by 1 km leads 
to an increase in the number of required CS by 72%. 
This study shows the exact location of these CS on the 
GIS map of the study region. 
 
Keywords: Charging station, coverage range, electric 
vehicles, optimum location, set cover method. 
 
AIR and noise pollution due to the usage of fossil fuel-
based automobiles for transportation adversely affect the 
quality of life in all cities1. As fossil fuels are a non-rene-
wable source of energy, the drive towards adopting alternative 
and clean energy transport modes has increased. The use 
of electric vehicles (EVs) in the transport sector is a much 
cleaner alternative than internal combustion engine vehicles 
(ICEVs)1. The transition from ICEVs to EVs is taking place 
gradually with the wider support of state policies world-
wide. EV take-up rates (percentage of new vehicle sales) 
vary significantly from one country to another, ranging from 
60% of new passenger vehicles in Norway1, to 4.7–8% in 
other Scandinavian countries, 1.6–7% in western European 
countries, 4.4% in China, 2.2% in Canada, 2.1% in the 
USA, 2% in South Korea2 and 1% in Japan1. Currently, the 
EV penetration rate in India is less than 1% for the four-

wheelers (4Ws) segment3. This can be attributed to various 
issues like EV purchasing cost, insufficient public charg-
ing infrastructure, uninterrupted electricity supply, longer 
charging time of affordable cars and related infrastructure 
development, as identified by Chandra and Minal4. To en-
courage people to adopt EVs, it is imperative to develop 
an infrastructure which boosts the usage and trust in EVs. 
Inaccessibility to requisite infrastructure facilities like public 
charging stations (CS; apart from the private CS at home) 
will discourage the potential buyers of EVs. Therefore, in-
stalling readily available public fast-charging stations is 
essential to give an impetus to the EV penetration rate in 
India. 
 Several studies have been conducted worldwide on the 
optimization framework for deploying CS1,5,6. These studies 
mostly focused on uniform traffic conditions, where the traf-
fic fleet was uniform in nature and mostly composed of 
cars. The studies have used constraints like maximizing prof-
it, minimizing cost, minimizing waiting time, minimizing 
drag distance and the number of CS by different optimiza-
tion techniques1,5,6. The novelty of the present study lies in 
the fact that it considers mixed traffic flow, which is a typical 
feature of Indian cities. The traffic flow data were obtained 
from the origin and destination (OD) data of NCT-Delhi, 
with a multimodal fleet comprising two-wheelers (2Ws), 
three-wheelers (3Ws) and 4Ws to provide a unique solu-
tion for mixed traffic fleet as observed on Indian roads. 
 This study aims at developing a methodology to optimize 
the location of CS for mixed traffic flow according to Indian 
traffic conditions for NCT-Delhi (Figure 1 a). The set cover 
methods were used to maximize coverage range of a CS. 
This method gives a local optimum solution, and the result 
obtained is optimal enough to locate CS in the study area 
as it covers the demand of all zones within permissible dis-
tance. Different EV penetration rates were chosen for dif-
ferent vehicle classes. The CS are distributed in the study 
area according to the demand in each zone. Also, each zone 
has at least one CS within the coverage range to satisfy 
the demand. 

Literature review 

The literature on the optimization of EV CS locations is 
vast. Several studies have been carried out on optimization 
worldwide using different techniques, datasets, models 
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Figure 1. Study area NCT-Delhi, India. a, Boundary map. b, Zone map. 
 
 
and perspectives like demand representation, demand cove-
rage approaches, objective functions, side constraints, deci-
sion variables, model structure as well as time dependency 
and uncertainty on the problem parameters7. 
 In the context of locating CS in the urban road network, 
few studies have used multi-day data to cluster the activity–
travel pattern of trip makers using the k-medoids algorithm. 
A study further developed grid charging strategies for an 
efficient grid energy management5. For congested intra-city 
travel, Bao and Xie8 developed a bi-level mixed, nonlinear 
integer programming model, where the upper level of the 
model focused on construction budget and the lower level 
on the equilibrium flow pattern to locate CS. Geographical 
information system (GIS) has been extensively used in 
some studies for optimum location of CS. The study by 
Morro-Mello et al.9 located fast-charging stations in an urban 
area for taxis, resulting in the development of spatial data-
base that can be visualized in GIS by the agencies such as 
urban planning department or the electrical service con-
cessionaire. Bian et al.10 used a GIS-based mixed-integer 
linear programming (MILP) model to maximize profits of 
CS. A recent study by Li et al.11 introduced a new service 
mode, viz. valet charging service and a risk-averse two-
stage stochastic mixed-integer model (RTSMIP). For inter-
urban roads, Bräunl et al.1 determined the locations of CS 
by taking six different values of EV penetration rate, viz. 1%, 
5%, 10%, 20%, 50% and 100%. The analysis considered 
energy demand, peak demand and charging times in the 
model. Xu et al.12 located CS at the intercity route by mini-
mizing accumulated range anxiety in the study area of Texas 
highways, USA. 
 Artificial intelligence and machine learning techniques 
find prolific use in determining the location of CS. Deb et 
al.13 used the nature-inspired optimization algorithm (NIO) 
and compared the different NIO methods like genetic algo-
rithm (GA), particle swarm optimization (PSO), firefly algo-
rithm (FA), chicken swarm optimization (SWO), ant colony 
optimization (ACO), lightening search algorithm (LSA) 

and teaching–learning-based optimization. Efthymiou et 
al.14 attempted to locate CS by using GA for an urban ar-
ea. Fredriksson et al.15 focused on a practical approach to 
finding the optimum location of CS for a large-scale net-
work, where they considered limited driving range and 
minimized driving range anxiety by route node coverage 
problem. Ouyang and Xu16 located CS by considering vehi-
cle user’s travel pattern and determined the optimum loca-
tion of multi-type EV CS. 
 Instead of using travel data, a call detail record (CDR) 
was utilized by Vazifeh et al.5 to extract the trip pattern 
for optimizing the location of CS was made. The study done 
by Vazifeh et al.5 determined the fast-charging station loca-
tion by optimizing the drag distance and minimizing the 
number of CS using the set cover method. Charging demand 
was calculated by pervasive mobility data using CDR, 
while the optimization problem was solved by the greedy 
algorithm and GA6. Zhang et al.17 conducted a study on 
shared autonomous EVs and charging demand. They develo-
ped an agent-based simulation model, BEAM and K-means 
algorithm was used to optimize CS location. Iacobucci et 
al.18 aimed to optimize CS location for shared autonomous 
EVs. The optimization problem was solved by the MILP 
method. 
 Most of the studies reported in the literature are for homo-
geneous traffic, primarily consisting of cars. The biggest 
gap the present study fills is that it considers the prevalent 
Indian traffic scenario, which consists of mixed traffic with 
2Ws, 3Ws and 4Ws. Also, this study combines the two 
methods of set cover problem model for optimization and 
GIS to visualize the results. 

Methodology 

The set cover model mainly depends upon the distance bet-
ween non-overlapping zones to maximize coverage of the 
CS. Maximum coverage of a CS is the maximum number 
of zones it can cover within the coverage distance limit or 
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the driver’s willingness to drive from the demand point to the 
CS. One CS can serve more than one zone if the zones are 
within the coverage distance limit. The study methodology 
was divided into three steps to locate fast charging for 
mixed traffic flow (see Figure 2). 

Data collection and analysis 

Zone map and distance matrix: We divided the study area 
into n non-overlapping grids or traffic analysis zones to 
obtain a distance matrix. The centroid of each non-over-
lapping zone was used to calculate the shortest distance 
between each zone. The distance matrix n × n was generated 
using network analysis tools in QGIS (an open-source 
software). The distance matrix was further used to analyse 
the coverage range of zones. 
 
Demand modelling: The study area was divided into n 
number of non-overlapping zones in QGIS, according to 
eq. (1). Single-day OD data for each zone were collected 
to calculate charging demand. The charging demand was 
computed by considering three factors, viz. EV penetration 
rate δ, the percentage of public charger users and peak 
traffic flow. Based on previous studies, Table 1 shows the 
EV penetration rates for different vehicle classes19. Two-
wheelers were divided into four categories: (a) scooters, 
(b) B2B (business to business), (c) B2C (business to con-
sumer) and (d) motor-cycles. B2B vehicles are used for 
 
 

 
 

Figure 2. Study methodology – flowchart. 
 
 
Table 1. Segment-wise analysis – electric vehicle (EV) penetration rate 

  EV penetration rate (%)20 
 

Vehicle segment Vehicle sub-segment 2025 2030 
 

2Ws Scooters 10–25 50–70 
 B2B 40–60 60–80 
 B2C 13–18 40–60 
 Motorcycles 1–2 10–20 
 Overall 7–10 25–35 
3Ws Overall 35–45 65–75 
4Ws Private 1–3 10–15 
 Commercial 8–10 20–30 

commercial purposes, whereas 2Ws are used for food deli-
very, grocery delivery, courier, etc. from one business to 
another. While B2C considers all 2Ws which cater directly to 
consumers. Four-wheelers were divided into two different 
categories, viz. commercial vehicles (CVs) and private 
vehicles (PVs). It is assumed that the penetration rate for 
2Ws, (δ2w) is 7–10% by 2025 and 25–35% by 2030. δ3w is 
35–45% by 2025 and 65–75% by 2030, and δ4w is 1–3% 
and 5–10% by 2025 for a PV and CV respectively. It will 
reach up to 10–15% and 20–30% for private vehicle and 
commercial vehicle respectively. Different types of EVs 
have different range capacities. In the private vehicle cate-
gory, 2Ws have a lower range compared to 4Ws. In the 
recently launched EVs, the range of 2Ws is 150–250 km. 
Therefore, if any user has a home charging facility, they 
will not use public CS and the vehicle minimum range capa-
city is sufficient for single-day intercity travel. According 
to the literature, 60–80% of EV users will charge their vehi-
cles at home using a private charger; therefore, public CS 
can be located for the rest of the EV users1. For commercial 
vehicles, the trip length is different from person to person 
and most of the time it is much higher than the range of 
EVs. Therefore, while calculating charging demand, we 
assume that 100% of commercial vehicles will require 
charging at public CS. The OD matrix gives the value of 
travelling vehicles throughout the day, but while computing 
charging demand we consider vehicles during peak hours 
alone, as it will give the maximum charging demand of the 
zone on a day. Thus, we consider this maximum charging 
demand (during peak hours) to avoid a waiting queue. 
Charging at any other time during the day will be less than 
the peak hour demand and will not lead to queue formation. 
 
 1 2 3{ , , ,..., }.nZ z z z z=  (1) 

Formulation of set cover problem 

To develop zone network Zn in zone partitioning of the 
study area, first we need to locate the centroid of each 
zone, denoted as ‘node’, such that zi ∈ Z. A link is created by 
connecting the origin zone zi and destination zone zj by the 
shortest route. The link starts from origin node zone (origin 
of the trip) to the node of the destination zone. To develop 
the zone network, the nodes of a zone must be connected 
to the nodes of all the zones adjacent to it (in all directions, 
i.e. north, south, east and west) through an available road 
segment in the road network. We established parameter L, 
which is the maximum distance the driver is willing to drive 
to reach a CS. Suppose zj is the adjacent zone of zi within 
the proximity of L. If we locate CS at zi then it will cover the 
charging demand of zj. To maximize the coverage of the 
CS, we need to determine the location for stations which 
cover the maximum zones within distance L. Here, we in-
troduce a universe set, which is a set of zones that needs to 
be covered as well as the set of zones where CS can be 
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Table 2. Notations used in this study 

zi ∈ Z Partitioned zones in the study area and the corresponding zones in the zone network 
zn Zone network 
Z Set of non-overlapping zones 
zi Zone i 
zj Zone j 
L Distance which the driver is willing to drive to reach the charging station 
U Universe set which denotes all the zones in the study area 
S Set of Si which is a subset of U 
si Set of nodes that zone zi can cover within permissible distance 
ci(L) Index set of cells which can be covered by zone zi within distance L 
ci Number of stations available within distance L from zi 
xi Decision variable which indicates whether the charging station will be located at zi (or not) 
mz Maximum number of electric vehicles (EVs) at charging station (CS) that can be charged at a time 
Scph

i j Binary matrix denoting whether zi covers zj within distance L 
Di,t Number of trips destined in zone I during time t 
 fi Minimum number of charging stations required to built at zi to cover charging demand within L proximity of zi 

 
 
located. S is a subset of U, which denotes the zones which 
are within distance L from zi ∈ Z. The sets are defined as 
follows: 
 
 1 2 3{ , , ,..., },nU z z z z=  (2) 
 
 1 2 3{ , , ,..., },nS s s s s=  (3) 
 
 ( ){ / },i j i Ls z j c= ∈  (4) 
 
where ci(L) is the set of zones in L proximity of zone zj. 
 si is a subset of U and it is a set of zones which contains 
zones which are at L distance from zi. Here, we need to 
find sopt such that all the elements of U are covered by CS 
within permissible distance by maximizing the total covered 
zone by CS. Maximization of the covered zone is done by 
choosing the location of CS, which can cover maximum 
zones within L proximity. If si is maximized, then ultimately, 
the number of CS required to be installed will be minimized. 
If the number of required CS is minimum, then eventually, 
its cost will also be minimized. If we consider L = 0, then 
we need to locate a CS at every zone. If L = ∞, then it is 
required to locate only one CS as it covers the demand of 
all zones. Therefore, the value of L (distance the driver is 
willing to drive) lies between 0 and ∞. Here, considering 
the Delhi Government’s EV policy of maximum distance 
between two CS should not exceed 3 km, h = 3 km was 
chosen. We considered different values of L, i.e. 3 and 
2 km to determine sopt. The objective function used for opti-
mization by the set cover method is presented in eq. (5), 
subject to the constraints in eqs (6) and (7). 
 

 
1
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Subject to: 
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ci is defined as the number of stations available within dis-
tance L from zi. The number of CS that can handle the finite 
capacity of EVs at a time are denoted by mz. If we require 
that the capacity not be exceeded, then we need to ensure 
that the following condition is satisfied for every zone. 
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ceiling ,i t
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where max(Di,t) = max Di,t is the maximum value of Di,t. 
To modify inequality constraint, put ≥fi instead of ≥1.  
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 {0, 1}.ix ∈  (11) 
 
It was assumed that the capacity of a CS was large enough 
to satisfy all the charging demand in the coverage equivalent 
to fi = 1 for all zones. 
 To solve the optimization problem, the distance matrix 
n × n was set as a binary matrix. In the binary matrix rows 
indicate the zones that need to be covered and columns 
indicate the CS at various zones. Now, the (i, j) elements 
of distance matrix SCP is either 1 or 0. If zone j covered 
zone i because zone i is at L distance from zone j then it 
denotes as 1 or else it will be 0. 
 

 ( )1
SCP

0 otherwise
i Lh

ij
j c∈= 


 (12) 
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Each configuration of CS in this binary representation is a 
binary vector in which the indices of non-zero elements 
correspond to those of the cells which have CS in them. 

Optimization method 

First, we converted the distance matrix n × n to a binary 
matrix by setting parameter L. The binary matrix shows 
zones covered by CS at zj. To optimize si, we selected the 
first zone z1 as a CS and then added that zone in the final CS 
set. The covered zones from that CS will be added to the 
set of covered zones by CS. Thereafter, we selected z2 as 
CS. If z2 covered more CS than z1 and consisted all the 
zones covered by z1 then z1 was replaced by z2 in the final 
best CS set. The zones covered by the CS at z1 is replaced 
with zones covered by CS at z2. This process was repeated 
till we evaluated all the zones up to zn and members of the 
covered zones became equivalent to the universe zone U. 
The final station was a set of CS obtained after completion 
of the optimization. Figure 3 shows the optimization done in 
Python. The methodology was adapted from Abdelazeem20. 
 After analysing the generated data, it was found that 
some zones overlapped with more than one CS. Therefore, 
while calculating the charging demand, one needs to elimi-
nate overlapping covered zones in CS. For this, we first 
set the data in descending order of area of zones. Then we 
eliminated repeatedly covered zones from larger area to 
smaller area to get minimum charging demand in smaller 
zones. In the elimination process, we did not consider the 
host zones of CS, because the zones which consist of CS 
will cover their demand. 

Case study 

The set cover-based optimization model was implemented 
in NCT-Delhi, which has an area of 1484 sq km. The entire 
study area was divided into 360 zones (Figure 1 b). The 
set cover model was performed on 360 zones. The most 
important parameter to perform the set cover method is the 
 
 

 
 

Figure 3. Optimization in Python. 

distance matrix. The GIS map of the study area was divided 
into 360 zones in QGIS (Figure 4). The centroid of each zone 
was located by QGIS, which is the node of each zone. The 
network analysis was performed in QGIS to generate a 
360 × 360 distance matrix. The distance between two zones 
was calculated from the centroid of one zone to the cen-
troid of the other. 
 Further, OD data of each zone for different vehicle classes 
were used analyse the charging plugs required to be in-
stalled. Charging demand was computed by considering 
the three assumptions of EV penetration rate, rate of public 
charger users and peak hour flow discussed earlier. The 
EV penetration rate was taken according to segment-wise 
analysis for 2025 (Table 3) as the average range for different 
vehicle classes20. According to a study in Australia, 60–80% 
of EV users will charge their vehicles at home1; therefore, 
only 20–40% of EV users will use the public CS. Based 
on these factors, it was assumed that 40% of EV users 
(private EV owners) would charge their vehicles at public 
CS in the study area (Table 3). However, all (100%) com-
mercial vehicle owners will use public chargers at least 
once a day because their trips are longer compared to pri-
vate vehicle trips. A CS should have the capacity to satisfy 
peak-hour charging demands. 
 Therefore, peak-hour vehicle traffic was computed assum-
ing that 60% of public charger users will charge their vehi-
cles during peak hours. 

Results 

When h (the distance a driver is willing to drive to reach a 
CS) is taken as 3 km, we obtain the location of 62 CS 
(Figure 5 a). As discussed earlier, the above value was taken  
 
 

 
 

Figure 4. Delhi traffic zone map created in QGIS. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 123, NO. 12, 25 DECEMBER 2022 1453 

 
 

Figure 5. Estimated optimum locations for (a) 62 charging stations (at h = 3 km) and (b) 107 charging stations (at h = 2 km). 
 

Table 3. Assumptions: EV penetration rate, public charger users and peak hour traffic flow15 

 
Vehicle category 

Average EV penetration  
rate (%) by 2025 

Public charger users  
(%) 

Peak hour traffic flow  
(%) 

 

2Ws 8.5  40 60 
3Ws 40 100 60 
4Ws (PV) 2  40 60 
4Ws (CV) 7.5 100 60 

 
 

Table 4. Charging plugs required to be installed in one zone 

 
Zone number 

 
2W 

 
3W 

 
4W – PV 

 
4W – CV 

Total number of  
charging stations 

 

  2 16  8  5 1 29 
  4 27 13  8 1 49 
  5 26 13  8 1 49 
  7 25 12  8 1 46 
 27 16  8  5 1 29 
 28 40 20 12 2 74 
 29 21 10  6 1 39 
 30 24 12  7 1 43 
133 34 17 10 2 63 
134 27 13  8 1 49 
139 33 16 10 2 61 
140 27 13  8 1 50 
175 36 18 11 2 66 
176 30 15  9 1 55 
333  8  4  2 1 16 

 
 
by considering the Delhi Government’s EV policy of main-
taining the maximum distance between two charging sta-
tions to less than 3 km. The estimated average distance 
between the CS was obtained as 3.24 km. Zones which 
have a smaller area (less than 9 sq. km) cover more adjacent 
zones (approximately 3–29 zones). While if the area of a 
zone where the CS is located is greater than 9 sq. km, then 
it covers less than two zones. There are 13 CS at 13 zones 
which do not cover the demand of any other zones because 
the area of these zones is greater than 19 sq. km. 
 With decreasing h, the number of CS should increase. 
For h = 2 km, the number of charging stations obtained is 

107 (Figure 5 b). The average distance between CS is 
2.53 km for the 107 CS. We assume that the capacity of 
each CS is sufficient to cover all the charging demand in 
the coverage range. If the CS cannot satisfy all the charging 
demands, then more chargers need to be provided. Assum-
ing that a CS in a zone can handle m EVs at a time, if in 
future there is an increase in the overall charging demand, 
then that zone will require more CS. 
 Table 4 shows the number of charging plugs required 
for different vehicle classes in 15 zones. Charging plugs are 
calculated for peak hours. In Table 4, it is assumed that 
the time taken to charge (up to 80% charge) EVs by fast 
chargers is 10 minutes. Therefore, if one EV can be charged 
in 10 min by one fast charger, then in 60 min, six EVs can 
be charged by a single charger. In this study, peak hour traf-
fic is the traffic during rush hour, which is taken as 2 h. 
Therefore, we divide the charging demand by 12, as one 
charger can charge 12 EVs in 2 h. 
 Figure 6 shows a combination graph of zone area, 
charging demand and estimated total CS for each category 
of vehicles versus zone number and CS location. As seen 
from the figure, the minimum demand for charging is 76 
vehicles during peak hours (2 h) in zone no. 326. The area 
of this zone is 2.33 sq. km and the estimated number of 
CS is 6. The maximum charging demand is 11,197 EVs in 
zone no. 88. The area of this zone is 0.76 sq. km and the 
estimated number of CS is 933, which is very large com-
pared to the area. There are totally eight zones which have 
an area less than 1 sq. km. However, the charging demand 
is low in all the smaller zones. Zone no. 234 is the smallest
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zone in Delhi which has an area of 0.31 sq. km with a 
charging demand of 2011 EVs and an estimated number 
of CS as 168. 

Conclusion 

Locating EV CS is a complex and multi-objective problem. 
CS location depends on various factors like drag distance, 
construction cost, operating cost, power grid, profit, drag 
distance, coverage of CS, charging demand and waiting 
time. Optimizing fast-charging station location by maximiz-
ing its coverage simultaneously minimizes the number of CS 
required. 
 This study locates a fast-charging station for mixed traffic 
flow using the set cover method. The distance matrix of a 
zone is the key to find the optimum location by set cover 
method to maximize coverage of CS. As the parameter h 
(distance the driver is willing to drive to a CS) increases, 
the number of CS locations will decrease. The results show 
that for a covering range of 3 km, 62 CS are required. Fur-
ther, a decrease in the coverage range by 1 km leads to an 
increase in the number of CS required by 72%. The location 
of CS obtained by this method covers all zones. Therefore, 
the charging demand of zones is covered by at least one CS. 
 To conclude, the EV penetration rate is important for 
installing charging plugs. Calculating charging demand 
specifically for mixed traffic is a complex problem. EV 
penetration rate gives the value of energy demand. The 
present study locates CS for a mixed traffic flow; there-
fore, the study refers to EV penetration rate for the individual 
vehicle classes. Since EV penetration rate differs for different 
classes of vehicles, this study will be useful for locating 
CS in mixed traffic conditions. It will also help locate CS 
in different cities across India. 
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Figure 6. Total demand and estimated number of charging stations 
versus area of zones for the study region. 
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