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The economic impact of the COVID-19 pandemic has 
been devastating for countries across the world. We 
propose a novel method for estimating reproduction 
number (R0) using community mobility to obtain optimal 
vaccination coverage (OVC). Different scenarios for 
achieving the desired immunization rates are evaluated 
using nonlinear regression models. The impact of recovery 
rates on mobility is also assessed to determine how the 
economy would have fared in various scenarios. Lock-
downs due to COVID-19, which restricted mobility, were 
the main cause of the decline in GDP. For the city of 
Mumbai in India, with an increase in recovery rate 
from 1% to 5%, it was observed that mobility and thus 
economic activity might have been restored to some ex-
tent. The findings presented here may aid the governing 
bodies in developing more effective emergency response 
plans. 
 
Keywords: Economic recovery, mobility, nonlinear re-
gression, pandemic management, reproduction number, vac-
cination strategy. 
 
THE spread of the novel coronavirus has caused one of the 
largest and most catastrophic disruptions to the economic and 
healthcare systems across the world. The World Health 
Organization, Geneva, reported 516,922,683 confirmed cases 
of COVID-19 globally, including 6,259,945 deaths as of 
15 May 2022. To control the spread of the coronavirus, gov-
ernments around the world had imposed unprecedented 
limits on regional, domestic and international mobility (par-
tial or complete movement restrictions), resulting in wide-
spread economic slowdowns. Fan et al.1 reported annual 
losses due to the COVID-19 pandemic at around USD 500 
billion – or 0.6% of the global revenue. Megacities that 
are the core of economic activity are found to be particularly 
vulnerable to pandemics2,3. This is due to densely populated 
areas, and higher national and international movements. 
The first COVID-19 case in India was reported on 27 Jan-
uary 2020 (ref. 4). Mumbai is a megacity with a population 
of 23.598 million. It is India’s financial capital and a manu-

facturing hub5. It is also home to the country’s busiest 
seaports and airports. The city was affected by the COVID-
19 (ref. 6) pandemic and studies reported that by 25 July 
2020, the total number of active COVID-19 cases in Mumbai 
was 108,060 (ref. 7). 
 India’s vaccination campaign proactively started on 16 
January 2021, by first safeguarding medical personnel, 
frontline workers and senior citizens8. The aim of the present 
study is to determine what strategies may have been used 
to reduce the social and thus economic impact of the pande-
mic. Several variants of the COVID-19 virus have emerged 
now and thus multiple waves of infection have been reported 
around the globe. The first wave in India was from April 
to May 2020 and the second from April to July 2021. Around 
10% of the population had been partially vaccinated when 
the second wave hit the country9–13. The imposition of rigor-
ous mobility restrictions in order to halt the spread of this 
virus resulted in a slowdown in the economy and busi-
ness14–16. To reduce the infection rate, which was observed 
to be very high in densely populated cities, an accelerated 
vaccination rate would have been beneficial. 
 The basic reproduction number (R0), which is an epidemio-
logical criterion for determining the transmissibility of in-
fectious diseases, is generally used as an indicator of disease 
spread. It estimates the number of infected people in a per-
fectly susceptible population. R0 values have been reported 
by several researchers during the COVID-19 pandemic17–22. 
If a city’s R0 is high (more than 2.5), the virus spreads rapidly 
and vaccine coverage should be boosted to contain it. Con-
ventionally R0 is calculated as a daily or monthly average, 
but since there is an almost exponential increase during 
the initial period in the transmission of this disease, we used 
the 14-day average of R0. It is used to estimate the optimal 
vaccination coverage (OVC; it is the minimum vaccination 
coverage that must be done to contain the spread of virus 
in that region) which could have been chosen by the Gov-
ernment as an optimistic target before the second wave. We 
use local mobility in the computation of R0 in this study23, 
as has been suggested in the recent literature24–27 and pro-
pose a novel method for calculating OVC that can also be 
used to estimate the economic benefits of proper immuniza-
tion efforts. 
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Figure 1. Infected fraction of the population in Delhi, Mumbai and Kolkata, India. 
 
 
Data and methods 

This study focused on three metro cities in India, viz. 
Mumbai, Delhi and Kolkata. The points of inflexion are 
marked in Figure 1 and are denoted using different shapes 
for different cities. Cross shape is used for Mumbai, square 
shape for Delhi and triangle shape for Kolkata to denote 
their respective points of inflexion. COVID-19 time-series 
data of daily infected, recovered, and death cases were 
collected from https://data.covid19india.org/ from 26 April 
2020 to 31 October 2021. The vaccination coverage data 
were derived from http://data.covid19india.org/csv/latest/ 
cowin vaccine data districtwise.csv for the population that 
had its first dose of immunization between 16 January and 
31 October 2021. The mobility data (grocery and pharma, 
retail and transit, generated by compiling smartphone loca-
tion data) for the same period were taken from https:// 
www.gstatic.com/covid19/mobility/Region_Mobility_Report_ 
CSVs.zip (more information can be found at https://www. 
google.com/covid19/mobility/). 
 All the simulations were done in python. The most im-
portant libraries that were used to analyse and model the data 
were Pandas, Numpy, Scikit-learn, Scipy and Matplotlib. 
 R0 is the basic reproduction number. It is an epidemiologi-
cal statistic that indicates how many people in a completely 
susceptible population will become infected. We employed 
the susceptible-infected-removed (SIR) model to calculate 
the cities’ time-varying R (reproduction number) values of 
the three cities for 2020–21. 

The SIR model 
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Consider time t = 0 (when the virus had started to spread). 
 
 Susceptible population = N and infected population = 0. 
 
Integrating eq. (4) we get 
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where N is the population, S = N – confirmed, I =confir-
med – recovered – fatal, Rem = recovered + fatal, β the ef-
fective contact rate (1/min), γ = recovery (+ mortality) rate 
(1/min) and R is the time-varying reproduction number. 

https://data.covid19india.org/
http://data.covid19india.org/csv/latest/cowin%20vaccine%20data%20districtwise.csv
http://data.covid19india.org/csv/latest/cowin%20vaccine%20data%20districtwise.csv
https://www.gstatic.com/covid19/mobility/Region_Mobility_Report_CSVs.zip
https://www.gstatic.com/covid19/mobility/Region_Mobility_Report_CSVs.zip
https://www.gstatic.com/covid19/mobility/Region_Mobility_Report_CSVs.zip
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
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Figure 2. a, Difference in mobility. b, Best-fit between mobility in 2020 and 2021. 
 
 
 Here we have estimated the value of R on a particular day. 
Our goal is to determine the expected vaccination coverage 
in a given city based on the calculated R0. Hence, we exa-
mined the time graph of the infected population. We conside-
red the point where the slope of the infected population 
graph first began to rapidly grow to get a basic idea of the 
city’s R0 value. We chose the 14-day (maximum recovery 
period) average of R0 starting on that day as 
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where d is the day when infection started rising steeply and 
Rn is the R value on the nth day. 
 The reinfection rate in the first 14 days after the initial 
infection was low. Thus the impact of reinfection rate on 
R0 was not considered in the SIR model. 
 The mobility (pharmaceutical, retail, transit) from July to 
December 2020 and 2021 was similar in terms of lockdown 
restrictions. The data for Mumbai city showed a substan-
tial increase in mobility in 2021 (Figure 2 a). To consider 
the effect of vaccination on mobility, in eq. (6), we calcula-
ted the difference array (DA) by taking the mobility values 
between 2020 and 2021 (July to December). 2020 denotes 
the before vaccination period whereas 2021 denotes the 
vaccination period (Figure 2 a). We also plotted mobility 
in 2021 versus 2020 (Mumbai), taking vaccination coverage 
as a heat map (Figure 2 b). It was observed that as vaccina-
tion coverage increased, the mobility slope also increased 
(mobility in 2021 increased above that in 2020). DA was 
scaled/normalized with the new minimum and maximum 
values corresponding to the minimum and maximum R 
value of that city (eq. (8)). The average of that array Dav (eq. 
(9)) can be considered as a term which is calculated by 

taking difference between the mobility values of 2020 (be-
fore vaccination period) and 2021 (vaccination period), so 
higher the difference between mobility values, higher will 
be the impact of vaccination in increasing mobility values 
(as can be seen from Figure 2 b). 
 
 DAi = Mobility (2021)i – mobility (2020)i. (7) 
 
where DAi represents the difference in mobility (average 
of pharmaceutical, retail and transit) between 2021 and 
2020 on the ith day. 
 After calculating DA, we normalize it using the maximum 
and minimum values of R. 
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where n is the total number of days between July and De-
cember. 
 We combined this term with R0 to obtain Reff, which was 
used to estimate OVC in a city. 
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Vaccination coverage in a region is the percentage of peo-
ple vaccinated divided by the total population of that re-
gion. 
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We had given 70% weightage to R0 and 30% to Dav. This is, 
in a city, vaccination will be done with 70% of the focus 
on containing the spread of the virus and 30% on enhancing 
mobility, which will directly benefit the economies of both 
the city and the nation. This weighting distribution can be 
altered in response to a city’s dynamics and challenges. 
 It must be noted that β in eq. (5) describes the effective 
infection rate of the disease: an infected individual comes 
into contact with β N other individuals per unit time. The SIR 
model does not consider mobility like transport, retail, etc. 
Therefore, we chose economically significant mobilities 
that directly influence the spread of the virus27. Hence, the 
proposed R0 is computationally more robust and a realistic 
representation of the ground truth. 
 We implemented a nonlinear regression model in Python 
using machine-learning libraries. We used the vaccine, mobi-
lity and daily case data to train our model. To get the desired 
relationship, we varied the output and input/regressor vari-
ables. We chose the set of regressors and a degree (p) that 
resulted in the lowest root mean squared error (RMSE) 
and the highest goodness of fit (R2) score. Next, we changed 
the regressor we desired to use to get the relationship with 
the expected vaccination while keeping the other regressors 
constant. By fitting these data into our trained model, we 
generated a new set of values for the output variable, which 
could then be visualized and compared to our original output 
variable. These steps were repeated for different cities in 
the analysis. 
 The output yn in nonlinear regression was estimated using 
the following relation 
 

 
1

0

( ).
m

n j j n
j

y w xψ
−

=

=∑   

 
The relationship between yn and xn is given by a polynomial 
function of degree p. 
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where d is the dimension of the input. ψj

 (xn) is the jth 
monomial of degree p for xn. 
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Results 

Pandemic management strategies include achieving herd 
immunity through planned vaccination. The recovery rate 
and thus the economic impact can vary depending on the 
vaccination rate in a specific population. We computed OVC 
as the predicted coverage needed to combat the COVID-19 
pandemic using eq. (6). For the present study, we considered 
three scenarios: (i) the actual situation as it occurred in 
2021, (ii) the realistic situation where OVC was achieved 
by the end of October 2021, and (iii) the ideal situation 
where OVC was achieved by the end of May 2021. Scenario 
3 assumes that vaccinations were readily available in the 
early stages and that the infrastructure could support rapid 
vaccination as needed for this scenario. Scenario 2 is fairly 
close to the immunization rate that the Indian Government’s 
COVID Task Force recommended. According to a recent 
analysis28, developing countries like India suffered extreme 
economic slowdowns in phase 1 (January–March) of the 
2021 lockdown. We propose that during the first phase of 
the lockdown, the vaccination effort was a crucial instrument 
for achieving herd immunity. When a population achieves 
herd immunity, the rate of disease transmission begins to 
slow down. 
 A nonlinear regression model was developed to explore 
the regressors/predictors that affect vaccination coverage. 
The regressors (input variables) were taken as sites/area 
(sq. km) – number of vaccination centres/sites in a region 
divided by the area (sq. km) of that region, deaths%, con-
firmed cases% and recovered cases% and pharmaceutical 
mobility (mobility trends for places like pharmacies, grocery 
markets and drug stores). As described earlier, the 14-day 
average R0 was calculated using the equation derived from 
the SIR model (eq. (5)). This data is provided by the Indian 
Government. The nonlinear regression model takes output 
variables as vaccination coverage (first dose), input variables 
as sites/area (sq. km), deaths%, confirmed cases%, recove-
red cases% and pharmaceutical mobility. For Mumbai, the 
nonlinear regression model with p = 4, RMSE of 2.38 and 
R2 = 0.97 at a 95% confidence interval for R0 was estimated 
as 5.491 (5.4140, 5.5669). Thus, the Reff of Mumbai was esti-
mated to be 5.00. According to this R0 value OVC should 
have been around 80% and we could have achieved this 
by the end of October 2021 as scenario 2 or May 2021 as 
scenario 3. In reality (scenario 1), the vaccination coverage 
was only 43.5% till October 2021, and it was significantly 
lower than anticipated (Figure 3). By this time, India’s 
vaccination coverage reached about 1 billion doses. The 
low vaccination in Mumbai could be due to various reasons, 
including and not limited to the huge population living in 
slums or low-income neighbourhoods with little or no acces-
sibility to vaccination facilities. Additionally, Mumbai saw a 
large in-flow and out-flow of the population from other 
parts of the country during this time and it would have 
been even more challenging to keep track of OVC in such 
an expanding population. 
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 For scenario 2, using OVC as the input while keeping the 
other regressors constant in the model, increasing the sites/ 
sq. km by 36.4% per day would have resulted in 80% vac-
cination coverage and a 37% increase in the vaccinated 
population in Mumbai. In this scenario, using the same 
nonlinear model with recovery rate (defined as recovered 
cases/confirmed cases) as the outcome variable and vaccina-
tion coverage and pharmaceutical mobility as the input 
variables, it was noted that the recovery rate would have 
increased on an average by 1.5%. In Figure 4, the purple 
dotted curve represents the variation in recovery rate for 
scenario 2. The recovery rate had significantly improved 
during the second wave (March–May 2021). Next, we chose 
retail mobility as an output variable and vaccination cov-
erage, confirmed cases%, recovered cases% and deaths% 
(p = 2) as input variables. If the vaccine coverage had been 
implemented as recommended in scenario 2, it would have 
resulted in a 4.5% increase in retail mobility over the city’s 
average, which would have had a favourable influence on 
India’s declining retail economies. In Figure 5, the purple 
 
 

 
 

Figure 3. Vaccination coverage (OVC) for three scenarios in Mumbai 
city. 

 
 

 
 

Figure 4. Recovery rate for three scenarios in Mumbai city. 

dotted curve represents retail mobility for scenario 2. The 
frequent local minima (sharp spikes) in the dotted red 
curve (scenario 1) had almost become smooth and increased 
a fraction above the red curve, which represents an increase 
in mobility. Further, taking transit mobility as the output vari-
able and vaccination coverage, confirmed cases%, recovered 
cases% and deaths% (p = 2) as input variables, we found 
that if the vaccination coverage was executed as suggested, 
then it would have resulted in an average increase of 6.2% 
transit mobility above the average value for Mumbai. In Fig-
ure 6, the purple dotted curve represents the transit mobility 
for scenario 2. The variation and nature of the curve were 
almost similar to that obtained for retail mobility. 
 For scenario 3, using OVC 80% as input the recovery rate 
would have increased on an average by 5%. Based on this, 
retail mobility would have resulted in a 46% increase over 
the city’s average. Similarly, transport mobility would have 
increased by 58% for Mumbai. On comparing the three 
scenarios, scenario 3 was found to be the most favourable. In 
Figures 4–6, the green curves with an exceptionally high 
slope represent scenario 3. 
 The model results for Delhi and Kolkata are given below. 
 
 

 
 

Figure 5. Retail mobility for three scenarios in Mumbai city. 
 
 

 
 

Figure 6. Transit mobility of three scenarios in Mumbai city. 
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Delhi 

● OVC = 65.2%. 
● Increase sites/sq. km by 7% each day to achieve OVC. 

We would have vaccinated an additional 2% of the popu-
lation in Delhi. 

● If the vaccination coverage was done as suggested above 
then 

 
(i) The average recovery rate would have increased by 
0.16%. (ii) It would have resulted in an average rise of 4% 
in retail mobility over the city’s average. (iii) It would have 
resulted in a 6.2% rise in transit mobility over the city’s 
average. 

Kolkata 

● OVC = 56%. 
● To achieve OVC, approximately double the sites/sq. km 

each day. We would have vaccinated an additional 25% 
of the population in Kolkata. 

●  If the vaccination coverage was done as suggested above, 
then 

 
(i) The average recovery rate would have increased by 
2%. (ii) It would have resulted in an average rise of 10.6% 
in retail mobility over the city’s average. (iii) It would have 
resulted in a 24.1% rise in transit mobility over the city’s 
average. 
 Table 1 shows the results of the comparison of three cities. 
The proposed model is aimed at an economically robust 
pandemic management strategy. We found that the vaccina-
tion rate in reality (scenario 1) was about 50% lower than 
what was required to bring down the infection rate in Mum-
bai. Getting a correct estimation for R0 is crucial for esti-
mating vaccination coverage, which ensures an improved 
recovery rate. R0 used in the proposed model gives 30% 
weightage to mobility to ensure due consideration to eco-
nomic activity. Figure 2 a and b shows the impact of vaccina-
tion on mobility. The DA was normalized to bring it to a 
common scale with R values (eq. (8)). The DA average 
was used to represent DA as a parameter for the mobility 
term and could be used with R0 to estimate Reff. Reff value 
was then used to approximate OVC. Considering the im-
portance of Dav and R0, we decided to give them a 70–30% 
weighting in the present study. This was done in order to 
consider mobility while determining OVC. Figure 7 reveals 
 
 

Table 1. Cities and their estimated parameters 

City R0 Dav Reff 
 

Delhi 3.14 2.26 2.87 
Mumbai 5.49 3.87 5.00 
Kolkata 2.32 2.105 2.25 

that for Mumbai city, OVC varies when the weight of Dav 
changes from 0% to 100%. Theoretically, we could come up 
with any ratio, but practically we would require a ratio which 
gives more weightage to the spread of infection (≥50%). 
Therefore, we can choose any ratio in the range 0.1–0.5 
depending on the need of that region. For example, in 
Mumbai, the mobility was relatively higher than in Kolkata, 
which led to a higher Dav for Mumbai (3.87) than Kolkata 
(2.1), and thus a higher OVC for Mumbai (80) compared 
to Kolkata (55.56). 
 To summarize, the Indian Government’s strategy was to 
vaccinate majority of the population starting in January 
2021. To facilitate the vaccination drive, all the healthcare 
resources across various cities were used. Based on our re-
sults, we propose an alternative strategy. To support faster 
economic growth, economic centres like Mumbai, Delhi, 
etc. should have been targeted for priority vaccination. The 
vaccination-eligible populations of these cities would be 
about 10% of the entire Indian population. Our results in-
dicate that an accelerated vaccination schedule in economi-
cally important cities like Mumbai would have resulted in 
a much faster economic recovery. 
 In fact, the focus of the present study was to vaccinate 
the targeted population for faster restoration of the economy. 
It was reported that there were significant economic setbacks 
in several regions of India. According to some estimates, 
the worldwide loss of GDP during the COVID-19 pandemic 
will take several years to recover. A focused strategy in 
major cities would have aided in a faster economic recovery. 
Mobility and the economy are closely linked; thus, we 
gave mobility a 30% weight to estimate its influence. 

Discussion and conclusion 

The reproduction number (R0) was used to evaluate inter-
ventions like OVC. We argue that only the rate of spread  
 
 

 
 

Figure 7. Variation of OVC with change in ratio Dav : R0. 
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is considered when calculating R0; however, in diseases like 
COVID-19 with a high rate of person-to-person transmission, 
population mobility plays a significant role. Thus factors 
like local mobility must be taken into account while calcu-
lating a more effective reproduction number. A study re-
ported that Mumbai, the business capital of India, had an 
R0 of 1.45 in 2020 (ref. 21). Based on this reported R0 value, 
around 31% of the population was expected to be vaccinated. 
This, however, does not give a complete picture of the many 
types of community mobility and their characteristics 
across time in that location. As a result, we present a novel 
approach for evaluating R0 that incorporates both infection 
and mobility data. 
 To the best of our knowledge, no previous studies suggest 
that in cities where lockdowns could not be imposed due to 
various reasons, predicting R0 based on infection rate alone is 
not the best choice. When a country must vaccinate a large 
population, resource management becomes critical. To dis-
tribute the limited resources available for the best possible 
outcome, they must be divided strategically and effectively. 
There is usually a short window of opportunity for control-
ling pandemics and an optimized execution plan can help 
better manage the social and economic impacts. There may 
be two specific scenarios if we use our recommended R0 
value to estimate coverage. Regions with moderate R0 and 
high mobility and economic impact might be better for 
limited vaccination resources compared to a city with high 
R0 but low mobility and economic impact. 
 As a result, we have devised a method for addressing a 
region’s demands that consider the ground realities. We 
used Reff to calculate the anticipated vaccination coverage. 
This index takes into account not only infection spread, but 
also the importance and impact of a region’s mobility and 
economics. R0 was estimated using the 14-day average of 
R values from the time when the infection first began to 
rise sharply. Differences in community mobilities between 
2020 and 2021 were calculated for each day and scaled ac-
cording to the R values and the average was then combined 
linearly with R0 to get Reff, which was used to predict OVC. 
Reff for Mumbai was estimated to be 5.00. According to 
this, vaccination coverage should have been at least 80%. 
In reality, it was 43.5% (till 31 October 2021). If the propo-
sed coverage had been implemented, not only would the 
city’s average recovery rate have increased, but its struggling 
retail businesses would have seen a significant recovery. 
 During a pandemic, mobility is severely limited, resulting 
in a country’s economic slowdown. If the damage is not 
repaired within a particular timeframe, it could be fatal. An 
ideal vaccine campaign should consider all of these criteria, 
giving each one a substantial weightage. Based on the cover-
age calculated from these crucial characteristics for a re-
gion, resources can subsequently be deployed optimally and 
wisely. 
 In the proposed model, we have simulated the scenarios 
for economically crucial cities. Further research involving all 
cities in India and other countries could provide better in-

sights, as COVID-19 was a global pandemic with interrelated 
impacts. Given the socio-economic variability and com-
plexity in different cities, this is beyond the scope of the 
present study and will be analysed in future work. Also, still 
need to address the efficacy of the vaccines, which is an-
other limitation of this study. 
 While formulating pandemic management strategies, sev-
eral factors are taken into account. The moral dilemma of who 
should receive vaccinations first is complicated; however, 
it has been noted that the economic collapse due to the lock-
downs has had a disastrous effect across the world. The 
present study focuses on a pandemic management approach 
that maximizes the likelihood of an expedited economic 
recovery. 
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