with vanadate ion. A compound like quercetin or tannic acid may be involved in colour development.

The age or the source of leaves did not have any effect on the absorbance produced by $10 \ \mu g$ of Mo^{6+} . The leaf powder was found to be stable for at least one year when kept in dry condition at room temperature. However, compositions of plant parts are known to vary due to various factors like variety, climate, soil, competition, diseases, etc. Therefore, the same batch of reagents should be used for preparing the calibration curve and analysis of samples.

Table 3 lists other plant extracts that gave similar colour reaction as *S. jambolanum*. Therefore, it may be concluded that compounds responsible for the colour reaction are widely distributed. The *S. jambolanum* extract gave a deep purple colour with ferric iron, lemon yellow colour with titanium and a bluish colour with vanadate ion. A compound like quercetin or tannic acid may be involved in colour development.

- Koel, M. and Kaljurand, M., Application of the principles of green chemistry in analytical chemistry. *Pure Appl. Chem.*, 2006, 78, 1993–2002.
- Wang, J., Real-time electrochemical monitoring: toward green analytical chemistry. Acc. Chem. Res., 2002, 35, 811–816.
- Tobiszewski, M., Mechlińska, A. and Namieśnik, J., Green analytical chemistry – theory and practice. *Chem. Soc. Rev.*, 2010, 39, 2869–2878.
- de la Guardia, M. and Garrigues, S. (eds), *Challenges in Green Analytical Chemistry*, The Royal Society of Chemistry, UK, 2011, p. 330.
- de la Guardia, M. and Garrigues, S. (eds), The concept of green analytical chemistry. In *Handbook of Green Analytical Chemistry*, John Wiley, Chichester, UK, 2012; doi:10.1002/9781119940722. ch1
- 6. Armenta, S., Garrigues, S. and de la Guardia, M., Trends in analytical chemistry. *Green Anal. Chem.*, 2008, **27**, 497–511.
- de la Guardia, M. and Garrigues, S., Wilson and Wilson's comprehensive analytical chemistry. In *Green Analytical Chemistry* (ed. Barcelo, D.), Elsevier, Oxford, UK, 2010, vol. 57.
- Crouthamel, C. E. and Johnson, C. E., Spectrophotometric determination of uranium by thiocyanate method in acetone medium. *Am. Chem.*, 1952, 24, 1780.
- 9. Piper, C. S. and Beckwith, R. S., J. Soc. Chem. Ind. (London), 1948, 67, 374.
- Sandell, E. B., Colorimetric Determination of Trace Metals, Interscience, New York, 1950, 2nd edn, p. 334.
- Grudpan, K., Hartwell, S. K., Lapanantnoppakhun, S. and McKelvie, I., The case for the use of unrefined natural reagents in analytical chemistry – a green chemical perspective. *Anal. Methods*, 2010, 2, 1651–1661.
- Monji, A. B., Zolfonun, E. and Ahmadi, S. J., Application of water extract of slippery elm tree leaves as a natural reagent for selective spectrophometric determination of trace amounts of molybdenum (VI) in environmental water samples. J. Toxicol. Environ. Chem., 2009, 91, 1229–1235.
- Ayyanar, M. and Subash-Babu, P., Syzygium cumini (L.) skeels: a review of its photochemical constituents and traditional uses. *Asian Pac. J. Trop. Biomed.*, 2012, 2, 240–246.
- Maciel, M. C. G. *et al.*, *Syzygium Jambolanum* treatment improves survival in lethal sepsis induced in mice. *BMC Complem. Altern. Med.*, 2008, 8, 57.

- Kirtikar, K. R. and Basu, B. D., In *Indian Medicinal Plants, Vol. II* (eds Singh, B. and Singh, M. P.), Dehra Dun, 1991, 2nd edn, p. 1053.
- Chandrasekaran, M. and Venkatesalu, V., Antibacterial and antifungal activity of *Syzygium jambolanum* seed. *J. Ethnopharma*col., 2004, **91**, 105–108.
- Slowing, K., Sollhuber, M., Carretero, E. and Villar, A., Flavonoid glycosides from *Eugenia jambos*. *Phytochemistry*, 1994, **37**, 255– 258.
- Methods for measuring the acute toxicity of effluents and receiving waters to fresh water and marine organisms. US EPA/OW/ Office of Science and Technology, Acute toxicity manual, Section 7–10, 2007, p. 33.

ACKNOWLEDGEMENTS. We thank Dr R. J. Deshpande, Department of Metallurgy, Indian Institute of Science, Bengaluru for AAS analysis and Miss. Farheen Iqbal, Project Trainee, Over Reach Programm, IISc for assistance.

Received 29 December 2014; accepted 2 June 2015

Fruit extract dyes as photosensitizers in solar cells

Mozhgan Hosseinnezhad^{1,*}, Siamak Moradian^{2,3} and Kamaladin Gharanjig^{1,3}

¹Department of Organic Colorants, Institute of Color Science and Technology, P.O. Box 16656118481, Tehran, Iran

²Faculty of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran

³Center of Excellence for Color Science and Technology, Institute of Color Science and Technology, P.O. Box 16656118481, Tehran, Iran

Two natural dyes containing anthocyanin were extracted from sour and sweet pomegranate from Iran. Spectrophotometric evaluation of the natural dyes in solution and on a TiO₂ substrate was carried out in order to assess changes in the status of the natural dyes. The results show that the natural dyes indicate buthochromic shift on the TiO₂ substrates. Dye-sensitized solar cells (DSSCs) were fabricated in order to determine the photovoltaic behaviour of each dye and the mixture of extracts. Such evaluations demonstrate conversion efficiencies of 0.73%, 1.57% and 0.91% for sour pomegranate, sweet pomegranate and mixed extract respectively. Natural dyes are suitable alternative photosensitizers for DSSCs.

Keywords: Anthocyanin, conversion efficiencies, dye-sensitized solar cells, natural dye.

DYE-SENSITIZED solar cells (DSSCs or Grätzel cells) have become an attractive and low-cost technology for the conversion of solar light into electrical energy¹. The

^{*}For correspondence. (e-mail: hosseinnezhad-mo@icrc.ac.ir)

performance of the solar cells depends on the structure of dye used as photosensitizer². Inorganic complexes have shown good conversion efficiency in DSSCs when adsorbed on TiO₂ nanoparticles³, but this process to synthesize the inorganic complexes is complicated and expensive². However, natural dyes are usually utilized poorly in DSSCs because of low charge transfer absorption in the visible spectrum, but these dyes are low cost and availability, compared to ruthenium polypyridyl complex^{4,5}. In nature, the fruits, flowers and leaves of plants display a range of colours from yellow to violet and various natural dyes which can be extracted by simple procedure and utilized as suitable photosensitizers^{1,6}. Anthocyanins belong to the major group of natural dyes responsible for cyanic colours ranging from salmon pink through red and violet to dark blue of most flowers, fruits and leaves^{7,8}. Sometimes, they are present in other plant tissues such as roots, tubers and stems⁹. Carbonyl and hydroxyl groups present in the anthocyanin molecules can be bonded to the surface of a porous nano anatase TiO₂ substrate. This band makes injection excitation electron from anthocyanin molecule to the conduction band (CB) of TiO₂ (refs 1, 2). Polo et al.¹⁰ utilized the natural dyes based on anthocyanin as sensitizer in DSSCs and achieved up to $\eta = 1.5\%$ for jaboticaba extract and $\eta = 0.95\%$ for calafate extract. Nishanta *et al.*¹¹ fabricated DSSCs with natural dye based on anthocyanin and found $\eta = 0.38\%$ for *Kopsia flavida* fruit.

In the present investigation, two natural dyes containing anthocyanin have been extracted from sour and sweet pomegranate grown in Iran, as photosensitizers on porous nano anatase TiO_2 substrate. The spectrophotometric properties of the natural dyes in solution and on the nano anatase TiO_2 substrate were examined. The absorption maxima and intensity of the resultant natural dyes were also obtained. Finally, DSSCs were fabricated utilizing these natural dyes and a mixture of extracts and their photovoltaic behaviours were determined.

The samples of pomegranate used in this study were obtained from 7-year-old pomegranate tree grown in Iran. The sour and sweet pomegranate have been grown in Behshahr and Saveh in the north and central Iran respectively. The samples of pomegranate were collected at random from natural source. They were harvested during the 2014 growing seasons. UV–visible spectrophotometry was carried out on a Cecil 9200 double beam transmission spectrophotometer.

Fresh pomegranate weighing 1 g was extracted in 100 ml water at 50°C for 15 min. Solid residues were filtrated out to obtain clear dye solutions. A mixed dye was prepared by mixing sour and sweet pomegranate solutions in the ratio 1 : 1 by volume.

 TiO_2 nanoparticles were obtained commercially from Nanomahan Company in Iran. An organic paste containing TiO_2 nanoparticles, a binder and a solvent was printed on conducting glass substrates (FTO glass) by doctor blading, followed by heating in a hot-air stream at 350° C for 30 min. Then, 50 mM aqueous solution of TiCl₄ was slowly dropped onto the TiO₂ films and kept at 25° C for 20 h, followed by calcining at 450° C for 30 min in air. The natural dyes were adsorbed by dipping the coated glass for 18 h in aqueous solution of each dye. Finally, the film was washed with an anhydrous ethanol. The iodide electrolyte solution (0.5 M potassium iodide mixed with 0.05 M iodine in water-free ethylene glycol) was used as an electrolyte. The dye-adsorbed TiO₂ electrode, the Pt counter electrode and the electrolyte solution were assembled into a sealed sandwich-type solar cell^{12,13}.

An action spectrum was measured under monochromatic light with a constant photon number $(5 \times 10^{15}$ photon cm⁻² s⁻¹). *J*–*V* characteristics were measured under illumination with AM 1.5 simulated sunlight (100 mW cm⁻²) through a shading mast (5.0 mm × 4 mm) using a Bunko-Keiki CEP-2000 system.

Anthocyanins are the most abundant of natural dye that adsorb light at the longest wavelength⁵. They often exist in fruits, flowers and leaves of plant¹. Figure 1 shows the molecular structure of anthocyanin. Carbonyl and hydroxyl groups present in the anthocyanin molecules can be bonded to the surface of a porous nano anatase TiO_2 substrate. This links makes injection excitation electron from anthocyanin molecule to the CB of TiO_2 (ref. 1).

Anthocyanin compounds exhibit a wide band in the UV-visible region of the spectrum due to charge transfer transition¹⁴. The wavelength of maximum absorption (λ_{max}) and the molar extinction coefficients (ε_{max}) for the two natural dyes in solution are listed in Table 1 and shown in Figure 2, together with λ_{max} of the corresponding dyes adsorbed on TiO₂ films.

Upon dye adsorption onto a TiO_2 surface, the wavelength of maximum absorption is bathochromically shifted by 9 and 7 nm for sour and sweet pomegranate respectively, as compared to the corresponding spectra in solution. Chemical adsorption of these natural dyes is due to alcoholic bound protons which condense with the hydroxyl groups present at the surface of nanostructured TiO_2 film. Their binding can be increased by the chelating effect to the Ti(IV) ions¹⁰. The attachment to the TiO_2 surface affirms the exited state, and thus the shift toward the lower energy of the absorption maximum^{10,15}. The

Figure 1. Molecular structure of anthocyanin.

CURRENT SCIENCE, VOL. 109, NO. 5, 10 SEPTEMBER 2015

DSSCs were constructed and compared in order to clarify the relationship between the sensitizing behaviours of natural dyes molecules. The DSSCs utilized these natural dyes as sensitizers for nanocrystalline anatase TiO₂. Figure 3 presents a schematic diagram of the solar cell. Figure 4 shows a typical photocurrentphotovoltage (J-V) curve for the cells based on natural dyes and a mixture of extract. Table 2 presents the detailed photovoltaic parameters of DSSCs in terms of short-circuit photocurrent (J_{sc}) , open-circuit voltage (V_{oc}) , fill factor (FF) and conversion efficiency (η) .

According to the results shown in Table 2, under the standard global AM 1.5 solar condition, the conversion efficiencies of cells containing sour pomegranate, sweet pomegranate and the mixed extract are 0.73%, 1.57% and

Table 1. Absorption of natural dyes Natural dye source $\lambda_{\rm max}$ (nm) λ_{max} (nm) $(M^{-1} cm^{-1})$ (on TiO₂) (in solution) Sour pomegranate 511 24,887 520 Sweet pomegranate 529 536 26,661 1 Sour pomegranate in solution 0.9 Sweet pomegranate in solution Sour pomegranate on TiO2 0.8 Sweet pomegranate on TiO; 0.7 0.6 Se Absorbar 0.5 0.4

550

600

650

700

750

CURRENT SCIENCE, VOL. 109, NO. 5, 10 SEPTEMBER 2015

0.3

0.2 - 0.1 - 0.1 - 0.2 - 0.1 - 0.2 - 0

450

500

0.91% respectively. The larger conversion efficiency of sweet pomegranate extract sensitizer is probably due to higher intensity and broader range of light absorption of the extract on TiO₂, and higher interaction between TiO₂ and anthocyanin in sweet pomegranate extract leads to a better charge transfer¹⁷. A DSSC sensitized by a mixed extract has a conversion efficiency close to the average value of those sensitized with sweet and sour pomegranate. This result is in agreement with those of Wongcharee *et al.*². Under similar conditions, DSSCs sensitized by sweet pomegranate extract showed good performance compared to those prepared from other natural dyes based on anthocyanin^{7,18}.

Figure 3. Schematic diagram of the solar cell.

Figure 4. Current density-voltage characteristics for sweet pomegranate, sour pomegranate and mixed extract.

 Table 2. Photovoltaic performance of dye-sensitized solar cells based on sour pomegranate extract, sweet pomegranate extract and mixed extract

Dye source	V _{oc} (V)	$J_{\rm SC}$ (mA cm ⁻¹)	Fill Factor (%)	η (%)
Sour pomegranate	2.97	0.50	49.00	0.73
Sweet pomegranate	4.60	0.62	55.01	1.57
Mixed extract	3.25	0.56	50.13	0.91

RESEARCH COMMUNICATIONS

Two natural dyes were extracted from sour and sweet pomegranate grown in Iran. Natural dyes are an environmental-friendly and low-cost source as sensitizer for DSSCs. The spectrophotometric properties of the natural dyes in solution and on TiO₂ substrate were examined. According to the results, sour and sweet pomegranate extracts showed absorption maxima in solution at 511 and 529 nm respectively. The absorption maxima of both natural dyes separately applied on TiO₂ films gave bathochromic shifts compared to the corresponding dye spectra in solutions. Finally, the natural extract dyes were utilized in constructed DSSCs and their photovoltaic behaviours were assessed. A solar energy to electricity conversion efficiency of 0.73%, 1.57% and 0.91% was achieved for sour pomegranate, sweet pomegranate and mixed extract respectively. The mixed extract has a conversion efficiency close to the average value of those sensitized with sour pomegranate and sweet pomegranate extracts. From these experimental results and discussion, it can be seen that sweet pomegranate extract presents the best photosensitized effect in DSSCs, which is due to the better interaction between the carbonyl and hydroxyl groups of anthocyanin on sweet pomegranate extract and the TiO₂ substrate in DSSCs.

- Hao, S., Wu, J., Huang, Y. and Lin, J., Natural dyes as photosensitizers for dye-sensitized solar cell. *Sol. Energy*, 2006, 80, 209– 214.
- 2. Wongcharee, K., Meeyoo, V. and Chavagej, S., Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. *Sol. Energy Mater. Sol. Cells*, 2007, **91**, 566–571.
- Hagfeld, A., Boschloo, G., Sun, L., Kloo, L. and Pettersoon, H., Dye sensitized solar cells. *Chem. Rev.*, 2010, **110**, 6595–6663.
- Hosseinnezhad, M., Moradian, S., Gharanjig, K. and Afshar Taromi, F., Synthesis and characterization of eight organic dyes for dye-sensitized solar cells. *Mater. Technol.*, 2014, 29, 112–117.
- Narayan, M. R., Review: dye sensitized solar cells based on natural photosensitizers. *Renew. Sustain. Energy Rev.*, 2012, 16, 208– 215.
- Hosseinnezhad, M., Moradian, S. and Gharanjig, K., Synthesis and application of two organic dyes for dye-sensitized solar cells. *Prog. Color Colorants Coat.*, 2013, 6, 109–117.
- Fernando, J. M. R. C. and Senadeera, G. K. R., Natural anthocyanices as photosensitizers for dye sensitized solar cells. *Curr. Sci.*, 2008, 95, 663–668.
- Amao, Y. and Komori, T., Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO₂ film electrode. *Biosens. Bioelectron.*, 2004, **19**, 843–847.
- 9. Hug, H., Bader, M., Mair, P. and Glatzel, T., Biophotovoltaics: natural pigments in dye-sensitized solar cells. *Appl. Energy*, 2014, **115**, 216–225.
- Polo, A. S. and Tha, N. Y., Blue sensitization for solar cells natural dyes from Calafate and Jaboticaba. *Sol. Energy Mater. Sol. Cells*, 2006, **90**, 1936–1944.
- 11. Nishanta, M., Yapa, Y. and Perera, V., Sensitization of electrochemical solar cells with a natural dye extracted from *Kopsia flavida* fruit. *Proceed. Tech. Sess.*, 2012, **28**, 54–58.
- Matsui, M., Fujita, T., Kubota, Y., Funabiki, K., Jin, J., Yoshida, T. and Miura, H., The use of indoline dyes in a zinc oxide dyesensitized solar cell. *Dye Pigments*, 2009, **80**, 233–238.

- Nazeeruddin, M. *et al.*, Conversion of light to electricity by cis-X₂bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl⁻, Br⁻, I⁻, CN⁻, and SCN⁻) on nanocrystalline titanium dioxide electrodes. *J. Am. Chem. Soc.*, 1993, **115**, 6382–6390.
- 14. Cherepy, N. J., Smestad, G. P., Gratzel, M. and Zang, J. Z., Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO₂ nanocrystalline electrode. J. Phys. Chem. B., 1997, **101**, 9342–9351.
- Garcia, C. G., Polo, A. S. and Murakami, N. Y., Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO₂ in photoelectrochemical solar cells. *J. Photochem. Photobiol. A: Chem.*, 2003, 160, 87–91.
- Park, S., Won, Y., Choi, Y. and Kim, J., Molecular design of organic dyes with double electron acceptor for dye-sensitized solar cell. *Energy Fuel*, 2009, 23, 3732–3739.
- Sayama, K. *et al.*, Efficient sensitization of nanocrystalline TiO₂ films with cyanine and merocyanine organic dyes. *Sol. Energy Mater. Sol. Cells*, 2003, **80**, 47–71.
- Ludin, N. A., Mahmoud, A. M., Mohamad, A. B., Kadhum, A. A., Sopian, K. and Abdul Karim, N., Review on the development of natural dye photosensitizer for dye-sensitized solar cells. *Renew. Sustain Energy Rev.*, 2014, 31, 386–396.

Received 10 January 2015; revised accepted 2 June 2015

Vegetation and climatic variability in southeastern Madhya Pradesh, India since Mid-Holocene, based on pollen records

M. S. Chauhan*

Birbal Sahni Institute of Palaeobotany, Lucknow 226 007, India

Pollen analysis of 1.75 m deep sediment core from Tula-Jalda (Amarkantak) in Anuppur district, Madhya Pradesh unravels that around 4500–3600 cal years BP, this region supported open mixed tropical deciduous forests comprising chiefly Madhuca indica followed by Terminalia, Mitragyna parvifolia, Haldina cordifolia, Emblica officinalis and Acacia, under a warm and relatively less humid climate. The retrieval of Cerealia and other cultural plants, viz. Artemisia, Cheno/Am and Caryophyllaceae signifies that the region was under cereal-based agricultural practice. The open mixed deciduous forests got enriched and dense around 3600-2761 cal years BP with the expansion of trees that already existed coupled with invasion of Symplocos, Diospyros, Lannea coromandelica and Radermachera with the inception of a warm and moderately humid climate in response to increased monsoon precipitation. Around 2761-2200 cal years BP, much expansion of the forests took place owing to

^{*}e-mail: mschauhan_2000@yahoo.com