
REVIEW ARTICLE 
 

CURRENT SCIENCE, VOL. 109, NO. 8, 25 OCTOBER 2015 1418 

*For correspondence. (e-mail: sk_tripathi@rediffmail.com) 

Measuring ecosystem patterns and processes 
through fractals 
 
S. K. Tripathi1,2,*, C. P. Kushwaha3,4, Arijit Roy5 and S. K. Basu1 
1Department of Computer Science, Banaras Hindu University, Varanasi 221 005, India 
2Department of Forestry, Mizoram University, Aizawal 796 009, India 
3Department of Botany, Banaras Hindu University, Varanasi 221 005, India 
4Present address: Department of Applied Sciences, Axis Institute of Technology, Axis College, Kanpur 208 001, India 
5Forestry and Ecology Department, Indian Institute of Remote Sensing, Dehradun 248 001, India 
 

Changes in ecosystems are highly complex, hetero-
geneous and are extremely difficult to measure 
through single scale. Fractal geometry has been used 
to quantitatively estimate the extent of irregularity in 
ecosystem changes. However, in some cases it has been 
overly used giving misleading results. To avoid this, 
other metrics are also being used in studying changes 
in forest ecosystems. In this article, we review use of 
fractal geometry in measuring ecosystem components 
in a range of ecological conditions. Further, case stud-
ies from forest fragmentation and soil aggregates sta-
bility in different Indian tropical ecosystems with 
respect to management practices and environmental 
change have been described using fractal dimension. 
We have tried to point out some instances where  
fractals can more appropriately be used in assessing 
ecosystems properties and where it could not be suc-
cessfully used. Characterization of ecological situa-
tions where fractals can effectively be used in general 
remains an important issue. 
 
Keywords: Ecosystem complexity, ecosystem patterns, 
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ENVIRONMENTAL heterogeneity is essential for co-
existence of species by providing structurally complex 
habitats with varying micro-habitats and niches1,2. Posi-
tive relationship between habitat complexity and species 
diversity at different scales3–6 are among the important 
factors in structuring diverse communities in a variety of 
ecosystems7,8. Measuring complex ecosystem structure is 
often difficult using ordinary mathematical formulations. 
 Fractal dimension (D) has been used for various appli-
cations9 in characterizing continuous spatial or temporal 
patterns on the Earth’s surface10–16. In contrast to Euclidian 
dimensions, D is a non-integer dimension and is a relative 
measure of complexity of a shape or a process which in-
creases with the complexity of the structure. For instance, 
the estimated value of D of a lakeshore neither tells us 
about its actual size or shape, nor helps us in drawing a 
map of the lake. But, it tells us about the relative com-
plexity of the lakeshore and is an important descriptor 

when used in conjunction with other measures. Further, it 
reflects quantitative measure of the irregular features of a 
phenomenon or roughness of an object. Variability is com-
mon in natural ecosystems, and thus sometimes it is appro-
ximated by a stochastic fractal like the model of Brownian 
motion13. Fractal theory has been used to measure differ-
ent ecological patterns and processes10–12 more success-
fully than by the traditional Euclidian geometry. 
 In this article, we give an overview and application of 
D in measuring ecosystem patterns and processes. Fur-
ther, we discuss the use of D and other metrics to explain 
forest fragmentation and soil aggregation using field data 
from sites in India. 

The notion of D and its measurement 

The notion of fractal is based on the principle of scaling 
laws, where measurement of an irregular object is made 
by lowering scales to accurately measure the complexity 
of the object. For example, if we scale down the sides of 
a square by a factor r = 1/2 then 4 small squares would be 
required to fill up the original square. In other words, the 
size of the object will be reduced by a factor of (½)2 = 
0.25. This means that if we scale down by a factor r we 
need (1/r)2 reduced squares to fill the original square. 
Likewise, if we do the same with a scale factor r in the 
case of a cube, then the number of cubes needed to fill 
the original box is (1/r)3. This shows that the power 1/3 is 
directly related to the geometric dimension of the original 
figure. If r is the scale factor and m(r) shows the number 
of scaled down self-similar pieces required to fill the origi-
nal figure, then for both square and cube m = (1/r)D, 
where D is the dimension (2 for a square and 3 for a cube). 
This is a reasonable definition of the dimension D of a 
self-similar fractal which was discussed in detail by 
Murray17. 

The D of non-self similar objects and box count-
ing dimension 

If an object is not self-similar, then a generalized concept 
like the box counting method is widely used. It involves 
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covering an object of measurement with regular square 
boxes of size r. For example, squares are used for meas-
urements in the plane and cubes for measurements in three-
dimensional space. Suppose the original smooth curve 
has length L then the number of boxes N(r) is dependent 
on the size of the box, which is dependent on the unit of 
the scale r. So in this case N(r) is proportional to L/r. In 
the case of an area A, the number of boxes N(r) is propor-
tional to A/r2. Expressing as a power law N(r) is proportio-
nal to L/rD. The fractal box dimension may be defined as 
 

 0
ln ( )Limit .
ln(1/ )r

N rD
r→=  (1) 

Application of D in ecology 

Fractal scaling has been found to be well applicable to 
measure the natural complexity at every level of ecologi-
cal organization (from gene to ecosystem). Ecological  
objects are non-Euclidean, as they exhibit fragmentation 
or discontinuity in space and time. It has been observed 
that the fractal geometry is far better than Euclidean  
geometry in dealing with ecological objects11,18. Most of 
the ecological objects are scale-dependent and the fractals 
have profound implications in such cases10. 
 In a situation where the goal is to measure the complex 
surface of the tree bark to model habitat availability for 
small epiphytes on the tree trunks, fractal geometry  
is more useful15,19. For a bark with D = 1.4, an insect 
smaller than another perceives a length increase of  
10D–1 = 100.4 = 2.51, or a habitat surface area increase of 
2.512 = 6.31. In contrast, for a smooth Euclidean surface, 
D = 1 and both the insects travel the same distance. Thus, 
the higher the value of D, the greater will be the rate of 
increase in length (or surface area) with decreasing scale. 
 Surfaces with high D values create an unequal share of 
available space for animals of different sizes8. While on a 
planar surface, the amount of available space is equal for 
all animals irrespective of size, an increase in the D value 
of a surface leads to growing differences in space avail-
ability, with a disproportionate bias towards smaller  
animals20. Habitat complexity has been shown to alter the 
size-density scaling of species in terrestrial18,20,21, fresh-
water22 and marine communities23–26. Li27 proposed a 
theoretical explanation for species-area scaling based on 
a generalized MacArthur–Wilson model, where the 
mechanisms of species migration and habitat heterogene-
ity were interpreted by using D. This model suggests that 
the observed natural variability in the exponent of spe-
cies–area relationship is due to the differences in dynam-
ics at the species and habitat levels. 
 D has been used for measurement, simulation and as a 
spatial analytic tool in mapping sciences to characterize 
landscape complexity of natural vegetation28,29. Fractal 
analysis is frequently used to characterize the data  

recorded from remote sensing images30. Changes in the 
value of D in remote sensing images have implications 
for changes in the environmental conditions31. The value 
of D of landscape changes according to the type of the 
land use32,33 (e.g. forest exhibits high value of D due to 
complex shape and agro-ecosystem shows low value of D 
due to its more regular shape). Consequently, the value of 
D is negatively correlated with the human disturbances  
of the landscape28,34.  
 D is positively correlated to the complexity of a struc-
ture. A rough or jagged surface possesses value of D 
greater than 2 (which is the topological dimension). 
Theoretically, a very complex surface may become more 
like a volume, although it is difficult35 to find a natural 
surface with D > 2.5. Fractals have previously been used 
to describe habitat complexity in marine systems such as 
coral reefs36, wharf pilings37, marine algae23,24 and rocky 
shores5,26,38,39. 

Measurement of D in ecology 

There are a number of methods that can be used to deter-
mine D15,31 in ecosystem studies and the details about the 
formal mathematical derivations and proofs have been 
discussed13,40–43. Empirical methods for estimating D val-
ues have also been provided11–15,18,19,44–51. Most of these 
extensive reviews discussed about patterns and processes 
in ecological sciences. The variety of approaches for  
determining D values reflects the differences in objec-
tives and the type of data analysed. 
 It has to be kept in mind that all ecological objects and 
processes may not be fractal. Because of highly produc-
tive infusion of ideas of fractal geometry in ecology, it 
has now become a natural tendency to use fractals every-
where, even in situations where the evidences are not so 
strong11. Some common approaches to estimate D in the 
ecological objects are described below. 

Dividers (compass) method 

This method is used to measure D value of a curve (e.g. 
coastline, landscape edge, etc.). This procedure is analo-
gous to moving a set of dividers of fixed length δ along 
the curve. The estimated length of the coastline is the 
product of N (number of times the ruler is used to cover 
the object) with the scale factor δ. The power-law rela-
tionship between the measuring scale δ and the length 
L = Nδ is 
 
 L = Kδ 1–D. (2) 
 
D is estimated by measuring the length L of the curve at 
various scales (δ ). This method is not well founded theo-
retically, as it is used in exact statistically self-similar 
curves52. The value L = Nδ may vary depending on the 
starting position along the curve. 
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Box-counting method 

Like the dividers method, this procedure can be used to 
estimate the value of D of a curve53. It may also be  
applied to overlapping curves54 and structures lacking 
strict self-similar properties such as vegetation20. Fortu-
nately, other dimensions are available, like the Hausdorff 
and the similarity dimensions, which provide a better 
grasp of the space-filling characteristics of fractals41. 
Formally, the method finds the δ-cover of the object, i.e. 
the number of pixels of length δ (or circles of radius δ ) 
required to cover the object40. A more practical alterna-
tive is to superimpose a regular grid of pixels of length δ 
on the object and count the number (C) of occupied pix-
els. This procedure is repeated using different values of δ. 
The defining power-law is as given in eq. (3) below 
 
 C = Kδ –D. (3) 
 
Since slight re-orientation of the grid can produce a dif-
ferent value of C, grid placements should be randomly 
replicated to obtain a distribution of D-values55. Tatsumi 
et al.56 have outlined an analogous method for image-
processing systems. 
 Many researchers have discussed the estimation of D  
in ecological habitats (2 ≤ D ≤ 3) by box-counting 
method10,19,20,57. They have argued that for estimating D 
value of a tree branch, a three-dimensional grid system 
could be superimposed on the branch by varying the size 
of the counting-cubes but such a procedure is practically 
impossible to implement in the field. This is an important 
technical limitation of the method in its present state. 
Morse et al.20 simplified the problem by obtaining a two-
dimensional photographic image of the habitat, the D 
value of which was determined using the box-counting 
method (1 ≤ D ≤ 2). Though there are limitations in extra-
polation to higher dimensions58,59, many researchers have 
frequently used the procedure to estimate D of habitats60,61. 

Perimeter-based dimension 

It is a common method of measuring the D values of im-
ages in landscape ecology. It has also been used to char-
acterize landscape complexity29,33. The perimeter–area 
relationship for a set of patches is given by 
 
 P = kAD/2, (4) 
 
where A is the number of pixels making up a given  
object, the perimeter P is a count of the number of pixel 
edges, and k is a constant of proportionality. The slope of 
the log–log area–perimeter plot for a set of objects gives 
a mean fractal dimension62. D may then be derived from 
eq. (4) as 
 
 D = 2 × (ln P – ln k)/ln (A). (5) 

In this case, the value of D varies between 1 (in land-
scapes having simplest shapes) and 2 (in landscapes with 
most complex shapes)32. In fact, this method determines 
the relative ‘edginess’ of an image. For a single landscape, 
the perimeter dimension reduces to D = 2 ln(P)/ln(A).  
 Ecologists have been using this perimeter–area rela-
tionship with map and image data to characterize com-
plexity of landscape patterns28,34. For landscapes, D has 
most commonly been calculated by regression meth-
ods28,32,63. By this method the natural logarithm of peri-
meter is regressed against the natural logarithm of area 
for all patches in the landscape; ln(k) is the y-intercept 
and for squares k = 4. Thus, D value is estimated as two 
times the slope of the regression since the slope is D/2. 

Problems in estimation of D based on  
area–perimeter 

The problems associated with the stability of the D values 
in characterizing shape complexity for remote sensed or 
raster data are of two types. The first assumes a power–
law relationship with some sort of statistical self-
similarity of the patches on the landscape. The second 
and the important one using perimeter area regression 
creates a number of problems including goodness of fit, 
spread of data, calculation of the y-intercept and need for 
an adequate number of patches34. 

Estimation of D through regression 

Linear regression is the most common method for esti-
mating D values in landscape ecology28. For estimating D 
using regression, ln(P) is plotted against ln(A) (eq.(5)) for 
all the patches. D is estimated as two times the slope of 
the fitted line, ln(k) being the y-intercept. It is assumed 
that the perimeter and area relates with each other 
through a power law. 

Raster data structure and D 

Because of the problems associated with single scale area 
regression estimation of D, Olsen et al.64 proposed a 
method for computation of D directly from the data. 
Frohn34 imposed a fixed sampling geometry that limits 
the possible relationship between perimeter and area. 
Two different equations are used to calculate D. The first 
equation sets the constant of proportionality k = 1 in  
eq. (4) or treats it as an unknown to calculate D. Further, 
the values are scaled in a manner that is difficult to inter-
pret. According to Frohn34, D based on area and perime-
ter values exceeds the legitimate maximum of 2.0 for any 
object, which has greater perimeter than area. For exam-
ple, if the perimeter is 12 and the area is 16 then D will 
be 2.26. If the perimeter and area both are 16 then D will  
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be 2. In addition, Frohn34 has shown that D for smaller 
squares is 2.26 and for the larger squares 2.00. According 
to conventional interpretation of D, the smaller squares 
with D value 2.26 would be considered complex shaped. 
As a square is not complex shaped, many algorithms for 
regression estimations ignore patches smaller than a 
threshold number of pixels (normally 4 pixels). As the 
size of an object increases, the number of pixels making 
up its area increases rapidly while its perimeter increases 
more linearly for objects that are not true fractals. Hence, 
larger patches are much less likely to have a greater num-
ber of pixel edges than the total number of pixels. 
 The problem with the scaling of D can easily be elimi-
nated if the relationship between perimeter and area in 
the first equation is expressed using the constant of pro-
portionality as in eq. (4). The value of k is determined by 
the relationship between perimeter and area for a given 
geometric shape. When k = 4, D can be thought of as the 
amount by which the perimeter of a given object deviates 
from that of a perfect square of equal area. Frohn34 has 
calculated D for square tessellation using eq. (6) 
 
 DP = 2ln(P/4)/lnA. (6) 
 
The value of DP in this equation is constrained to a mini-
mum of 1.0 for any perfect square and cannot exceed 2.0, 
as the maximum perimeter of raster object is 4A (in pixel 
units). The value of k can suitably be chosen for other 
equilateral tessellations such as hexagons or equilateral 
triangles. The value of D obtained by using eq. (6) for a 
raster image is more appropriate. 

Case studies from tropical Indian ecosystems 

We analyse and discuss in this part how D captures  
the extent of anthropogenic pressure on the natural  
vegetation patches in sacred forests of Western Ghats,  
India. 

Case I: Forest fragmentation 

The remote sensing images obtained from four sacred 
groves of Pune district from the Western Ghats region, 
India are shown in Figure 1. These four sacred groves  
are located in Bhimashanker sanctuary (19°03.832′N  
and 73°31.993′E); Temple area, Velka, Nasrapur, Bhor 
(18°18.113′N and 73°36.363′E); Varvand Devi Rai, Bhor 
(18°06.08′N and 73°38.906′E) and Virivachi, Kopre vil-
lage, Outer range, Junnar (19°20.889′N and 73°52.098′E). 
Apart from these, three more areas from the Western 
Ghats region of Pune were identified as control for vali-
dation. 
 Approximately 3.5 × 3.5 sq. km area from the centre of 
the sacred grove in the above-mentioned regions (150 
pixels × 150 pixels) was selected. A total of 14 subsets of 

the images are created. Using the nearest neighbourhood 
method, the landscape was classified into forest and non-
forest regions applying supervised classification using 
Linear Imaging Self Scanning Sensor (LISS III) image in 
January 1998 and January 2004. From the classified sub-
set image, the vector layer of forest and non-forest areas 
was created in ERDAS image processing software. The 
vector attributes were exported to Excel for calculation of 
various landscape metrics. 
 The area and the perimeter of four segmented images 
of the forest are given in Table 1. A general decline in the 
values of area (12.8–14.4%) and perimeter (7.4–20.4%) 
compared with the values of January 1998 was observed 
in January 2004; but in Nasrapur the perimeter was 
slightly (2.5%) increased due to substantial decrease in 
the forest area (14.4%) as a result of excessive distur-
bance that has created more fragmentation. The number 
of discrete forest patches is seen to increase in all the 
segmented regions and the percentage increase in the 
number of patches ranged over 9.7–14.7. For Bhimashan-
ker and Nasrapur, D increased by 0.55% and 1.75%  
respectively, reflecting forest fragmentation. However, D 
decreased in Varvand and Virivachi by 0.42% and 1.21% 
respectively because of loss of smaller fragments of for-
est due to overexploitation. 
 In general, the forest area decreased in all the sites (in 
January 2004 from that of January 1998) as a result of 
continuous pressure mainly due to encroachment for agri-
culture. The perimeter of the forest patches except for 
Nasrapur is seen to decrease indicating that the smaller 
patches of forest in all the study areas have disappeared 
due to anthropogenic pressure. In Nasrapur area, the peri-
meter increased slightly due to substantial decrease in the 
forest area as a result of excessive forest disturbances that 
has created more fragmentation of the forest area. This is 
also evident from significant increase in PPU (patch-per-
unit area) metric (which indicates porosity of the land-
scape) of Nasrapur. For quantifying landscape clumping, 
PPU metric is used. It is defined as PPU = m/(n*λ), 
where m is the total number of patches, n the total  
number of pixels in the study area and λ is the scaling 
constant = pixel area. 
 The D values of the disturbed regions appeared to in-
crease in all the areas facing anthropogenic disturbance 
(like Bhimashanker and Nasrapur). Both perimeter and 
area are seen to decrease in Bhimashanker region, and 
thus, the D value is seen to increase due to increase in poro-
sity and convolution of the boundary of the patches. The 
lowest value of landscape shape index in Bhimashanker 
indicates increased forest fragmentation. Among all the 
landscape metrics mentioned, D is most appropriate to 
represent the complexity of the patch shape when applied 
to satellite data at two different time points (1998  
and 2004). The highest value of D in the Varvand area 
shows that this area is most stressed by anthropogenic 
pressure. 
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Figure 1 a–d. Use of fractal to identify the level of disturbances at four sites. 
 

 
Table 1. Changes in the landscape matrices from January 1998 to  
  January 2004 in four groves of Pune district, India 

  Parameters 
 

 Area  Perimeter Fractal 
Sites  (m2) (m) dimension (m) 
 

Bhimashanker 1998 53,954 29,824 1.637 
Bhimashanker 2004 46,155 27,610 1.646 
Nasrapur 1998 53,448 20,748 1.571 
Nasrapur 2004 45,770 21,272 1.599 
Varivachi 1998 44,872 26,230 1.641 
Varivachi 2004 38,567 20,878 1.621 
Varvand 1998 52,979 34,482 1.666 
Varvand 2004 46,173 29,540 1.659 

Case II: Soil aggregation 

Soil aggregates are group of primary soil particles, par-
ticularly clay that tends to coalesce with each other more 
strongly than to other surrounding soil particles65. Stabil-
ity of soil aggregates has been found to vary due to  
different agricultural management practices66,67 and also 

after the conversion of natural ecosystems to managed 
ecosystems68. Nitrogen (N) and phosphorus (P) additions 
in dry tropical forest and savanna ecosystems have been 
reported to affect many ecosystem properties including 
soil aggregate structure69. Scaling of soil and hydrologi-
cal properties and processes is a burgeoning field res-
ponding to increasing need for environmental modelling 
and prediction70. Many workers have reported stability of 
soil aggregates in terms of mean weight diameter and the 
percentage by weight of different aggregates greater than 
some specified sieve-size. So, an index for describing the 
entire aggregate distribution with a single parameter 
would be of great importance67,71 in assessing the changes 
in soil fertility due to management practices. 

Description of D on measuring soil aggregates 
stability 

Fractals have been used to quantify stability of soil  
aggregate in various ecosystems. The linear and nonlinear 
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D values in soils of different ecosystems show (Table 2) 
that the value of nonlinear D varies significantly with  
respect to nutrient addition and management practices12. 
D exhibits the changes in stability of soil aggregate more 
accurately than the other measures of aggregate stability 
like mean weight diameter. Fractals are not suitable for 
characterizing a landscape. Other metrics have been  
developed to deal with this. A few of such metrics are  
described below. 

Probability–density function method 

This method was originally developed to analyse point 
pattern data40, but has been frequently used to estimate 
the D value of a raster image72. Discrete habitat islands 
are not necessary for this method as in the perimeter–area 
methods. The probability–density function ρL is obtained 
from square (L × L) sampling ‘windows’ successively 
placed over each ‘on’ pixel. Within each window, a count 
is made of the number (n) of pixels on. Count frequencies 
are then expressed as probabilities 
 

 
( )

1
1,

N L

L
n

ρ
=

=∑  (7) 

where N(L) <= L2. For a given value of L, the first moment 
of the probability distribution is given by eq. (8) below 
and is termed as the mass dimension 
 

 
( )

1
( ) 1.

N L

L
n

M L nρ
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This computation is repeated for various values of L. Be-
cause each window is centred on a single pixel, L must be 
an odd number. Voss40 showed that the following power 
law (eq. (9)) holds for fractal images 
 
 M (L) = kLD. (9) 
 
Value of D can be estimated63 from the log–log plot of 
the first moment as a function of L.  
 Milne72 compared three artificial landscapes (each half-
covered with ‘filled’ pixels) to determine the utility of 
this method. This method can also be used to estimate the 
dimension of fractal surfaces, though it gives poor esti-
mates for surfaces with D > 2.5. To overcome this problem, 
Keller et al.73 suggested a linear interpolation correction. 
Under assumptions of isotropy, a toroidal edge correction 
can also be used to circumvent this problem. 

Distribution of areas 

Hastings et al.74 and Mandelbrot13 suggested a relation-
ship between persistence (H, that is a parameter of the 
fractional Brownian motion model, Hurst75) and land-
scape fragmentation (D, that is fractal dimension of 
patches as determined from the hyper-geometric distribu-
tion, Peters76). This is important for capturing temporal 
pattern of ecological processes and it may correlate well 
with landscape fragmentation. It is useful to predict the 
changes in the ecological processes in relation to land-
scape fragmentation as a result of anthropogenic activi-
ties. The exact relationship between D and H depends on 
the model chosen. Sugihara and May10 stated that in-
creased persistence (more memory in the process) should 
correspond to smoother boundaries and patches with lar-
ger and more uniform areas, whereas reduced persistence 
corresponds to more complex and highly fragmented 
landscapes dominated by many small areas. Under certain 
limiting assumptions10, the relationship between H and D 
is H + D = 2. This implies that landscapes with many 
small islands show greater boundary complexity (high D) 
and are less persistent (low H). 
 Sugihara and May10 showed three conditions for the 
degree of relationship between H and D as: (i) If H > 0.5 
and D < 1.5, then the correlation will be positive and the 
nature of the process will be persistent, (ii) If H = 0.5 and 
D = 1.5, then the correlation will be zero and the nature 
of the process will be Brownian, (iii) If H < 0.5 and 
D > 1.5, then the correlation will be negative and the nature 

Table 2. Changes in nonlinear fractal dimension (based on number in 
water stable soil aggregates), mean weight diameter and geometric
mean diameter of soil aggregates in Indian dry tropical forest and 
derived ecosystems with respect to N and P additions (denoted as
N-added and P-added), and agro-ecosystem under different tillage (con-
ventional, CT; minimum, MT and zero, ZT) and residue management 
  (removed, -R; retained, +R) conditions 

 Mean Geometric Non-linear fractal 
Ecosystem/ weight mean dimension based 
treatment diameter diameter on number 
 

Forest 
 Control 1.96 0.54 3.24 
 N-added 2.26 0.75 3.08 
 P-added 2.10 0.59 3.14 
Ecotone 
 Control 1.52 0.43 3.29 
 N-added 1.79 0.57 3.24 
 P-added 1.75 0.48 3.23 
Savanna 
 Control 1.57 0.42 2.93 
 N-added 1.14 0.31 3.30 
 P-added 1.49 0.39 2.98 
Agro-ecosystem 
 CT-R 1.40 0.35 3.16 
 CT+R 2.26 0.56 2.74 
 MT-R 1.77 0.44 3.10 
 MT+R 2.78 0.70 2.63 
 ZT-R 2.08 0.51 2.78 
 ZT+R 2.39 0.67 2.81 

Source: Tripathi et al.12. 
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of the process will be anti-persistent. Hastings et al.74 
used this method to compare cypress (early successional) 
and broadleaf evergreen (late successional) patches in 
Okefenokee Swamp. They found that cypress patches had 
a higher fractal dimension (D = 1.25, H = 0.75) than 
broadleaf evergreen patches (D = 1.0, H = 1.0), implying 
that the earlier successional vegetation shows greater 
patchiness and decreased persistence (see also Hastings 
and Sugihara43). A later study pointed out a number of 
methodological problems associated with the approach30. 
While the method may prove useful in remote sensing10, 
objective tests are required to determine whether persis-
tence–patchiness relationships developed under limiting 
assumptions are valid for ecological systems51. 

Distribution of volumes 

Stability of soil aggregates in terms of mean weight  
diameter and the percentage by weight of different aggre-
gates does not give a clear picture about the distribution 
of the aggregates and much information is lost77. Baldock 
and Kay78 gave the power law (eq. (10)) to describe the 
cumulative percentage of aggregates by weight less than 
a characteristic linear dimension, x (that is, equivalent  
diameter or height) 
 
 W<x = AxB, (10) 
 
where W is the cumulative percentage weight of aggre-
gate, x the characteristic linear dimension, A and B the 
regression coefficients. Coefficient B is used as an index 
of aggregate size distribution as it exhibits maximum 
variation. 
 Mandelbrot13 has characterized fractals by power–law 
relation between the number and the size of the objects 
(eq. (11)) 
 
 N>x = Kx–D, (11) 
 
where N>x is the cumulative number of objects greater 
than x, k is a constant equal to N>x at x = 1, and D is the 
fractal dimension. D varies with the shape of individual 
objects within the distribution and the extent of aggregate 
fragmentation. D is scale invariant and thus the shape of 
the aggregate may be similar in various ranges of aggre-
gate sizes. Turcotte79 described the hyper-geometric fre-
quency distribution relation (Rosin’s Law) for particle 
size in soils and other geological material (eq. (12)) 
 
 ,D

iN kR−=  (12) 
 
where N is the number of particles whose radius is greater 
than Ri, and D is the fractal dimension. 
 Perfect et al.80 derived a version of Rosin’s Law for use 
with soil mass data. A higher fractal dimension indicates 

greater soil fragmentation and a soil increasingly domi-
nated by small particles81. If D = 0, then it indicates that 
all soil particles have equal diameter. If D = 3, then the 
number of particles greater than a given radius Ri doubles 
with each corresponding decrease in particle mass. If 
0 < D < 3, then we say that there will be greater propor-
tion of larger particles than when D = 3 (that is sand). If 
D > 3, then there will be greater proportion of smaller 
particles than when D = 3 (that is silt, clay). 
 The value of D was used to characterize the size distri-
bution of aggregates subsequent to fragmentation71,80 and 
to capture the effect of soil properties and cropping pat-
tern on the size distribution of aggregates as a result of 
fragmentation82,83. According to Tyler and Wheatcraft84 
and McBratney85, the value of D calculated from mass-
size distribution data should not be more than 3. How-
ever, Perfect et al.80 showed that the value of D > 3 is 
theoretically possible if the nature of the fragmentation 
process is multi-fractal (different regions of an object 
have different fractal properties). According to Rasiah et 
al.86, the value of D obtained using the nonlinear fitting 
procedure was, in general, smaller and more realistic than 
that calculated through the linear procedure. 
 Fractal parameters have been reported to be sensitive 
to tillage treatment87. Applications of fractal geometry in 
soil studies are getting importance in the recent years70,88. 
Pirmoradian et al.67 studied the role of D for estimating 
stability of soil aggregate influenced by tillage treat-
ments. Tripathi et al.12 have calculated the value of D to 
assess the soil aggregation in Indian dry tropical forest 
and modified ecosystems in relation to N and P input and 
agricultural practices. Nonlinear D could successfully 
capture the changes in soil aggregation. Tyler and Wheat-
craft81 showed that silt-clay soils have D in the range 3.0–
3.5 by using a method suggested by Mandelbrot et al.89. 

Conclusion 

Ecosystem properties are highly complex and dynamic in 
nature, and difficult to measure. Appropriate techniques 
and suitable metrics to track spatial and temporal changes 
in ecosystem structure and functions are urgently  
required. Fractal theory provides suitable method to 
document such changes in the forests created through  
anthropogenic disturbances. Fractal dimension can repre-
sent changes in soil aggregates structures due to land use 
change, N and P additions and agricultural practices. In 
this review, we have outlined some instances where frac-
tals can more appropriately be used in ecological sys-
tems. Characterization of ecological situations where 
fractals can effectively be used in general remains an  
important issue for more elaborate evaluation. 
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