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Here we present an application of a supervised feed 
forward artificial neural network (ANN) that is 
trained on the basis of genetic algorithm (GA). The 
network model is used for predicting the magnitude of 
earthquakes in the North Tabriz Fault (NTF) North-
west Iran. The earthquake database was derived from 
the catalogues of both the International Institute of 
Earthquake Engineering and Seismicity of Iran and 
the Iranian Seismological Center. For this purpose, 
three temporal seismicity parameters were calculated 
using the ZMAP MATLAB toolbox. The performance 
of the artificial neural network (ANN) model was 
measured in terms of accuracy by a ten-fold cross-
validation as 99.11%. Another evaluation method was 
predicting a case event that occurred on 11 August 
2012 in Ahar-Varzeghan in Iran. Results showed that 
the ANN optimized with GA (ANNGA) learning opti-
mization model is suitable and may be useful for  
predicting future earthquakes, especially in active 
seismologic regions. 
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THE northwest of Iran is one of the most active seismic 
regions of the country with many seismic events over the 
past and recent years. The North Tabriz Fault (NTF) is 
one of the most interesting faults of Iran with the two of 
the most destructive historical earthquakes that occurred 
in 1721 and 1780 (refs 1, 2). Some studies have shown 
that re-occurrence interval of high-magnitude earthquakes 
for NTF is about 250–300 years. Recent earthquakes that 
occurred around this region imply high probability for the 
recurrence of high-magnitude earthquakes3,4. One of the 
recent earthquakes with magnitude 6.3–6.4 on the Richter 
scale (IIEES reported 6.5) occurred on 11 August 2012 in 
Ahar that is situated in the NTF region, causing huge  
destruction and considerable fatalities (300 deaths)5.  
Recently, probabilistic hazard assessment based on 
ground motions has been implemented to construct a 
seismic hazard map for predicting return period of the 
earthquakes6. Vafaie et al.7, based on the iso-acceleration 
maps have shown that the probabilities of earthquake oc-

currence at intervals of 72, 475, 2475 years is 63%, 10% 
and 2% respectively7. The target region under study is 
enclosed between 45–48°E long. and 37–39°N lat. (refs 
7–9). Despite the prediction of the year in which destruc-
tive earthquakes are likely to occur, confidence level of 
predictions is also important to achieve satisfactory re-
sults. The problem of earthquake prediction has been often 
reported as an important research topic for geologists dur-
ing the recent years to manage possible occurrence of 
disasters10,11. For this purpose, two important factors need 
to be considered: (1) selection of algorithms implemented 
in the intelligent systems (e.g. which may be single or  
hybrid), and (2) availability of extracted features based 
on environmental, temporal, and spatial properties of soil 
(e.g. radon concentration)12, latitude, time of occurrence 
and longitude of a disaster13. Analysis of seismic activi-
ties in terms of temporal and spatial events is a difficult 
problem attracting the attention of seismologists to pro-
pose statistical models for predicting the occurrence time 
of the earthquakes14. The applications of artificial neural 
network (ANN)15,16 in this area are numerous. Many re-
searchers have carried out studies based on ANNs as they 
enable us to learn linear or nonlinear nature of functions. 
The nature of the earthquake is defined as a nonlinear 
function13. Most types of feed forward ANNs have at 
least three layers, namely input, hidden and output layers. 
Each layer has several neurons with weights, biases and 
activation functions assigned to them. Various types of 
ANNs which attempt to mimic the capabilities of the  
human brain have been trained, based on several learning 
algorithms (e.g. Levenberg–Marquardt (LM), genetic  
algorithm (GA), etc.) to leverage the errors between the 
desired and predicted output values. The ANNs have 
been increasingly applied to many fields of earth sciences 
ranging from predicting the magnitude of earthquakes to 
understanding their patterns using several types of neural 
networks12,13,17–26. 
 Recently, Zamani et al.13 used seismicity parameters of 
Qeshm earthquake for learning two types of intelligent 
systems (i.e. Radial Basis Function (RBF) ANN and 
Adaptive Neuro Fuzzy Inference System (ANFIS) model) 
to predict spatio-temporal variations of earthquakes.  
Input data were pre-processed using principal component 
analysis (PCA) techniques to be fed as inputs to the pro-
posed intelligent system. They have reported that their 
proposed model is able to predict the epicentre area and 
time of occurrence of the chief and destructive quake that 
shook Qeshm in 2008 (ref. 13). There are other studies 
which also took advantage of spatio-temporal variations 
of seismicity for investigating the earthquakes that  
occurred in the two cities of Izmit and D¨uzce, as well as 
in Australia27,28. Zhang and Wang24 used two types of 
ANNs: (1) the back propagation (BP)-ANN and (2)  
GA-based ANN, for optimizing and predicting the magni-
tude of the earthquakes. Zhou and Zhu17 proposed a BP-
ANN for predicting magnitude of earthquakes which 
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Figure 1. Epicentre map of all earthquake data between 2006 and 2013. a, The epicenter of the 11 August 2012, 
Ahar main shock is shown by star. b, Data declustered using Reasenberg algorithm. c, Three-dimensional sche-
matic of data under investigation. 

 
 
were trained based on LM algorithm. Their results 
showed the effectiveness, fast convergence, and high pre-
cision of their tool for predicting the magnitude of earth-
quakes17. Niksarlioglu and Kulahci18 proposed a method 
which employed clustering and neural network tech-
niques along with environmental mapping of seismic  
activity for their predictions. They used nine parameters 
for their ANN input, including latitude, longitude, radon, 
steam pressure, temperature of soil at depth of 10, 20 and 
50 cm and wet/dry bulb temperature18,23. However, 
Zamani et al.13 used eight parameters, including five 
seismic and three spatial analysis parameters available in 
the ZMAP MATLAB toolbox implemented by Wiener in 
2001 (ref. 29). Panakkat and Adeli25 used a recurrent 
ANN and a simple ANN to approximate the time and  
location of the future earthquakes using multiple seismi-
city indicators (for more information, one may refer to 
Panakkat21. 
 In the present communication the temporal parameters 
of NTF seismicity properties associated with the 11  
August 2012 Ahar earthquake (M = 6.5 (IIEES) or 6.3–

6.4) in the northwest of Iran have been studied using 
ANN trained by GA to predict magnitude of future earth-
quakes based on temporal characteristics. This study 
could be considered as fresh attempt at investigating as-
sessment and prediction in the NTF seismic region. 
 In order to access the seismic database on the NTF 
area, catalogues of IIEES of Iran and Iranian Seismologi-
cal Center (ISC), which are known to include clear and 
errorless data were considered (available at http://irsc.ut. 
ac.ir/bulletin.php). The rectangular area between 45–48°E 
long. and 37–39°N lat. at the centre of which the city of 
Tabriz (38.073°N, 46.292°E) is located, is considered as 
the region of study. Data are for time interval of 1 Janu-
ary 2006 to 29 December 2013 and include 10103 and 
626 earthquake events respectively, for both databases 
mentioned. The epicentre of the NTF region is located at 
a depth of 15 km (ref. 30). Available data for the period 
between 2000 and 2006 were less in IIEES and not avail-
able in ISC; consequently they were discarded. Both  
databases were combined and four earthquake events of 
IIEES lacking the depth parameter and the remaining 
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Figure 2. a, The Gutenberg–Rishter magnitude–frequency relation of earthquakes for 11 August 2012 that is 
used for temporal analysis. b, Calculation of β value of long time average (LTA) function using LTA algorithm. 
c, z values of rubberband. d, z values of LTA functions. 

 
 
ones from ISC were included; so a total of 10,103 earth-
quake events were considered in the study (Figure 1 a). 
The collected earthquake data have five features: longi-
tude, latitude, magnitude, depth and time of each event. 

 ZMAP MATLAB toolbox29 receives earthquake data 
as input and produces output record with two types of 
spatial and temporal features. In our study, temporal fea-
tures are more important and, therefore, only these are 
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considered as main features. They are used as inputs of 
the intelligent system to achieve the desired prediction 
values. These features include temporal properties (i.e. β 
value of long time average (LTA) function using the LTA 
algorithm31,32, and z values of rubberband and LTA func-
tions27,33) considered as an input vector in the preprocess-
ing stage (Figure 2 b–d). During data collection, as 
magnitude of completeness (Mc) is an important factor to 
be considered for all of the seismic activities, the maxi-
mum curvature method was set to 100 bootstrap runs in 
the ZMAP toolbox. Therefore, Mc value was 1.9 for the 
dataset studied and data with Mc values lower than 1.9 
were omitted (Figure 2 a). Then, the whole data were de-
clustered based on the Reasenberg algorithm. Finally, the 
dataset of earthquake events was left with only 6189 
events (Figure 1 b and 3D representation of data in Figure 
1 c). During the de-clustering process, 195 clusters were 
identified and 4109 out of 10,103 events could be consid-
ered as representative of the remaining 6189 events as 
shown in Figure 1 b. In this figure, individual clusters are 
shown in magenta colour and marked ‘o’. The temporal 
distribution of earthquake activities is shown in Figure 3 
for the time-period of the present study. The whole data 
were also normalized in order to satisfy the conditions of 
zero mean and unity variance. Unlike other studies apply-
ing a dimensionality reduction algorithm such as princi-
ple component analysis (PCA) and singular value 
decomposition (SVD), here we did not use these methods 
due to their drawbacks when applied to data with small-  
 
 

 
 

Figure 3. Temporal distribution of earthquake activities in the time 
period of the present investigation. 

dimension features. All data were analysed, with the in-
put vector of ANN consisting of three features and the 
predicted output data were the magnitude value of the 
earthquake event. These were prepared for training and 
optimizing the feed forward ANN using GA in order to 
minimize the mean squared error (MSE) between the de-
sired and predicted output values. Figure 4 summarizes 
the overall procedures in the present study. 
 To calculate the three parameters related to the earth-
quake events, their plots as to the cumulative numbers of 
events versus time in years were drawn using the ZMAP 
toolbox (Figure 2 b–d). The ‘bin’ length was determined 
to be 14 days. After the temporal parameters were calcu-
lated, three time-series plots were drawn, each of which 
contained 209 sample points (i.e. 3 × 209 = 627 sample 
points in total). Ten-fold cross-validation was carried out 
to validate the model using temporal features. Nine ran-
dom groups containing 63 sample events with only one 
containing 60 sample events were used for the training 
and testing stages respectively. At the end, the average of 
all ten runs was calculated as the overall performance of 
the model in terms of accuracy value. 
 The output values of magnitudes were considered as 
below: 
 
  If (binlength = 14 days) and (desired magnitude < Mc) 

then (magnitude = Mc) else Magnitude = desired mag-
nitude. 

 
To implement the GA-ANN, ‘ANN’ package by Roy-
Desrosiers34 was used in R software35. Command 
‘ANNGA’ was used to implement the ANN network, 
which was then optimized by GA to improve speed, con-
vergence and memory management. An ANN is a mathe-
matical and computational model that is composed of 
neurons and connections between neurons known as syn-
apses or connection weights. ANN is inspired by the  
human brain which has the capability of learning and  
recognizing complex linear and/or nonlinear relationships 
between input and output values of functions36–38. The 
type of neural network that is used in the present study is 
supervised and feed forward. In supervised learning for 
each input value, the desired output values are available 
and ANN adjusts its synaptic weight to adapt to the  
desired functionality. Feed forward ANN takes an input 
vector in the input layer and forwards it to the neurons of 
hidden layers to reach the neuron at the output layer 
without having any information feedback. The proposed 
ANN model has four layers, including one input, two 
hidden, and one output layer. The input layer takes three 
features of each event. For each neuron, an extra bias  
input with value +1 is considered. Each neuron computes 
the weighted sum of all its inputs (containing bias) by 
summing the product of input signals with associated 
synaptic weights. Then, activation function is applied on 
this sum for producing output result of each neuron. After 
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Figure 4. Diagram showing the earthquake prediction methodology. 
 
 
the results are received in the hidden layer, they will be 
processed and their outputs in turn will be distributed to 
the next layer. At the end, the output neuron processes the 
information received from the last hidden layer. In all 
layers, the sigmoid activation function (i.e. x = 1/(1 + 
e–x)) is used in this package. The formula of the designed 
four-layered feed forward neural network is as below: 
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where wa,b,c demonstrates the weight from bth neuron of 
ath layer to the cth neuron of the next layer. The bias is a 
constant +1 value for neurons of all layers and it is com-
puted along with the synaptic weights. The mean squared 
error (MSE), which is the error between the desired and 
the predicted outputs, must be minimized according to the 
equation 
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The minimization algorithm for MSE is GA, an evolu-
tionary method for predicting the weights of a neural  
network constituting the chromosomes. All of the GA 
stages, including generation of chromosomes, mutation 
and crossover are present in this process. The mutation 
formula for generating a new weight is 
 
 new

, , , ,Mutation rate * ( ).j i k i m j n iw w w w= + −  (2) 
 
Crossover is performed based on the probability of cross-
over rate for changing the weights in each chromosome. 
If the MSE of the new chromosome is less than the old 

one, GA will replace the new weights until the desired 
MSE is satisfied. After the data are loaded in the R work-
space, the ANNGA will run with the following settings to 
reach the best-trained ANN model (Figure 5) with a  
desired MSE value of 0.001: 
 

ANNGA (x = Input-vector, y = Desired-output, design = 
c(3,6,6,1), population = 500, mutation = 0.2, cross-
over = 0.6, maxGen = 5000, error = 0.001). 

 
In the northwest of Iran, a destructive earthquake shook 
Ahar-Varzeghan with magnitude Mw 6.4 and 6.3 on 11 
August 2012 at 12 : 23 and 12 : 34 UTC respectively5. Its 
epicentre was located at 46.81 N, 38.39 E. More than 300 
people died and over 3000 people were left injured5,39 due 
to this earthquake. 
 In our previous studies40, the clustering variations of 
the earthquake events of the NTF region were reported 
based on the results of different clustering methods. The 
seismicity parameters were latitude, longitude, date, time 
of occurrence and magnitude. Furthermore, the assess-
ments were performed on stability, accuracy and robust-
ness of several clustering techniques. The results showed 
that the earthquake data belonging to the region studied 
were totally complex and nonlinear. However, knowl-
edge-based relationships among the features were derived 
based on the intelligent system that was used for model-
ling. The results showed that an optimal number of clus-
ters are achievable while studying several types of 
clustering techniques. The study of temporal seismicity 
parameters provides significant insight into the prediction 
of magnitude of earthquake events. 
 The ANNGA was trained using a 3 × 189 matrix (i.e. 
three neurons) in the input layer and a 1 × 189 matrix (i.e. 
one neuron) in the output layer. Each event provides data 
for three input nodes of ANNGA with the corresponding 
magnitude value as the desired output following a time-
series approach. The training data are provided randomly 
to satisfy the generalizability property of the trained 
model. The model has been trained ten times with the de-
sired MSE value lower than 0.001. Ten ANNGA network 
models are created for testing ten sets of 3 × 20 matrices 
of magnitude values. The correlation between the desired 
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Figure 5. The proposed ANN optimized by GA model. 
 
 

Table 1. Performance results of ANN optimized by 
GA model during evaluation of temporal analysis  
  results 

ANNGA group sets MSE R2 
 

Group 1 0.000995 0.9875 
Group 2 0.000876 0.995 
Group 3 0.000895 0.9885 
Group 4 0.0009 0.9823 
Group 5 0.00088 0.9962 
Group 6 0.00065 0.9986 
Group 7 0.00098 0.9901 
Group 8 0.000787 0.9892 
Group 9 0.000857 0.9851 
Group 10 0.000865 0.9984 
Total cross-validation 0.00868 0.9911 

 
 
and the predicted outputs was 0.9911 when the correla-
tion values of ten testing results were averaged. More-
over, the average MSE was 0.00868 (Table 1). The number 
of neurons and hidden layers was determined and opti-
mized based on the results obtained during the running 
stages. Two hidden layers with six neurons in each layer 
yielded the best results. The data for the case study (i.e. 
11 August 2012) were included in one of the testing sets 
and checked for their validity. The magnitude value  
related to the case study showed that ANNGA was also 
able to predict its value accurately. 
 In this study, no dimensionality reduction algorithms 
were applied. Although covering the whole temporal fea-
tures is clearly beneficial, using PCA or SVD, only less 

than 80% of the data can be covered and that affects the 
prediction performance of the ANNGA model. In the 
study carried out by Zamani et al.13, the PCA algorithm 
covers only a portion of the data (i.e. less than about 
70%); thus it is not possible to achieve a high accuracy in 
prediction. In other words, the dimensionality reduction 
algorithm has advantages on visualizing the data when 
the smallest number of components covers about 80–90% 
of the total dataset and ignores the principal components 
whose eigenvalues are less than average (i.e. less than 1 
if the correlation matrix is used). Moreover, PCA should 
not be applied on the uncorrelated data. This means that 
the PCA performed on the temporal data in the study by 
Zamani et al.13 will result in reducing the number of fea-
tures for the sake of lowering prediction accuracy41. Last 
but not least, it is worth mentioning that PCA or SVD 
methods for data reduction must be used carefully and all 
conditions of their applicability should be checked and 
satisfied before being applied to a small or large data-
base. 
 The pattern recognition on the nonlinear and complex 
seismicity problems to estimate the large magnitude val-
ues of earthquakes is gaining attention of seismologists 
because of multiple variables affecting this phenomenon. 
Understanding each of these complex variables plays an 
important role in making correct predictions by intelli-
gent models. In this study, temporal characteristics of 
earthquakes were calculated and used as a three-feature 
vector in a feed forward ANN model trained by GA to 
minimize the MSE defined as its fitness function. The  
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results show that the temporal properties of seismic 
events can not only predict the remaining unseen magni-
tude values of the events correctly, but are also capable of 
determining the main earthquake occurring in the case 
study as well. However, to increase the accuracy of the 
earthquake predictor for the NTF region, the data were 
normalized and no dimensionality reduction algorithm 
was applied because it had no coverage higher than 80–
90% of small features. While analysing the temporal fea-
tures of seismic events, two types of evaluation methods 
were employed, including the ten-fold cross-validation 
technique and examining the forthcoming event of 11 
August 2012 (i.e. Ahar-Varzeghan earthquake). The 
ANNGA model was successfully performed on both 
types of assessments and was also able to correctly pre-
dict the main shock occurring in the time span of 11 Au-
gust 2012. 
 The accuracy of the ANNGA was evaluated using ten-
fold cross-validation to prove its generalizability and 
avoid overtraining issues. The MSE values of the intelli-
gent model were minimized using GA. The accurate  
results show that the ANNGA model can be considered a 
robust tool for recognizing the patterns of seismic regions 
and is an effective mathematical model for assessing and 
mitigating the results of the large earthquakes in the  
future. Moreover, the satisfactory results obtained by this 
model can be regarded as useful grounds for application 
to other seismic areas for robust and accurate predictions 
of future earthquake events. 
 Finally, despite the high accuracy of performance of 
the proposed model, the need for an accurate and com-
plete catalogue of earthquakes in the NTF region is  
essential. To reach this goal, more professional earth-
quake sites is required in this region. Additionally, more 
event parameters can be included in future studies 
through the inclusion of chemical features (e.g. radon 
measurements, etc), weather parameters and pressure 
properties. 
 
 

1. Hessami, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbassi,  
M. R., Feghhi, K. and Solaymani, S., Paleoearthquakes and slip 
rates of the North Tabriz Fault, NW Iran: preliminary results. Ann. 
Geophys., 2003, 46, 903–915. 

2. Gheitanchi, M. R., Mirzaei, N. and Bayramnejad, E., Pattern of 
seismicity in Northwest Iran, revealed from local seismic network. 
Geoscience, 2004, 11, 104–111. 

3. Karimzadeha, S., Cakirb, Z., Osmano˘gluc, B., Schmalzled, G., 
Miyajimaa, M., Amiraslanzadeha, R. and Djamoure, Y., Inter-
seismic strain accumulation across the North Tabriz Fault (NW 
Iran) deduced from InSAR time series. J. Geodyn., 2013, 66, 53–
58. 

4. Djamour, Y., Vernant, P., Nankali, H. R. and Tavakoli, F., NW 
Iran-eastern Turkey present-day kinematics: results from the Ira-
nian permanent GPS network. Earth Planet. Sci. Lett., 2011, 307, 
27–34. 

5. Copley, A. et al., The 2012 August 11 Ahar earthquakes: conse-
quences for tectonics and earthquake hazard in the Turkish–
Iranian Plateau. Geophys. J. Int., 2013, 196, 15–21. 

6. Hoseinpour, M. and Zare, M., Seismic hazard assessment of  
Tabriz, a city in the northwest of Iran. J. Earth, 2009, 4, 21–35. 

7. Vafaie, J., Taghikhany, T. and Tehranizade, M., Near field uni-
form seismic hazard spectra of Tabriz zone, presented in part at 
the 14th World Conference on Earthquake Engineering, China, 
2008. 

8. Taghizadeh-Farahmand, F., Sodoudi, F. and Afsari, N., Seismic 
study of upper mantle beneath the NW Iran using P receiver func-
tion. J. Earth Space Phys., 2012, 38, 17–28. 

9. Vafaie, J., Taghikhany, T. and Tehranizadeh, M., Near field effect 
on horizontal equal-hazard spectrum of Tabriz city in north-west 
of Iran. Int. J. Civil Eng., 2011, 9, 49–56. 

10. Bapat, A., Riddle and ridicule of earthquake prediction. Curr. Sci., 
2012, 102, 554–555. 

11. Baskar, R. and Baska, S., L’Aquila earthquake prediction judg-
ment: an eye-opener. Curr. Sci., 2013, 104, 1004–1004. 

12. Negarestani, A., Setayeshi, S., Ghannadi-Maragheh, M. and Aka-
she, B., Layered neural networks based analysis of radon concen-
tration and environmental parameters in earthquake prediction.  
J. Environ. Radioactivity, 2002, 62, 225–233. 

13. Zamani, A., Sorbi, M. R. and Safavi, A. A., Application of neural 
network and ANFIS model for earthquake occurrence in Iran. 
Earth Sci. Inform., 2013, 6, 71–85. 

14. Jafari, M. A., Statistical prediction of the next great earthquake 
around Tehran, Iran. J. Geodyn., 2010, 49, 14–18. 

15. Alarifia, A. S. N., Alarifib, N. S. N. and Al-Humidan, S., Earth-
quakes magnitude predication using artificial neural network in 
northern Red Sea area. J. King Saud Univ.–Sci., 2012, 24, 301–
313. 

16. Moustra, M., Avraamides, M. and Christodoulou, C., Artificial 
neural networks for earthquake prediction using time series mag-
nitude data or seismic electric signals. Expert Syst. Appl., 2011, 
38, 15032–15039. 

17. Zhou, F. and Zhu, X., In Lecture Notes in Electrical Engineering, 
(eds Liu, X. and Ye, Y.), Springer-Verlag, Berlin, 2014, Vol. 260, 
pp. 13–20. 

18. Niksarlioglu, S. and Kulahci, F., An artificial neural network 
model for earthquake prediction and relations between environ-
mental parameters and earthquakes. Int. J. Environ., Earth Sci. 
Eng., 2013, 7, 31–34. 

19. Adnan, A., Tiong, P. L. Y., Ismail, R. and Shamsuddin, S. M., Ar-
tificial neural network application for predicting seismic damage 
index of buildings in Malaysia. Electron. J. Struct. Eng., 2012, 12, 
1–9. 

20. Kerh, T., Huang, C. and Gunaratnam, D., Neural network  
approach for analyzing seismic data to identify potentially hazard-
ous bridges. Math. Prob. Eng., 2011, 2011, 1–15. 

21. Panakkat, A., Recurrent neural network for approximate earth-
quake time and location prediction using multiple seismicity indi-
cators. Comput.-Aided Civ. Infrastruct. Eng., 2009, 24, 280–292. 

22. Adeli, H. and Panakkat, A., A probabilistic neural network for 
earthquake magnitude prediction, Neural Networks: J. Int. Neural 
Network Soc., 2009, 22, 1018–1024. 

23. Kulahci, F., Inceoz, M., Dogru, M., Aksoy, E. and Baykara, O., 
Artificial neural network model for earthquake prediction with ra-
don monitoring. Appl. Radiat. Isotopes, 2009, 67, 212–219. 

24. Zhang, Q. and Wang, C., Using genetic algorithm to optimize  
artificial neural network: a case study on earthquake prediction. 
Presented in part at the Second International Conference on  
Genetic and Evolutionary Computing, Jingzhou, Hubei, China, 
2008, pp. 128–131. 

25. Panakkat, A. and Adeli, H., Neural network models for earthquake 
magnitude prediction using multiple seismicity indicators. Int. J. 
Neural Syst., 2007, 17, 13–33. 

26. Rundle, P. B., Rundle, J. B., Tiampo, K. F., Martins, J. S., 
McGinnis, S. and Klein, W., Nonlinear network dynamics on 
earthquake fault systems. Phys. Rev. Lett., 2001, 87, 148501. 



RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 109, NO. 9, 10 NOVEMBER 2015 1729

27. Spassov, E., Sinadinovski, C. and McCue, K., Spatial and tempo-
ral variation of seismicity across Australia. J. Balkan Geophys. 
Soc., 2002, 5, 115–122. 

28. Bayrak, Y. and Öztuük, S., Spatial and temporal variations of the 
aftershock sequences of the 1999 Izmit and Düzce earthquakes. 
Earth Planets Space, 2004, 56, 933–944. 

29. Wiemer, S., A program to analyse seismicity: ZMAP. Geophys. 
Res. Lett., 2001, 72, 373–382. 

30. Moradi, A. S., Hatzfeld, D. and Tatar, M., Microseismicity and 
seismotectonics of the North Tabriz fault (Iran), Tectonophysics, 
2011, 506, 22–30. 

31. Matthews, M. V. and Reasenberg, P., Statistical methods for  
investigating quiescence and other temporal seismicity patterns. 
Pageoph, 1988, 26, 357–372. 

32. Reasenberg, P. A. and Simpson, R. W., Response of regional 
seismicity to the static stress change produced by the Loma Prieta 
earthquake. Science, 1992, 255, 1687–1690. 

33. Habermann, R. E. and Wyss, M., Reply to ‘comment on Haber-
mann’s method for detecting seismicity rate changes’ by M. W. 
Matthews and P. Reasenberg. J. Geophys. Res., 1987, 92, 9446–
9450. 

34. Roy-Desrosiers, F., Package ‘ANN’. 2014; http://cran.r-project.org/ 
web/packages/ANN/ANN.pdf (accessed 2014). 

35. R Core Team, R: a language and environment for statistical com-
putting. R Foundation for Statistical Computing, Vienna, Austria, 
2013. 

36. Arinkin, V., Digel, I., Porst, D., Artmann, A. T. and Artmann, G. 
M., Phenotyping date palm varieties via leaflet cross-sectional im-
aging and artificial neural network application. BMC Bioinform., 
2014, 15, 55. 

37. Ghaedi, M., Zeinali, N., Ghaedi, A. M., Teimuori, M. and 
Tashkhourian, J., Artificial neural network-genetic algorithm 
based  
optimization for the adsorption of methylene blue and brilliant 
green from aqueous solution by graphite oxide nanoparticle. Spec-
trochim. Acta Part A, 2014, 125, 264–277. 

38. Motalleb, G., Artificial neural network analysis in preclinical 
breast cancer. Cell J., 2014, 15, 324–331. 

39. Miyajima, M. et al., Site investigation of the Ahar-Varzeghan 
earthquake in NW Iran of 11 August 2012. 2014; http:// 
committees.jsce.or.jp/disaster/system/files/FS2013-E-0001_0.pdf 

40. Soleimani Zakeri, N. S. and Pashazadeh, S., Optimal number of 
clusters in various clustering algorithms for seismic data of Tabriz 
North Fault during 1950–2012 using R Software. Appl. Math. 
Eng., Manage. Technol. (Spl. Issue), 2014, pp. 799–809. 

41. Jung, S., Sen, A. and Marron, J. S., Boundary behavior in high 
dimension, low sample size asymptotics of PCA. J. Multivariate 
Anal., 2012, 109, 190–203. 

 
 
ACKNOWLEDGEMENTS. This research was part of a thesis submit-
ted to the Department of Electrical and Computer Engineering, Univer-
sity of Tabriz, Iran. We thank S. Weimer, Director, Swiss 
Seismological Service and Professor of Seismology for implementing 
the ZMAP software as a Matlab toolbox available for academic use and 
F. Roy-Desrosiers for ‘ANN’ package implemented in the R software, 
which includes the ANNGA software. 
 
 
Received 23 May 2014; revised accepted 16 July 2015 
 
 
doi: 10.18520/v109/i9/1722-1729 

 


