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The real-time validation of any strategy to forecast the 
Indian summer monsoon rainfall requires comprehen-
sive assessment of performance of the model on sub-
seasonal scale. The multi-model ensemble (MME) 
approach based on the NCEP-CFS version 2 models, 
as developed and reported earlier, has been employed 
to forecast the 2014 monsoon season on the extended 
range scale with 3–4 pentad lead time (where a pentad 
corresponds to five-day average). The present study 
reports the broad performance of the MME employed 
on experimental basis to forecast the salient features 
of the real-time evolution of the 2014 monsoon season 
during June to September. The MME is successful in 
predicting both these features well in advance (3–4 
pentad or 15–20 days lead time). The assessment of 
the model performance at pentad scale lead time 
shows that the weak monsoon conditions that are evi-
dent in precipitation and lower level wind anomalies 
are well captured as a whole up to four pentad ad-
vance lead time. The subseasonal propagation during 
onset and withdrawal is also evident in the forecast. 
Finally, the region-wise performance shows that the 
spatial extent of the skillful forecast encompasses cen-
tral India as well as the monsoon zone for the 2014 
monsoon season. Considering the natural variation in 
the forecast skill of extended range forecast itself as 
reported in earlier studies, the 2014 monsoon forecast 
seems to be skillful for operational purposes. For 
other regions (e.g. North East India), the forecast 
could be skillful at times, but it still requires further 
research on how to improve the same. 
 
Keywords: Monsoon forecast, multi-model ensemble, 
pentad, lead time. 
 
REAL-TIME extended range predictions of Indian summer 
monsoon intraseasonal oscillations (MISO) with 2–3 
weeks lead time provide valuable outlook to the end-
users and have high demand from agricultural stake-

holders and dam managers dealing with flood forecasts. 
The development of extended prediction tool for intrasea-
sonal oscillations in the tropics (MISOs and Madden–
Julian oscillations) is a challenging problem and also a 
continuous process that is highly dependent on model 
bias. Several studies have adopted a number of strategies 
to achieve this target through inter-comparison of dyna-
mical models based on diagnostics of operational fore-
casts of tropical intraseasonal oscillations1–8. 
 Evaluation of the seasonal performance of monsoon 
forecasts as well as its failure as a whole is important to 
understand several peculiarities within a season, espe-
cially the catastrophic incidents9,10. Modelling and fore-
casting the monsoon variability with improved methods 
will ensure the development of an advanced strategy of 
adaptation for the stakeholders within a season11. The aim 
of this article is to highlight the performance of the ex-
perimental real-time extended range prediction of Indian 
summer monsoon for the 2014 monsoon season based on 
the strategy described in Abhilash et al.12. The 2014 mon-
soon season was a marginal drought year with rainfall re-
corded at 88% of long-period averages (refer later in the 
text). The scheme so developed employs a state-of-the-art 
multi-model and multi-ensemble framework of the CFSv2, 
the ocean–atmosphere coupled model from National Centre 
for Environmental Prediction (NCEP), USA and adopted 
at the Indian Institute of Tropical Meteorology, (IITM) 
Pune, as a part of the National Monsoon Mission Project 
of the Ministry of Earth Sciences, Government of India 
(http://www.tropmet.res.in/monsoon/). 
 The statistical performance of this multi-model and 
multi-ensemble version framework of NCEP–CFSv2 in the 
hindcast mode has been reported recently12. The phrase 
‘multi-model’ here refers to (i) the same model run with 
two different spatial resolutions (T126 and T382), and (ii) 
the GFS model (essentially the atmospheric version of the 
CFSv2) run with sea surface temperature (SST) generated 
from the CFSv2 forecast runs with some bias correc-
tion13. The pros and cons of the individual components of 
the CFSv2 as referred above are described in several  
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recent studies12–14. The phrase ‘muti-ensemble’ here  
refers to the ensemble of runs generated from the perturbed 
initial conditions (ICs) for each component model as  
described in the last few sentences. The method of gener-
ating the perturbed initial conditions has been discussed 
in earlier studies7,13,15 and also briefly later in the text. 
This article deals with the extended range forecast (i.e. 
forecast with 2–3 weeks lead time in advance, hereafter 
referred to as the forecast) generated by this multi-model 
and multi-ensemble framework of CFSv2, and will be  
referred to as ‘MME’ (multi-model ensemble) runs of 
CFSv2. 
 The results of Abhilash et al.12, clearly depict that it is 
useful to employ the multi-model and multi-ensemble 
version of the CFSv2 model in predicting the intrasea-
sonal variability with a lead time of 2–3 weeks during the 
June–September monsoon season. This, however, is needed 
to be verified for case studies as the intrinsic interannual 
variation in forecast skill16,17 could come across the op-
erational implementation. The 2014 monsoon season 
shows several interesting features and in order to imple-
ment the real-time version of the MME to be suitable for 
operational agencies, it is required that it should be tested 
thoroughly. With this objective, the present article as-
sesses the performance of the extended range prediction 
system of CFSv2-MME for the year 2014 in great detail. 
Especially, the focus will be on the critical assessment of 
the performance of CFSv2 forecast by highlighting dif-
ferent months. We will also describe onset, withdrawal 
and a few important spells. 

The 2014 summer monsoon season 

According to the ‘end of season report’ of India Meteoro-
logical Department (IMD), the official forecasting agency 
of India, the 2014 monsoon season may be characterized 
by the following seasonal as well as subseasonal features: 
(a) The seasonal quantum of rainfall is 777.5 mm, which 
is 12% below normal or long period average (LPA). (b) 
There was a hiatus in the progression of onset phase. (c) 
The 2014 monsoon season was a slow starter and the 
monthly rainfall over the country as a whole was 57% of 
LPA in June, impacting the sowing of rice over the north-
ern rice belt. The rainfall recovered later and was 90% of 
LPA each in July and August. The relatively greater rain-
fall during these two monsoon months provided some  
relief to the agrarian community. Rainfall was 108% of 
LPA in September, which was important for planning  
urban hydrological roadmap until the next monsoon sea-
son. (d) The season was characterized by one cyclonic 
storm ‘Nanauk’, two monsoon depressions and 10 low 
pressures. (e) The intraseasonal (MISO) variability of 
rainfall was prominent during end of July to beginning of 
August associated with low pressure regions along the 
monsoon trough. Since the monsoon has recovered from 

early hiatus during 2014, it is necessary to perform the 
skill analysis of early months when the monsoon is weak 
to later months when monsoon is strong. In this article, the 
performance of MME based on CFSv2 will be organized in 
order to highlight this recovery in the latter months. 

Data, method and forecast strategy 

Data 

The study uses the NCEP–NCAR reanalysis18 for the year 
2014 for comparing the dynamical fields (wind and tem-
perature) and the IMD–TRMM merged data19 for com-
parison of rainfall with model forecast. The long-term 
mean (climatology) is calculated based on 30 years 
(1981–2010) of NCEP data and 14 years (1998–2011) of 
rainfall data. 

Model and forecast strategy 

We have used the latest version of the ocean–atmosphere 
coupled model of NCEP, i.e. CFSv2. This has an atmos-
pheric component (GFS) that is coupled to an ocean 
model, sea-ice model and land surface model. The ocean 
model is the GFDL Modular Ocean Model version 4p0d 
(MOM4)21. The initial conditions for the 2014 monsoon 
season are prepared from a coupled data assimilation  
system (CDAS) with T574L64 resolution atmospheric  
assimilation and MOM4-based oceanic assimilation, 
which is a real-time extension of the CFSR (ref. 22). 
 As discussed in Abhilash et al.12, we have used a com-
bination of three different versions of CFS for the forecast. 
The first version is developed by running the standalone 
GFS at T126 resolution, which has slightly different 
physics options (than the GFS that is coupled to CFS). 
The standalone GFS is forced with daily bias corrected 
and forecasted SST from the CFSv2 T126 run. Bias cor-
rection involves subtracting climatology of bias as a 
function of calendar day and lead time, with optimum  
interpolation sea surface temperature (OISST)23 observa-
tions as the reference. We denote this two-tier forecast as 
GFSbc, with 'bc' indicating bias-corrected boundary con-
ditions. For more details readers can refer to Abhilash  
et al.13. 
 The other two versions of CFS run independently are 
the CFS T126 (~110 km) and the CFS T382 (~38 km) 
runs. They are so designed that the effect of high resolu-
tion (e.g. orography) and the large-scale processes are 
well represented in them. Further model and experimental 
details and skills of GFSbc, CFST126 and CFST382 are 
available in the literature13–15. 
 Based on performance experience and aiming to max-
imize the operational skill depending on computer  
resources, we choose to pool these variants: 11 members 
of CFST126, 11 members of CFST382 and 21 members 
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of GFSbc. The model integrations to generate the ensem-
ble members are initiated starting from 16 May and con-
tinued until 28 September at every five-day interval 
during the summer monsoon season. The forecast consen-
sus is given by averaging the 43 ensemble members. 
 The performance of the model for the 2014 monsoon 
season is evaluated by averaging the forecast on a pentad 
(five-day mean) scale. The pentad-scale averaging is 
shown to give better statistics in the extended range as 
reported in earlier studies7. To elucidate if the forecast 
starts from 16 May IC, pentad 1 (P1) lead-time forecast 
corresponds to the forecast averaged over the period 17–
21 May lead time; pentad 2 (P2) lead-time forecast corre-
sponds to the forecast averaged over the period 22–26 
May, and so on.  
 The forecasts are disseminated through deterministic as 
well as probabilistic statistics. Probabilistic forecasts 
from ensemble members at different lead times are vali-
dated with respect to predefined categories (quantiles) 
based on observations. The categories are defined by 
classifying the observed rainfall into above normal (AN), 
below normal (BN) and near normal (NN) using the  
tercile classification method. These categories correspond 
to the canonical ‘active’, ‘break’ and ‘normal’ spells over 
the Indian region. Tercile are the three intervals, i.e. the 
lower, middle and upper thirds of the climatologically 
distributed values of rainfall, where each category has an 
equal climatological probability of 33.33%. To determine 
the tercile ranges, the observed rainfall data were ranked 
in descending order. The three categories are defined as 
AN, NN or BN separated by the values 1/3 and 2/3 of the 
way down the ranked list. 

Verification of forecast 

In the present study we use a skill score method based on 
the definition of fractional skill score24–26 to verify the 
performance of the model on different spatial scales at 
various lead times. 
 Let IF (ix, iy, im, iyr, ip) be the binary value depending 
on yes-forecast (1) or no-forecast (0) of an event at a par-
ticular grid point (ix, iy) where ix = 1, …, Nx (total num-
ber of grids in longitude) and iy = 1, …, Ny (total number 
of grid points in latitude) for a member im = 1, …., Nm 
(total number of members in an ensemble forecast) for a 
year iyr = 1, …., Nyr (total number of years) and for a 
particular pentad ip = 1, …., Np (total number of fore-
casted pentads). In the present implementation Nx = 26 
(65°–90°E), Ny = 21 (10°–30°N), Nm = 43, Nyr = 10 (for 
hindcast) and 1 (for forecast), and Np = 24 (all pentads 
during JJAS). Similarly, let IO (ix, iy, iyr, ip) be the bi-
nary value of the observed occurrence yes (1) or no (0). 
Then the forecast fraction at a point is (ix, iy) of a year, 
iyr and a pentad ip for a given spatial neighborhood  
window (n) is given as 
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where n = 2*N + 1, (N = 0, 1, 2, …., 10 in the present 
study). Similarly, observed fraction at that point is  
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Then the Fractions Brier Score (FBS) is defined as 
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FBSref is defined as 
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Finally FSS for a particular grid scale n is defined as 
 
 FSS(n) = 1 – FBS(n)/FBSref(n). (5) 
 
When the value of FSS is plotted against n, we can get 
the smallest scale in the value of n for which the FSS 
curve crosses the FSStarget line. FSStarget is defined as 
FSStarget = 0.5 + f0/2, where f0 is the base value (= 0.33 for 
tercile categories). FSSrandom is defined as f0. 

Annual cycle 

Figure 1 shows the seasonal cycle of rainfall for the 2014 
monsoon season. It is clear that the monsoon season 
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shows two strong active spells during mid-July and the 
beginning of September (bars in Figure 1). The forecasted 
seasonal cycles are also shown in the figure. The fore-
casted seasonal cycles at P1, P2, P3, P4 in advance lead 
time are shown in Figure 1 as lines. It is clear that the 
seasonal cycles, including the active spells are captured 
by the MME forecast. However, the amplitudes are un-
derestimated by the MME. In observations, the JJAS 
mean rainfall (mm day–1) is 7.27, whereas it is 6.41, 6.74, 
6.9 and 6.65 respectively, for P1, P2, P3 and P4 forecasts. 
The variability however is less in P3 and P4 forecasts 
compared to P1 and P2 forecasts. This is due to the fact 
that at larger lead time, the spread among the members of 
MME increases leading to larger inter-member spread 
than at lower lead time. Larger spread is due to the larger 
growth of error at large lead times. The computed ensem-
ble mean forecast (43 member mean) at these larger lead 
times is thus affected by the cancellation of the larger 
amplitude values (signal plus large error) of individual 
members (smoothing of random errors) for any forecast 
day leading to the clustering towards central (mean) val-
ue. All the forecasted days have equal probability of large 
error value at larger lead times. The daily ensemble mean 
forecast for all the days during the monsoon season at 
larger lead times thus has less (absolute) deviation about 
the season mean (expected) value compared to smaller 
lead times, which lead to smaller standard deviations. 
 Another important aspect of the annual cycle for the 
2014 season is the abrupt increase in rainfall in July and 
decrease in rainfall in mid-August. The MME could pre-
dict these features in almost all pentad leads. This is re-
flected in the correlation of the seasonal cycle from 
observation and model forecasts at various lead times. 
The correlations between the observation and the fore-
casts at P1, P2, P3, P4 lead times are 0.72, 0.73, 0.70 and  
 

 
 

Figure 1. The seasonal cycle of rainfall (mm day–1) for the 2014 
monsoon season. The bars denote daily rainfall from IMD observation. 
The forecasted seasonal cycles at P1, P2, P3 and P4 lead times are 
shown as black, red, blue and green curves respectively. The correla-
tion coefficients between the observations and the forecasts at P1, P2, 
P3, P4 lead times are 0.72, 0.73, 0.70, and 0.71 respectively. 

0.71 respectively, indicating that the seasonal cycle of 
rainfall is captured with good fidelity. It is also noticed 
that there is some shift in the seasonal cycle. We believe 
that the problem in this case arises due to systematic bias 
in the model, where the MME gets more rainfall over the 
foothills (wet bias) and less rainfall (dry bias) over cen-
tral India (Figure 2 of Abhilash et al.12). This can arise if 
the intraseasonal oscillations have different northward-
propagating phase speed in model and observation, so 
that there is relative phase shift between the two. 

Pentadwise seasonal performance 

Figure 2 shows the spatial pattern of seasonal mean rain-
fall forecasted at P1, P2, P3 and P4 lead times. The JJAS 
(i.e. June to September) mean is shown in the left panels 
and the JJAS anomaly pattern is shown in the right  
panels. The anomaly as well as the mean patterns fore-
casted at different lead times indicate that over the Indian 
land mass, the MME performs with better fidelity in cap-
turing the overall dryness (negative rainfall anomalies) in 
a consistent manner. Over the oceanic region, the negative 
 
 

 
 

Figure 2. The June–September (JJAS) averaged rainfall and 850 hPa 
wind. (Top left panel) the actual observation. (Top right panel) Anom-
aly from JJAS climatology. The forecasts at P1, P2, P3 and P4 pentads 
are shown in subsequent panels. The left (right) column represents  
actual (anomalous) spatial patterns corresponding to P1–P4 pentad 
leads. (Units: rainfall, mm day–1; winds, m s–1.) 
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anomalies over this head Bay indicate dry bias prevailing 
at all lead-time forecasts. However, the positive rainfall 
anomalies associated with the Myanmar coast are seen to 
be well captured by the MME at all lead times. It could 
also predict the persistent low-level (850 hPa) northerlies 
over the central North Indian plain. Thus, both the rain-
fall and wind pattern at the lower level are well captured 
by the MME in terms of magnitude and seasonal mean 
spatial distribution. 

Monthly performance of pentad-scale forecast 

Figure 3 a shows the June rainfall anomaly from the re-
analysis of 850 hPa wind and rainfall. The observed data 
show that June is characterized by a strong anticylonic 
anomalous wind pattern and is associated with strong 
negative rainfall anomalies all over the Indian region (top 
left panel) that contribute to –43% of the long-term mean 
rainfall during the month. It is interesting to note that the 
MME clearly predicts the large-scale dryness and anti-
cyclonic persistent wind patterns at P1–P4 lead times. 
 Figure 3 b shows the observed July rainfall anomaly 
and the forecast performance at different lead times for 
the year 2014. As discussed earlier, the performance of 
monsoon has increased considerably in July, even though 
the monthly anomaly pattern shows drying over most 
 
 

 
 

Figure 3. Same as Figure 2, but for the spatial patterns of monthly 
anomalies from observation (top panels) and forecasts at P1, P2, P3 and 
P4 lead times (subsequent panels) averaged during (a) June and (b)  
July. (Units: rainfall, mm day–1; wind, m s–1.) 

parts of the country (top right panel). The head Bay is 
known for the formation of monsoon lows and depres-
sions. The increased rainfall over the head Bay region 
was predicted by the MME to some extent, at almost all 
lead times. Although the overall dryness is evident in all 
the lead times, it is clear that the region-wise perform-
ances at advance lead times show bias. For example, the 
southern part of India as well as the west coast are shown 
to have positive rainfall biases at P3 and P4 lead times. 
 It is clear from Figure 3 that the large-scale drying  
observed in June 2014 had reduced to some extent in July 
due to the increased rainfall activity during the month 
(Figure 1). From agriculture point of view, it is important 
that this revival of monsoon from dry spell be pre-informed 
correctly. Figure 4 shows latitude–time evolution of rain-
fall averaged over 65°–95°E from 1 July in observations 
as well as the MME. It is clear from the figure that the 
first week of July witnessed an active spell after the onset 
of monsoon (top right panel). The forecasts for the same 
days with P1–P4 lead times are shown in subsequent  
panels (top to bottom). As expected, P1 shows greater 
skill in predicting the anomaly amplitudes as well as 
phase. However, the northward-propagating spell is well 
captured from P2–P4 lead-time forecasts also. 
 It has been shown by Abhilash et al.12 that the prob-
abilistic forecasts from the MME are superior to individ-
ual models participating in the MME. Therefore, we have 
analysed the skill of the IITM–MME in predicting the  
 
 

 
 

Figure 4. Plot showing the northward (Hovmöller) propagation of 
rainfall (mm day–1) during the revival phase in July. (Top panel) obser-
vation. (Bottom panel) Model forecasts at P1–P4 lead times. 
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revival phase in July 2014. However, to develop confi-
dence on the fidelity of the IITM–MME, it is also impor-
tant to compare the performance of the same with the 
operational forecasts of other centres. The northward 
propagation of rain bands from IITM–MME forecasts 
during the revival phase has been compared with NCEP–
CFS and Japan Meteorological Agency (JMA) opera-
tional forecasts27,28. The NCEP–CFS and JMA had some 
success in predicting the 2013 Uttarakahand extreme 
event29. Figure 5 shows the Hovmöller diagram of pre-
cipitation averaged over 65°–85°E. From the figure it is 
clear that the northward propagation features and its  
intensity are better captured in the IITM–MME system, 
although the general features are comparable with the 
NCEP–CFS forecast as expected. However, the precipita-
tion bias over the equatorial Indian Ocean and Indian 
land mass is slightly reduced in the IITM–CFS forecasts 
compared to NCEP–CFS and JMA forecasts initiated 
around the same date (i.e. 25 June 2014). The northward 
extend of the precipitation and its general structure are 
well captured in the IITM–CFS compared to the other 
two forecasts. This shows the clear gain of the IITM 
multi-model CGMME system, and obviously the seminal  
 
 

 
 

Figure 5. Comparison of the revival phase for different operational 
forecasts (IITM–CGMME, NCEP–CFS and JMA). (Top panel)  
Redrawn from Figure 4. The shading represents the rainfall anomalies 
(mm day–1). 

role of the GFSbc model in improving the skill of the 
MME along with lower and higher resolution CFSv2. 
 The August forecast analysis shows that the rainfall in 
the west coast as well as in North East India is seen to be 
forecasted well even at the fourth pentad (P4) lead time 
(figure not shown). Also, the anomalous anticyclones 
over Central India are forecasted in a consistent manner 
(figure not shown). 
 Analysis of the forecast for the month of September 
indicates that the Kashmir region indicates positive rain-
fall anomalies in response to the heavy rainfall event that 
occurred in the first week of the month (figure not 
shown). However, the MME failed to predict the Kashmir 
flood event during early September 2014. The overall 
performance at P1–P4 lead times in forecasting the posi-
tive rainfall anomalies over the Central Indian region is 
satisfactory. However, the exact region of occurrence of 
maximum rainfall within Central India varies at different 
lead times (figure not shown). 

Average performance over the monsoon zone and  
other homogeneous regions 

The performance of the MME over the monsoon zone  
region as a whole and other homogenous regions as  
defined by IMD is an important metric of verification as 
the agricultural output, river-water availability for man-
aging irrigation as well as flood management in this zone 
critically depend on monsoon rainfall over these regions. 
 Figure 6 shows the deterministic as well as probabilistic 
performance of the MME for the monsoon zone region25.  
 
 

 
 

Figure 6. Area-averaged pentads mean rainfall percentage departure 
over monsoon zone (MZI, refer text) during JJAS 2014. The pink curve 
is for observation and the bars denote the forecasts. The lower three 
subpanels in each panels of P1–P4 are for above normal (AN), near 
normal (NN) and below normal (BN) forecasted categories. 
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The pink curve shows the observed rainfall variation area 
averaged over the monsoon zone30, while the black bars 
in different panels show the forecast at different lead 
times (P1–P4) mentioned at the top of each panel. The 
noteworthy feature is that the extended dry spell during 
June is well predicted by the model even at the larger (P3 
and P4) lead times. June is the crucial month for agricul-
tural sowing activity over the Indian region as a whole. 
Thus, the skillful ~20 day (P4 lead time) forecast could 
be useful for agricultural planning as well as water man-
agement in dams and rivers. 
 The probabilistic forecasts of different rainfall catego-
ries such as above normal (AN, blue bars), below normal 
(BN, red bars) and near normal (NN, green bars), are 
shown in the subpanels below each panel of Figure 6 for 
each lead time. It is evident from the figure that the prob-
abilistic forecasts are consistent with the deterministic 
forecast. The use of probabilistic forecast is worth men-
tioning for an active spell that occurred after 24 August 
(Figure 6). Although the deterministic forecast captured 
the spell for one or two pentads, the probabilistic forecast 
shows consistent in increase in blue bars up to third  
pentad lead time. Such systematic increase in the pro-
bability of concurrency of AN category would add quan-
titative value to the skill of deterministic forecasts. Table 
1 shows the correlation skill (CC) and the root mean 
square error (RMSE, %) for the deterministic forecast at 
each lead-time. The forecast skill is lower in the fourth 
pentad (P4 lead time) as expected. However, the correla-
tion and RMSE indicate that the skill is operationally use-
ful for the stakeholders. 
 Table 1 also provides the skills for other homogenous 
regions for the year 2014. It may be seen that the CC and 
RMSE show useful predictability skill up to the fourth 
pentad in advance for the monsoon zone (MZI), north-
west India (NWI) and Central India (CEI). The south  
peninsula India (SPI) and North East India (NEI) show 
less CC skill compared to other regions. 
 It is worth exploring whether the skill of the model is 
only for larger regions or it is in general for the grid scale 
also. We make an analysis of correlation skill from grid 
 
 
Table 1. The root mean square error (RMSE, %) and correlation (CC) 
of pentad rainfall averaged over the different homogenous regions of  
 India for the 2014 JJAS season 

RMSE MZI NEI NWI CEI SPI 
 

P1 31.38 37.75 47.17 35.35 46.85 
P2 34.09 40.05 41.20 37.66 55.45 
P3 46.20 36.72 63.17 49.91 52.68 
P4 37.83 29.91 46.59 41.30 55.55 
CC MZI NEI NWI CEI SPI 
P1 0.82 0.31 0.69 0.81 0.65 
P2 0.79 0.22 0.76 0.78 0.48 
P3 0.57 0.21 0.43 0.56 0.52 
P4 0.72 0.52 0.68 0.72 0.44 

scale to gradually increasing to larger grid scale by aver-
aging the smaller grid scale (Figure 7). For each grid res-
olution (1 × 1, 3 × 3, 5 × 5 and 9 × 9 degrees), the CC 
value obtained by comparing the observed and predicted 
rainfall for the whole season (24 pentads) has been plot-
ted in Figure 7. It is evident from the figure that over 
most of the Indian region, the skill remains high from 
1 × 1 to 3 × 3 to 5 × 5 to 9 × 9 grid scale, thus providing 
the operational confidence to the forecasters in real time. 
This skill is also evident in the hindcast statistics. This 
would be quantified more when we describe the frac-
tional skill score later in the text. 

Spell-wise forecast performance 

We now discuss the performance of the MME in getting 
the distinct phases of monsoon season of 2014. 
 
Onset: The onset spell of monsoon bears important 
‘psychological’ confidence-building information to the 
stakeholders. The delay in the onset spell has spiral effect  
 
 

 
 

Figure 7. Spatial distribution of temporal correlation of rainfall on 
pentad scale computed for each grid during the 2014 monsoon season 
for different averaging of grid resolution. Each grid gives the correla-
tion value for 24 pentads of model forecast and observation. The grid 
resolution sizes computed from the same data are shown at the top of 
each panel. The lead times (P1–P4) for the computations of correlation 
are shown on the left of each row. 
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in deciding the agricultural activity in the following sea-
son. Joseph et al. has defined a method to forecast the  
onset date from the MME using three indices defined 
from the large-scale wind circulation as well as rainfall, 
and the same methodology has been followed in the pre-
sent study to forecast the onset. The rainfall index, ROK, 
is defined as the rainfall averaged over 74°–78°E; 8°–
12°N; the wind index, UARAB, is defined as the zonal 
wind at 850 hPa averaged over 55°–75°E; 5°–12°N, while 
Udepth is defined as the zonal wind at 600 hPa over the 
same region for the UARAB index. Thirty-day mean val-
ues of forecasted ROK and UARAB (hereafter termed as 
ROKM and UARABM respectively) starting from 17 
May are computed for each ensemble member and for 
each year. MOK for each member is then defined indi-
vidually as the date on which both ROK and UARAB  
exceed 50% of their mean (ROKM and UARABM respec-
tively), and one of them surmounts 70% of its mean, for 
five consecutive days, provided the value of Udepth dur-
ing the period exceeds zero. The ensemble mean MOK 
date (of all 43 members) is treated as the final predicted 
MOK date. Figure 8 a depicts the evolution of ROK and  
 
 

 
 

Figure 8. a, Evolution of ROK and UARAB indices (see text for de-
finition) during the monsoon onset phase. b, The seasonal cycle of TTG 
index from observation (bars) and the forecasts at P1–P4 lead times. 
The correlations between the observation and the forecasted TT gradi-
ent during the 2014 monsoon season at P1, P2, P3, P4 lead times are 
0.96, 0.96, 0.95 and 0.94 respectively. 

UARAB indices from 16 May initial conditions. The pre-
dicted onset date (denoted by black circle in the figure), 
i.e. 5 June, is in good agreement with the actual onset 
date declared by IMD (6 June). 
 The quantitative indicator of onset as well as the over-
all strength of the monsoon is the tropospheric tempera-
ture gradient (TTG) index as defined in Xavier et al.31. 
Figure 8 b shows the seasonal evolution of the TTG index 
and the forecasted evolution. Based on TTG, the onset is 
defined as the date when the TTG index (black curve) 
changes from negative to positive26. In 2014, this hap-
pened around 6 June (zero crossing date for the bars). It 
is clear from the plot that for the forecasted onset date, 
the P4 forecast shows earlier onset around 2 June, which 
is 3–4 days earlier compared to observations. As we 
come closer (P3, P2, P1), the onset is predicted closer to 
the observed value. Although a 3–4 day error is less than 
the standard deviation of onset forecast in observation (6–
7 days), the skill is required to be enhanced further. The 
TT gradient cycle shows high correlation at all lead times 
when the seasonal cycle is compared with observation. 
The correlations between the observation and the fore-
casted TT gradient during the 2014 monsoon season at 
P1, P2, P3, P4 lead times are 0.96, 0.96, 0.95 and 0.94  
respectively. 
 The apparent skill in the model forecast is further evi-
dent when we plot the depth of westerlies over the region 
55°–80°E; equator 10°N from observation and from fore-
cast (Figure 9). The increase in the depth of westerlies up 
to 600 hPa, the hallmark of monsoon circulation is fore-
casted between 6 and 11 June at all lead times. Although 
the strength of the westerlies is underestimated in the 
model forecast at all the lead times, the temporal accuracy 
(with a pattern CC of 0.93, 0.95, 0.93 and 0.94 for P1, 
P2, P3 and P4 respectively) would help in this case to ac-
curately forecast the establishment of the monsoon onset 
over southern India and its subsequent progression. 
 The northward propagation of rainfall (averaged over 
65°–95°E) during onset phase is shown in Figure 10, for 
observation as well as P1–P4 forecasts. The figure clearly 
delineates the persistent negative rainfall anomalies asso-
ciated with the subdued monsoon activity over Central 
India during June. It is worthwhile to note that the MME 
could predict this dry onset phase with great fidelity in 
almost all pentad leads, which was very much beneficial 
in the planning of agricultural activities. 
 
Withdrawal: In this section we discuss the forecast of 
several features associated with withdrawals. The impor-
tant index for withdrawal is the TTG index as discussed 
earlier. Withdrawal is defined as the day when the TTG 
index changes its sign from positive to negative. As 
shown in Figure 8 b, it is clear that the forecast of TTG 
index was made with good fidelity at all pentad lead 
times. Thus, the indications of withdrawals are captured 
well in the MME framework. 
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 Figure 11 shows the propagation of rainfall anomalies 
averaged over Indian longitudes (65°–95°E). In observa-
tion (top panel), consistent drying above 15°N is noticed 
from 9 September onwards. The equatorial convection 
persisted around this time. The same features are shown 
for the MME forecasts (P1–P4) in subsequent panels. It 
may be seen that the model forecast shows drying after 
10 September in P1, P2 and P4 forecasts. Curiously, the 
third pentad forecast shows positive rainfall anomalies 
above 15°N at the same time. Thus, the withdrawal fore-
casts are not consistent at the third pentad lead time. 

The skill of the 2014 forecast 

The skill of the 2014 forecast is defined based on frac-
tional skill score (FSS) metric as defined earlier. The skill  
 

 
 

Figure 9. Time–height evolution of zonal wind (m s–1) area-averaged 
over the region 55°–80°E; equator 10°N during onset phase. (Ordinate 
represents vertical pressure level in hPa). The pattern correlations  
between observations and pentads P1, P2, P3, P4 are 0.93, 0.95, 0.93 
and 0.94 respectively. 

metric is defined in order to get an objective idea on the 
performance of the model on various spatial scales and at  
various lead times (P1–P4). Figure 12 shows a plot of 
fractional skill score vs number of grids for which the 
forecast is skillful. The left panels shows the FSS skills 
based on 10 years (2001–2010) of hindcast during mon-
soon season and the right panels show the FSS skill of 
2014 monsoon season. The hindcast skill gives an idea of 
climatolofical or expected skill score as a function of lead 
time and grid scale. This plot gives an indication of the 
minimum spatial scale (in terms of grid scales in which 
the forecast is compared with observation) for which the 
forecast is valid at each lead time and for each category 
of forecast BN, NN and AN). Thus, the probabilistic 
forecast is quantified category-wise for this year for  
operational purposes. 
 The random forecast skill is indicated by a ‘random’ 
line in each panel and the target skill for which the fore-
cast at each lead time is valid is shown by the ‘target’ 
line. From Figure 12, it is clear that in the 10-year-average 
 
 

 
 

Figure 10. The Hovmöller plot of rainfall progression during onset 
phase of the 2014 monsoon season. The top panel is for observation 
and the subsequent panels are for the forecast at P1–P4 lead times re-
spectively. 
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case (left panels), for BN and AN category, as we in-
crease the lead time the spatial scale for which the fore-
cast is skillful also increases. For example, for both the 
AN and BN categories, skillful forecast in high resolution 
(1 × 1 degree grid box) can be given with confidence only 
for P1 lead time, while the fourth pentad (P4) forecast 
can be delivered skilfully only in a 4 × 4 degree grid box. 
This is intuitively expected that as the uncertainty  
window increases, the lead time increases from the per-
spective of Lorenz theory of error growth. For the NN 
category, all scales converge to the same 2 × 2 degree 
grid box. Such scale separation in forecast skill indicates 
that the extended range forecasts are equally skillful 
when the MISO-induced phase is going towards AN and 
BN phases related to intraseasonal oscillations. However, 
since a priori it is impossible to know which IC run is go-
ing to be in the correct AN/BN phase, such situations 
simply indicate that there are days during the monsoon 
season when the forecasts are more skilful than the others. 
 For the year 2014, the situation is different with fore-
cast at each lead time being equally skilful compared to 
the other. Thus, it indicates that for individual years, the 
skill of MME forecast could be different from the long-
term expectation value. In 2014, a forecast of high skill is 
possible even at large lead time (P4). Thus, extended 
range forecast is reasonably skilful within a grid box of  
 
 

 
 

Figure 11. Same as Figure 10, but for monsoon withdrawal phase. 

2 × 2, 3 × 3 and 4 × 4 scales for BN, NN and AN catego-
ries. The interesting point here is that the AN spells could 
be equally well predictable for large lead time under cer-
tain circumstances using the MME. 

Discussion and conclusion 

The overall performance of CFSv2 MME for the 2014 
monsoon season is discussed in this article. The forecasts 
based on MME version could be useful to the operational 
forecasters for real-time extended range prediction. It is 
clear that the MME approach as proposed earlier is quite 
successful in terms of capturing the overall spatial pattern 
of rainfall during the 2014 monsoon season. The onset 
phase in June was weak and the monsoon revived during 
July. The MME technique was found to be useful in pre-
dicting these features with large lead time, than the indi-
vidual set of model runs. The monthly analysis of 
forecasts made have clearly shows that even though  
regional details are required to be improved, the overall 
forecasting efficiency of large-scale patterns is encourag-
ing with spells predicted well in advance up to the fourth 
pentad lead time. The onset, progression and withdrawal 
show consistent skill in forecast. Although it is noticed 
that the forecast at all lead times are not consistent among 
themselves, the overall performance of the MME for the 
2014 monsoon season is encouraging. The basic improve-
ment in the skill lies in predicting the large-scale north-
ward propagating spells of rainfall associated with 
intraseasonal oscillations. 
 Also, we verify our forecast skill for category-wise 
forecasts using a new metric to verify the extended range 
forecast, e.g. fractional skill score. This score applied on 
the MME technique shows that practical skill may be 
achievable in extended range on the 4 × 4 degree grid 
scale (~400 km) at P4 pentad. Also, the AN spells could 
be predicted with equal fidelity using the MME for the 
year 2014. 
 The IITM CFSv2 MME is based on (i) an atmospheric 
model with bias corrected SST boundary conditions, a 
unique combination which no operational agency uses as 
of now; (ii) a combination of both high and low resolu-
tion forecasts thus correcting the orographic bias and (iii) 
effectively combining the coupled air–sea interaction 
from the CFSv2 coupled model forecast with atmospheric 
model component. The MME approach thus paved the 
way for the development of a synergistic approach for 
skilful forecast based on a ‘same model different combi-
nation’ strategy. This essentially preserves and highlights 
the original MME concept of Krishnamurti et al.32 while 
adding the realistic effort of bias correction within the 
uniform model code framework. We believe that the pre-
sent strategy makes the operational forecasting techni-
cally simplified as well as theoretically consistent as it 
eliminates the dependency on multiple models using 
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Figure 12. The fractional skill score of verification plotted for the 10 years (2001–2010) of hindcast (left col-
umn) for the below normal (BN; top panels), near normal (NN; middle panels) and above normal (AN; bottom 
panels) categories. (Right column) Same for the 2014 monsoon season. 

 
 
statistical (dominantly regression based) bias correction. 
This article thus paves the way for real-time implementa-
tion of the IITM–MME approach for extended range  
prediction of the Indian summer monsoon on different 
spatial and temporal lead-time scales. 
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