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We explore the effect of mutual gravitational interac-
tion between ultra-cold gas atoms on the dynamics of 
Bose–Einstein condensates (BEC). Small-amplitude 
oscillation of BEC is studied by applying variational 
technique to reduce the Gross–Pitaevskii equation, 
with gravity included, to the equation of motion of a 
particle moving in a potential. According to our analy-
sis, if the s-wave scattering length can be tuned to zero 
using Feshbach resonance for future BEC with occu-
pation numbers as high as ≈1020, there exists a critical 
ground state occupation number above which the 
BEC is unstable, provided that its constituents inter-
act with a 1/r3 gravity at short scales. 
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Introduction 

GRAVITY is the weakest of all forces. This is essentially 
due to the smallness of Newton’s gravitational constant 
(or, equivalently, largeness of Planck mass), measured on 
scales larger than tens of kilometres1. However, to  
resolve issues pertaining to naturalness and hierarchy 
problems in the Standard Model of particle physics, it has 
been conjectured that if large extra dimensions exist, the 
effective gravitational coupling strength can be larger at 
sub-millimetre scales2,3. With the advent of exciting  
precision experiments involving Bose–Einstein condensa-
tion of alkali atoms and molecules at ultra-low tempera-
tures4,5, it is but natural to study effects of enhanced 
gravity ensuing from large extra dimensions (LED) on 
such macroscopic quantum phenomena. 
 In this context, Dimopoulos and Geraci have proposed 
an interesting experiment to probe gravity at sub-micron 
scale through measurements of relative phase evolution 
rates in Bose–Einstein condensates (BEC) prepared in 
coherent superposition of states localized at two distinct 
potential wells, both situated near a moving wall of alter-
nating gold and silver metal objects that form a periodic 
massive source of gravity6. Similarly, Sigurdsson has 
suggested measuring fringe shifts of an interfering pair of 
BEC falling past a long and narrow cylindrical mass in 

order to estimate modified transverse gravitational accel-
eration, provided that the LED sub-millimetre scale is in 
excess of 0.01 mm (ref. 7). 
 Interestingly enough, the typical separation between 
atoms in ultra-cold gases is only about a few hundred  
nanometres. This induces one to explore effects of mutual 
gravitational interaction between individual atoms of a 
BEC on its quantum dynamics, and ask whether such 
weak but long-range forces can lead to instabilities. In 
this article, we carefully examine some aspects of these 
ideas using variational method. 

Gross–Pitaevskii equation and large extra  
dimensions-induced gravity 

For N identical bosons constituting a dilute BEC at  
temperature T ≈ 0 K, the many-body wavefunction 

1 2( ,  , ..., )Nr r rΨ  describing the condensate can be  
expressed up to a good approximation (assuming that the 
bosons interact weakly with each other) as 
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where ( )rψ  is the normalized ground state wavefunction 
for a single boson. As each boson, in this case, is ap-
proximately in the same state, ( )rψ  acts as the conden-
sate wavefunction. 
 In the T = 0 K mean field approximation, dynamical 
evolution of the condensate wavefunction ( , )r tψ  (nor-
malized to unity) is, to a good extent, governed by the 
Gross–Pitaevskii equation (GPE) 
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where m, Vext ( )r  and V ( )r  are the boson mass, the  
trap potential energy required to confine the BEC and  
the interaction potential energy between two bosons respec-
tively. 
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 For the present purpose, the interaction potential  
energy V in eq. (1) is a combination of s-wave scattering 
potential and the inter-bosonic gravitational potential en-
ergy Vg, so that 
 

 
2

34( ) ( ) (| |),g
aV r u r u V r u

m
π δ− = − + −  (2) 

 
where a is the s-wave scattering length. 
 Substitution of eq. (2) in eq. (1) results in the standard 
GPE5 
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where g ≡ (4π 2a/m). 
 It is interesting to note that the quantum dynamics of a 
BEC, comprised of ultra-cold bosonic atoms anchored to 
a planar honeycomb optical lattice and interacting weakly 
with one another via a contact interaction much like the 
first term of the RHS of eq. (2), is described by a nonlin-
ear Dirac equation8. Furthermore, the pseudospin degrees 
of freedom associated in this case with the two inequiva-
lent sites of the sublattice display half integral spin angu-
lar momentum features, stretching the graphene analogy 
farther, even though the system is a bosonic one9. 
 The GPE of eq. (3) can be easily derived from the fol-
lowing action by demanding it to be stationary under in-
finitesimal variations of ψ and ψ* 
 

 3d d ,S t r= ∫ ∫ L  (4) 

 
where the Lagrangian density L  is given by 
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Now we come to the gravitational potential energy Vg ap-
pearing in eq. (5). In the framework of LED gravity, the 
hierarchy problem of the Standard Model can be amelio-
rated if (i) there exists a fundamental energy scale M*c2 
≈1–1000 TeV (orders of magnitude less than the Planck 
energy ≅ 1019 GeV) for all interactions, and (ii) there are 
additional sub-millimetre scale spatial dimensions, so that 
the perceived weakness of Newtonian gravity on large 
scales in (3 + 1)-dimensional space–time is due to the 
gravitational field lines spilling into the hidden spatial 
dimensions2,3. In this formalism, the gravitational poten-

tial energy Vg(r) between two point masses m1 and m2 se-
parated by a distance r is given by 
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where mpl ≡ ( c/G)1/2 is the Planck mass corresponding to 
the standard Newton’s gravitational constant G and R*(n) 
is the radius of the extra dimensional n-torus given by 
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for n = 1, 2, ... . According to eq. (6), the closer one 
probes stronger is the gravity on scales smaller than 
R*(n). In the next section, we examine its implications on 
low-lying excitations of BEC. 

Variational method, gravity and BEC oscillation  
modes 

Solving eq. (3) with Vg given by eq. (6) is a nontrivial 
task. Instead, we take recourse to a variational method 
developed to study stability and low-energy excitations of 
BEC10–12. In this approach, the parameters of a trial wave-
function ψtr are obtained by demanding that the action is 
extremized by ψtr. Since attractive contact interactions 
(i.e. a < 0) are known to cause collapse of BEC11,13 for 
sufficiently large N, stability analysis with gravitational 
interactions included is worth studying. 
 For this purpose, we consider a spherically symmetric 
trap potential 
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ext 0

1 ,
2

V mw r=  (8) 

 
and choose a normalized trial wavefunction11 
 

 2 2 2
tr ( ,  ) ( ) exp( /2 ( ))exp(i ( ) ),r t A t r t B t rψ σ= −  (9) 

 
where A(t), σ (t) and B(t) are amplitude, width and phase 
parameters respectively, that need to be determined from 
extremization of the action (eqs (4) and (5)). As ψtr is 
normalized, A(t) and σ (t) are related by 
 

 2 3| ( )| ( ( )) ,A t tπσ −=  (10) 
 
so that 
 
 3/2( ) (  ( )) exp(i ( )),A t t tπσ γ−=  (11) 
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where γ (t) is a time-dependent phase. Substitution of eqs 
(8)–(11) in eq. (5) and carrying out the spatial integral 
thereafter leads to the following Lagrangian 
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where the gravity term is 
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Using eq. (6) for Vg, the above integral can be evaluated 
analytically for n = 0 and n = 1 cases so that 
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Extremizing the action entails Euler–Lagrange equations 
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for j = 1 and 2, with q1 ≡ B, q2 ≡ σ and L given by eq. 
(12) (γ (t) is non-dynamical as it appears only as an addi-
tive total derivative term in eq. (12)). The equations of 
motion are 
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By combining eqs (18) and (19), one arrives at the rele-
vant equation needed to study small-amplitude oscilla-
tions in an ultra-cold cloud of bosons 
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Employing the following dimensionless quantities11 that 
make use of the BEC ground state scale 0/ mw  
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along with eq. (20) in eq. (21), we obtain 
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for n = 0, 1, where the dimensionless gravitational accel-
erations have the forms 
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The RHS of eq. (23) corresponds to an effective potential 
Φn(v) (n = 0, 1) given by 
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In order to study small-amplitude oscillation modes, one 
needs to find the minima of Φn(v). So, from ( ) 0,n v′Φ =  
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the task here boils down to determining the zeroes of the 
quintic polynomial 
 

 5 4 ( ) 0.nv v P v F v− − − =  (28) 
 
To estimate numerically the real positive roots v0 of eq. 
(28) and the excitation frequencies proportional to 

0( ) ,n v′′Φ  we make use of typical experimental length 
scales 
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having in mind a BEC comprising 133Cs for which 
(m/mpl)2 ≅ 4.9 × 10–34. 
 Since both P and −Fn(v) increase with N, with the latter 
being negligibly smaller by orders of magnitude due to 
the smallness of (m/mpl)2 in spite of the other factors (see 
eqs (22), (24), (25) and (29)), it is obvious that the s-
wave scatterings completely swamp the gravitational cor-
rections to the excitation frequencies. The oscillation 
modes of such a problem in the absence of gravity have 
already been studied by Perez-Garcia et al.11. 
 To circumvent the dominance of binary s-wave scatter-
ing one may, along with augmenting N, invoke Feshbach 
resonance14–17. This effect enables experimentalists to 
tune the scattering length a magnetically, and reduce it to 
zero. Hence, with a vanishing P, in the n = 0 case (i.e. 
pure Newtonian gravity), one finds that for N < 1021, the 
real positive root v0 of eq. (28) is very close to unity cor-
responding to a frequency of ω = 2w0, as though the pres-
ence of F0(v) did not matter. 
 However, for macroscopically large occupation num-
bers N = 1022 and 1023 (BECs of the future), one finds 
significant departures: v0 = 0.78, ω = 2.4w0 and v0 = 0.12, 
ω = 66w0 respectively. Because of the 4

03/v  term in 
0( ),n v′′Φ  one expects a higher excitation frequency as v0 

becomes smaller than unity. Although these results sug-
gest that rise in self-gravity due to increase in N beyond 
1022 makes the ultra-cold gas cloud shrink drastically, 
caution needs to be exercised in concluding so. For, when 
the number density 3

0 0( / )N mw v −≈  becomes very 
large, other subatomic effects will start dominating and, 
also, it is likely that the variational method demands 
more care in such circumstances. For instance, when 
N = 1022, our result v0 = 0.78 implies a mean separation 
between atoms in the condensate to be about 10–11 cm. 
Nevertheless, the observed pathology for N ≥ 1022 situa-
tion suggests that it would be interesting to study the  
numerical solutions of GPE, with Newtonian gravity  
added, for macroscopic BEC. 
 In the n = 1 case (1/r3 gravity), when P = 0, the non-
zero roots of eq. (28) satisfy 

 4 2
0 pl *1 (2 /3)( / ) ( /( / )),v N m m R mc= −  (30) 

 
implying that the roots are complex when 
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This is easily understood given that the potential Φ1 of 
eq. (27) can be expressed as 
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provided a has been magnetically tuned to zero. From eq. 
(32), it is clear that the potential is no longer bounded 
from below when the occupation number exceeds Ncr. 
 This signals instability for the BEC since its size char-
acterized by σ (t) rolls down towards 0 as it tries to lower 
its potential energy. From the values provided in eq. (29), 
the onset of instability starts at Ncr = 2.4 × 1019. While, if 
R*(1) is smaller ≈ 1 μm, the critical occupation number 
for 133Cs rises to ≈5 × 1021. However, when N < Ncr, there 
is one positive root of eq. (30), and the corresponding ex-
citation frequency is 2w0, albeit independent of n = 1 
gravity. 

Conclusion 

Within the ambit of the variational method, we have 
found that occupation numbers in excess of Ncr cause col-
lapse of BEC for attractive gravity falling off as r−3. This 
can be subjected to experimental verification only when 
one attains BECs with macroscopically large occupa-
tional numbers ≈1019–1022. For higher values of N, even 
Newtonian gravity appears to have significant effect on 
the BEC dynamics that needs to be studied more care-
fully. The consequences of n ≥ 2 LED theories on BEC, 
though not covered in this article, need to be studied. In 
particular, it would be interesting to see whether their  
effects could be disentangled from those arising from 
other atomic interactions like van der Waals force. 
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