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The interplay of coherence and decoherence is a  
vexing issue in contemporary condensed matter phys-
ics, quantum optics and quantum information theory. 
We present an overview of this important topical sub-
ject, in terms of three different paradigms, in which 
the ‘noisy’ effect of the environment on small quan-
tum subsystems is analysed. 
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Introduction 

QUANTUM coherence is the consequence of a phase of a 
wave function1. The phase has two components – spatial 
and temporal, leading to spatial coherence and temporal 
coherence respectively. Spatial coherence is best illus-
trated by the double slit experiment (Figure 1) in which a 
parallel electron beam, say, is envisaged to traverse 
through two holes, a distance d apart, and is collected on 
a screen, kept at a sufficiently large distance. 
 The interference pattern, observed on the screen, is 
characterized by an intensity – sometimes called the struc-
ture factor – S(k) that has two components 
 
 S(k) = S1(k) + S2(k), (1) 
 
where 
 
 S1(k) = 2|A(k)|2, (2) 
 
and 
 
 S2(k) = 2|A(k)|2cos((k) ⋅ (d)). (3) 
 
In the above, the wave vector (k) is the difference  
between the final and incident wave vectors of the beam, 
and A(k) is the amplitude. The first term S1(k) is the so 
called ‘classical’ component while the second term,  
arising out of the phase of the final beam: exp(ik⋅d), is  
responsible for interference, yielding alternate maxima 
and minima of the interference pattern, because of the 

oscillatory nature of the cosine function. The regular  
occurrence of the interference fringes and their separation 
would naturally depend on the ‘size’ of the phase factor 
|k⋅d|, and hence the name, spatial coherence. 
 Temporal coherence, on the other hand, can be attrib-
uted once again to a similar cosine function, but now in 
the time-domain, as can be exemplified by quantum tun-
nelling of, say, an electron moving in a one-dimensional 
symmetric double well2 (Figure 2). 
 The potential for the latter can be written as 
 

 21( ) (| | ) ,
2

V x k x a= −  (4) 

 
where x is the coordinate and 2a is the distance between 
the minima of the two wells. An electron, initially local-
ized in, say, the left well, would keep oscillating back  
and forth, coherently, characterized by the so-called  
tunnel frequency Δ. The latter, in the WKB approxima-
tion3, is given by 
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where  = is the Planck constant, ω 0 the small oscillation 
frequency in each of the two wells, governed by the  
curvature of the potential at the two minima, and V0 is  
the energy barrier separating the two wells. Temporal 
 
 

 
 

Figure 1. Interference from a double slit. 
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coherence is manifested by the mean, instantaneous posi-
tion of the electron, expressed by 
 
 〈x(t)〉 = a cos(Δt). (6) 
 
Thus the mean position of the electron keeps oscillating 
between the two extreme values of −a and a. 

Decoherence – tunnelling in a double well 

The spatial and temporal coherence, illustrated by the 
physical situation depicted in Figures 1 and 2, are attributes 
of an isolated physical system, e.g. an individual electron. 
But, in reality, the electron or the subsystem would  
inevitably be in interaction with the external world. One 
common occurrence of such a coupling in solid-state 
physics is the presence of lattice vibrations, or phonons, 
in their quantized versions. Such a coupling would lead to 
decoherence in the tunnelling behaviour of the electron, 
as described below. 
 If the wells shown in Figure 2 are sufficiently deep and 
the temperature of the system is sufficiently low, only the 
two lowest wave functions would be accessible2. These 
two wave functions ψ0 and ψ1 are schematically shown in 
Figure 3. 
 However, ψ0 and ψ1 are not the physical wave func-
tions which are associated with the electron being local-
ized either in the left or the right well. A glance at Figure 
3 would make it amply clear that the physical wave func-
tions are the symmetric and antisymmetric combinations 
of ψ0 and ψ1, given by 
 

 s 0 1
1 ( ),
2

ψ ψ ψ= +  (7) 

 

 a 0 1
1 ( ).
2

ψ ψ ψ= −  (8) 

 

 
 

Figure 2. Symmetric double well. 

Evidently, ψs is peaked at the right well associated with 
the electron being localized in the right well, whereas ψa 
is peaked at the left well associated with the electron  
being localized in the left well. Thus, the quantum  
mechanics of the electron is restricted to a two-
dimensional Hilbert space. It is natural then to associate 
ψs and ψa with the eigenfunctions |+〉 and |−〉 of the Pauli 
spin operator ˆ .zσ  Suffice it to say however that |±〉 are 
not the eigenstates of the system Hamiltonian HS which 
must account for the tunnelling of the electron between 
the two localized states |+〉 and |−〉. Appropriately, HS can 
be constructed as 
 
 HS = ˆ ,xσΔ  (9) 
 
where ˆ ,xσ  the x-component of the Pauli spin, is entirely 
off-diagonal in the representation in which ˆ zσ  is diago-
nal. (It may be remarked parenthetically that ψ0 and ψ1 
are indeed the eigenstates of ˆ .)xσ  Given the form of HS 
as in eq. (9), coupling with the phonons (in the linear  
approximation) can be described by the so-called spin-
boson Hamiltonian4 
 
 † †

S ˆ ( ) .z k k k kk k
k k

g b b b bσ ω= + + +∑ ∑=H H  (10) 

 
 

 
 

Figure 3. Ground state and first excited state wave functions. 
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In eq. (10), bk and †
kb  are the annihilation and creation 

bosonic operators representing the kth phononic mode, gk 
is the coupling constant and ωk is the ‘free’ phononic  
frequency. The physics of the spin-boson Hamiltonian 
can be summarized thus: because ˆ zσ  is off-diagonal in 
the representation in which ˆ xσ  is diagonal, the second 
term in eq. (10) would cause transitions between the  
eigenstates of ˆ .xσ  These transitions are however quan-
tum-incoherent because of the bosonic fields bk and † ,kb  
which themselves are jiggled by the free bosons, repre-
sented by the third term in eq. (10). Thus tunnelling, 
which is characterized by the cosine term in eq. (6), is 
now impeded by repeated interventions from the ‘phonon 
bath’ leading to dephasing/decoherence. Decoherence can 
be quantified by the so called ‘stay-put’ probability P(t). 
The latter measures the probability that the electron  
continues to stay at the right well, say, given that it was 
localized there at time t = 0. It is defined by 
 
 P(t) = ˆ| | ,zσ〈+ +〉  (11) 
 
where ˆ ( )z tσ  is the Heisenberg representation of ˆ zσ  
 
 ˆ ˆ( ) exp(i ) (0) exp( i ).z zt t tσ σ= −H H  (12) 
 
Evidently, when H is governed only by the free Hamilto-
nian HS in eq. (9), P(t) would have the form 
 
 P(t) = cos(2Δt). (13) 
 
But, the phonon coupling changes the behaviour of P(t) 
to incoherent oscillations, as depicted in Figure 4. 

Transition from coherent to decoherent  
diamagnetism 

Diamagnetism arises from the induced orbital magnetic 
moment of a collection of mobile electrons by an external 
magnetic field. Because a moving electron under the  
Lorentz force due to the external magnetic field would 
 
 

 
 

Figure 4. Stay-put probability P(t) as a function of time t. 

yield an electric current, the latter generates a magnetic 
moment opposing the direction of the field, in accordance 
with the Faraday–Lenz law. A many-body system of such 
electrons is therefore expected to lead to a macroscopic 
moment and hence, a susceptibility which, for diamagne-
tism, has a negative sign. It is however an intriguing fea-
ture of diamagnetism that the concomitant susceptibility, 
when calculated from rules of classical statistical  
mechanics, has an answer that is perplexingly zero. This 
result is the celebrated Bohr–van Leeuwen theorem5. 
Apart from the technical reasons of the magnetic field  
being ‘gauged away’ from the partition function, there is 
a deeper cause for null diamagnetism in classical statisti-
cal mechanics. It turns out that the diamagnetic contribu-
tion of those electrons which collide on the boundary and 
get reflected back into the enclosure exactly cancels that 
of the bulk electrons. This cancellation is however in-
complete in quantum mechanics, as was shown by Lan-
dau6. Diamagnetism is therefore an intrinsic quantum 
attribute. It is also a coherent phenomenon because phase 
of the electron remains intact as it Larmor-precesses 
around the magnetic field. 
 How does one run into the issue of docoherence in 
Landau diamagnetism? Well, much like in the problem of 
Drude electrical conductivity, the moving electrons are 
interrupted by the lattice vibrations or phonons. The cou-
pling to the phonons, again assumed linear as in eq. (10), 
can occur through the position vector of the electron. 
Such a coupling has been widely studied in the context of 
a free particle, a harmonic oscillator or more generally in 
the so-called Caldeira–Leggett model7, in which the parti-
tion function has been computed in a functional integral 
approach8–10. 
 We will follow a different method, that due to Ford et 
al.11, in which a quantum Langevin equation (QLE) is 
formulated. The latter has the same structure as for the 
classical Langevin equation, but for the explicit presence 
of the Lorentz force and the tacit recognition that the  
position and momentum operators do not commute with 
each other. The resulting QLE reads12 
 

 ˆ( × ) ( ),emQ m Q Q B t
c

γ+ − = Θ
G G G G�� � �  (14) 

 
where m is the mass of the electron, e the electric charge, 
γ the friction coefficient, B

G
 the external magnetic field, 

and ˆ ( )tΘ  is the so called ‘noise operator’. Unlike in the 
classical Langevin description, the correlation of ˆ ( )tΘ  at 
different times is not a delta function but has separate 
symmetric and antisymmetric components 
 

 ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ( ))i j j it t t t′ ′〈 Θ Θ + Θ Θ 〉  
 

  
0

d coth cos[ ( )],
2ij

m t tγ β ωδ ω ω ω
π

∞
⎛ ⎞ ′= × −⎜ ⎟
⎝ ⎠∫

==  (15) 
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and 
 
 ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ( ))i j j it t t t′ ′〈 Θ Θ − Θ Θ 〉  
 

  
0

2 d sin[ ( )].ij
m t t
i
γδ ω ω ω
π

∞

′= × −∫ =  (16) 

 
Evidently, in the classical limit = → 0, the antisymmetric 
correlation in eq. (16) vanishes, whereas eq. (15) reduces 
to 
 
 B

ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ( )) 2 ( ).i j j i ijt t t t m k T t tδ γ δ′ ′ ′〈 Θ Θ + Θ Θ 〉 = −   
 (17) 
 
One other crucial difference in the classical case is that 
the kinematic momentum mQ

G�  is not the same as the  
canonical momentum ,pG  the two being related by 
 

 ,emQ p A
c

⎛ ⎞= −⎜ ⎟
⎝ ⎠

G GG�  (18) 

 
where A

G
 is the vector potential that yields the magnetic 

field through the relation 
 
 curl .B A=

GG
 (19) 

 
Consequently, the three operators: ,Q

G
 Q

G�  and Q
G��  do not 

commute with each other. In terms of ‘scaled’ resistances, 
defined by13–15 

 

 D
D H2

H
, , ,

R m Br R R
R necne

γ
= = =  (20) 

 
where RD and RH are the so-called Drude and Hall resis-
tances respectively, and n is the electron density, the 
magnetization M per particle can be expressed as 
 

 2B
c 2 2

c1

1 ,
2 ( )nn

k T
M

B γ ν

∞

=

= − Ω
+ + Ω∑  (21) 

 
where Ωc is the scaled cyclotron frequency 
 

 c
B

,eB
k Tmc

Ω =
=  (22) 

 

and 
 

 B2
.n

k Tnπ
ν =

=
 (23) 

 
Equation (21) is a remarkably compact answer that mani-
festly has all the right limits. For instance, because Ωc is 

identically zero in the classical case, M vanishes. On the 
other hand, for zero damping (γ = 0), we may express  
M as 
 

 2B
c 2 2 2

c c0

2 1 1

nn

k T
M

B ν

∞

=

⎡ ⎤
= − Ω −⎢ ⎥

+ Ω Ω⎢ ⎥⎣ ⎦
∑  

 

  c
c

1coth( ) ,
2
e
mc

⎡ ⎤
= − Ω −⎢ ⎥Ω⎣ ⎦

=  (24) 

 
the Landau answer. Finally, in the limit of infinitely large 
damping (γ → ∞), M vanishes too, suggesting that frequent 
interactions with the phonon-bath render the system com-
pletely incoherent as though the Bohr–van Leeuwen  
result is resurrected from a fully quantum mechanical  
expression. This is illustrated in Figure 5, in which the 
negative of the dimagnetic moment is plotted against a 
dimensionless resistance indicating the coherent-to-
decoherent transition15. 

Dephasing of a qubit 

A qubit – a standard paradigm for studying quantum in-
formation – is a set of two quantum dots whose states are 
ordinarily entangled16. However, environment-induced 
decoherence is an impediment for storage of quantum  
information. The basic qubit Hamiltonian can be written 
in terms of projection operators as 
 
 S (| | | |) (| | | |),L L R R L R R Lε= 〉〈 − 〉〈 + Δ 〉〈 + 〉〈H  (25) 
 
where |L, R〉 represents the left (right) dot, ε the differ-
ence of the two site energies and Δ is the overlap energy. 
A reasonable model for assessing decoherence process is 
to expand the Hamiltonian HS to 
 
 0 ˆ( )(| | | |)x L L R Rεε τ= + 〉〈 − 〉〈H ζ  
 

    ˆ( )(| | | |),x L R R Lτ Δ+ Δ + 〉〈 + 〉〈ζ  (26) 
 
and introduce an interaction Hamiltonian HI as 
 

 †
I ˆ ( ).z k k k

k

g b bτ= +∑H  (27) 

 
Here ˆxτ  and ˆzτ  are pseudo Pauli operators. Like in the 
double-well problem discussed earlier, H0 can be alter-
nately expressed as 
 
 0 ˆ ˆ ˆ ˆ ˆ( ).z x x z xεεσ σ τ σ σΔ= + Δ + +H ζ ζ  (28) 
 
The total Hamiltonian then is an expanded version of  
eq. (10) 
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 †
0 I .k k k

k

g b b= + + ∑H H H  (29) 

 
The physics of eqs (27)–(29) is amply clear. The operator 
ˆzτ  (in eq. (27)), modulated by the bosonic operators bk 

and †
kb , causes random flips of ˆxτ  (in eq. (28)). The con-

sequent effect is to create modulations in ζε and ζΔ, the-
reby causing fluctuations in the site and overlap energies. 
 While the above formulation is fully quantum me-
chanical, we will follow a simpler semi-classical analysis 
in which the operator ˆxτ  (and influence on it by the sur-
rounding phonon fields) is subsumed within a classical 
stochastic field f (t) that is assumed to be a telegraph 
process17. A formal justification for this scheme can be 
had in certain high-temperature limits. We will make a 
further simplification of taking ε to be zero – the  
so-called symmetric case in which the two site energies 
are identical. However, a bit of generality is injected by 
taking the overlap energy Δ to be complex. This can be 
realized in practice by coupling the dots via two different 
channels with a phase mismatch, as can be done, for  
instance, by inserting an Aharonov–Bohm flux on the 
dots18. Hence, our modified Hamiltonian reads 
 
 H(t)=HS + ˆ ( ),Vf t  (30) 
 
where 
 

 *1 ( ),
2S σ σ+ −= Δ + ΔH  (31) 

 

 
 

Figure 5. Negative of the diamagnetic moment plotted against a  
dimensionless resistance r. 

and 
 

 *
1ˆ ( ).
2

V σ σΔ + Δ −= +ζ ζ  (32) 

 
As f (t) stochastically jumps between the two values ±1, 
the overlap energy fluctuates between ( )ΔΔ ± ζ  and 

*( * ),ΔΔ ± ζ  thereby inducing decoherence. Our aim in the 
following will be to devise a scheme in which initial  
information, stored in the qubit, can be at least partially 
retrieved despite decoherence. 
 Quantum information is usually stored in qubits that 
can be thought to exist in linear superposition of two  
basis states 
 

 i
0

1 0
| cos e sin ,

0 1
γψ α α

⎛ ⎞ ⎛ ⎞
〉 = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (33) 

 
where α and γ are real parameters. 
 As is well known, quantum computation has the pre-
requisite of quantum coherence such that the state stored 
in each qubit can stay stable. However, the perturbation 
of the stochastic process f (t) is expected to lead to total 
decoherence. The resultant loss of information is captured 
by the asymptotic form of the reduced density operator, 
which assumes a diagonal form with constant coeffi-
cients. Note that the reduced density operator is obtained 
by tracing the full density operator over the bath quantum 
states; thus ρnm(t = ∞) = (1/2)δnm, in the so-called fully 
mixed state, independent of the particular basis compris-
ing the underlying Hilbert space. 
 Our stratagem is to contrive a situation in which there 
is decoherence sans dissipation, i.e. there no energy ex-
change between the subsystem and the environment19. 
This can be ascertained by finding conditions under 
which the two operators HS and ˆ,V  in eqs (31) and (32), 
commute with each other. Yet, the asymptotic density 
operator retains off-diagonal terms that carry the signa-
tures of the initial quantum state |ψ0〉. The desired scheme 
is implemented as follows18. 
 It is clear that the condition under which [HS, ˆ ]V  = 0 
can be achieved, when 
 
 * * 0,Δ ΔΔ − Δ =ζ ζ  (34) 
 
or, equivalently 
 

 
*

,
*

xΔ Δ= =
Δ Δ
ζ ζ  (35) 

 
x being a real parameter. The condition given in eq. (35) 
implies that if Δ is written as |Δ|exp(iθ), the same θ must 
appear as the phase of ζΔ, i.e. ζΔ = |ζ|exp(iθ). The above 
condition entails that HS and V̂  can be simultaneously 
diagonalized among the basis states that are referred to as 
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the ‘bonding’ and ‘anti-bonding’ states in the chemical 
physics literature (cf. with ψ0 and ψ1 mentioned earlier), 
given by 
 

 
1 01 1| .
0 12 2
⎛ ⎞ ⎛ ⎞

±〉 = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∓  (36) 

 
Evidently, the bonding and anti-bonding states are eigen 
states of both HS and V̂  
 
 HS|±〉 = "|Δ| |±〉,   V̂ |±〉 = "|ζ | |±〉, (37) 
 
with eigenvalues "|Δ| and "|ζ | respectively. 
 If the density operator ρ̂  is written in the basis of 
bonding and anti-bonding states, it will clearly be diagonal 
and remain diagonal at all times. But, like in the problem 
of tunnelling in a double well, the physical states are the 
localized ones on the left and right dots, given by ( )1

0
 

and ( )0
1

 respectively. A detailed and fully time-
dependent analysis of ˆ ( )tρ  following its Liouville evolu-
tion under the influence of the underlying telegraph proc-
ess reveals that asymptotically the off-diagonal elements 
of the density operator acquire the form18 

 

 
*

LR RL

LR

( ) ( )
exp(i ) [exp( i ) (0)],

t tρ ρ
θ θ ρ

= ∞ = = ∞

= ℜ −
 

(38)
 

 
whereas the diagonal elements remain one-half each. 
Here 
 
 LR 0 0(0) | | .L Rρ ψ ψ= 〈 〉〈 〉  (39) 
 
Employing eq. (31) 
 

 LR
1(0) sin(2 )exp( i ).
2

ρ α γ= −  (40) 

 
Thus the asymptotic density operator does not belong to a 
mixed state, implying that the system retains partial co-
herence notwithstanding the environmental influence. 
Hence the initial information on the qubit is at least par-
tially protected – a desired objective of quantum compu-
tation. 

Concluding remarks 

By way of three different examples, taken from con-
densed matter physics and quantum information theory, 
we have illustrated the idea of coherence, arising from 
definite phase relation inherent in the quantum wave 
function, and decoherence. Decoherence is an inevitable 
consequence of the environmental influence and is parti-
cularly severe for small (nano/mesoscopic) systems 

which are the very devices appropriate for storing quan-
tum information20–23. Coherence-to-decoherence transi-
tion is a hallmark of dissipative quantum systems and has 
been exemplified here in terms of the phenomena of  
tunnelling in a double well and Landau diamagnetism. 
Our third example, in the context of a qubit, brings up an 
interesting twist, viz. how coherence can be partially pre-
served even in the presence of environmental influences. 
Throughout our discussion, a system-plus-bath approach 
has been adopted, in the spirit of path-breaking contribu-
tions of Feynman and Vernon Jr.24; Caldeira and  
Leggett7; Ford, Kac and Mazur11, and others. 
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