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Fundamental phenomena in quantum mechanics are 
investigated by the use of matter-wave optics: in the 
studies neutron polarimeter and interferometer are 
exploited. Successive measurements of 1/2-spin of the 
neutron are carried out to test the error–disturbance 
uncertainty relation. The experimental results confirm 
the violation of Heisenberg’s original reciprocal rela-
tion for measurement error and disturbance, and the 
validity of the reformulated generally valid relation. 
In addition, as an example of a counterfactual phe-
nomenon of quantum mechanics, interferometric  
experiment is performed to observe the so-called 
quantum Cheshire-Cat: a particle and its magnetic 
moment travel through the interferometer along dif-
ferent beam paths. The results of our experiment sug-
gest that, with suitable pre- and post-selections, 
neutrons travel along one of the arms of the interfer-
ometer, while their spin is located in the other arm. 
 
Keywords: Cheshire-Cat, interferometer, polarimeter, 
neutron, uncertainty relation. 

Introduction 

SINCE the early stages of the development of quantum 
theory, peculiarities predicted by the theory have fasci-
nated and even confused everyone, not only the interested 
public but also physicists. One of the most astonishing 
phenomenon displayed by quantum systems at the atomic 
scales (or even larger) is the wave–particle duality, which 
compels us to perceive quanta, such as electrons, neu-
trons and photons, as entities behaving simultaneously 
both like waves as well as particles1. The double-slit  
experiment, in particular with single particles, has been 
serving as the best example to view the central mystery in 
quantum mechanics2. Wave and particle properties, both 
familiar to us in classical physics, emerge and, moreover, 
it displays intrinsically probabilistic nature of quantum-
mechanical predictions. In the quantum version of the 
double-slit experiment, when both slits are open and  
particles like neutrons, electrons, molecules and so forth 
are sent, there appear ‘interference fringes’ in the final 

distribution at the screen. It sounds reasonable if one  
accepts the situation where particles, which cannot be  
divided into pieces, hit both slits simultaneously and ‘an 
effect’ from both opening with wave-like property reach-
es the screen, exhibiting fringe pattern due to constructive 
and destructive interference effects. It is worth noting 
here that non-local effects, not in a sense of quantum  
kinematics observed in two-particle correlation but in a 
sense of quantum dynamics described by quantum  
equation of motion3, are clearly observed in the quantum 
version of the double-slit experiment. 
 Optical experiments with massive particles such as 
neutrons, electrons, atoms and molecules play a signifi-
cant role while testing peculiar phenomena predicted by 
quantum theory. Note that such an important physical 
concern is sometimes easily forgotten but lies beneath 
that the (non-relativistic) Schrödinger equation can be di-
rectly applied in describing the time-evolution of quan-
tum state of massive quantum system: de Broglie waves 
with a wavelength λ = h/mv, spin quantum numbers s,  
canonical commutation relation such as [xi, pj] = i δij, etc. 
are purely quantum-mechanical features and cannot be 
found in classical mechanics. The perfect crystal neutron 
interferometer was invented in 1974 at the Atominsitut, 
Vienna4, which opened up a new era of the fundamental 
studies of quantum mechanics with matter-waves. By tak-
ing advantage of the macroscopic beam separation of 
several centimetres, the wave-like aspect of neutrons is 
observed explicitly and exploited for the fundamental in-
vestigations of quantum mechanics5,6. Another neutron 
optical approach is spin interferometry. A principle that is 
utilized in neutron polarimetry7,8 is that spin eigenstates 
are manipulated with a high degree of accuracy and the 
interference between these eigenstates or their entangled 
degrees of freedom is observed, mostly without spatial 
beam separation. Due to its superior resilience against 
environmental perturbations, it complements split-beam 
experiments. The advantages of this approach are: (1) the 
instrument is robust: rather insensitive to environmental 
disturbances, and (2) highly efficient (>99%) manipula-
tions are possible: final contrast reaching about 99%. 
 From the very beginning, neutron interferometer  
experiments have been established as one of the most 
powerful tools for investigations of quantum-mechanical 
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phenomena on a fundamental basis. Over the past decades, 
neutron interferometry has provided excellent opportuni-
ties for many types of interferometer experiments with 
neutrons, ranging from fundamental quantum investiga-
tions to application measurements, such as precise meas-
urements of coherent neutron scattering lengths. The 
former exploits the neutron interferometry as a matter-
wave interference experiment and the latter is frequently 
required for other types of neutron scattering spectros-
copy. Consequences of the nonrelativistic Schrödinger 
equation for matter-waves can be studied, for instance, 
with electrons, atoms, ions and molecules. Features of 
neutron interferometry, such as macroscopic-scale ex-
periments, high detector efficiency, low decoherence rate, 
and high-efficiency manipulation rate, make it a unique 
strategy for quantum-mechanical investigations. Re-
cently, neutron polarimeter experiments have begun to 
serve as another tool to verify the basic concepts of quan-
tum mechanics. There, basis used in the experiment is 
spanned not by two paths |I〉 and |II〉, but by spin eigen-
state |↑〉 and |↓〉. With this device, for instance, the non-
commutation of the Pauli spin operator9 and a number of 
geometric phase measurements10 are carried out. The im-
plicit polarization interference scheme allows us to per-
form textbook-like demonstrations of quantum mechanics 
with high efficiency and stability. 
 In this article, recent experiments with the neutron  
interferometer and the polarimeter are presented. The first 
experimental test of the reformulated error–disturbance 
uncertainty relation is tested: successive measurements of 
neutron’s spin11,12 exhibit the violation of the naive error–
disturbance relation by Heisenberg and confirm the valid-
ity of a new universally valid error–disturbance relation 
by Ozawa13,14. In addition, a paradoxical phenomenon 
within the framework of quantum mechanics has been 
found recently15,16 and named after the ‘Cheshire-Cat’ 
featured in Lewis Carroll’s novel Alice in Wonderland: 
she disappears, leaving her grin behind. The quantum 
Cheshire-Cat emerges, if a quantum system is subjected 
to certain pre- and post-selections. It can behave as if a 
particle itself and its property are spatially separated. In 
our neutron interferometer experiments, we have success-
fully observed the quantum Cheshire-Cat17. The neutron 
system behaves as if neutrons travel along one beam-path 
of the interferometer, while their magnetic moment (neu-
trons are spin-1/2 fermions) travels along the other. 

Error–disturbance uncertainty relation 

The uncertainty principle refers to intrinsic indeterminacy 
of quantum mechanics and ranks among the most famous 
statements of modern physics18. It was Heisenberg19 who 
first formulated the uncertainty relation as a limitation of 
accuracies of position and momentum measurements. 
Later on, the uncertainty relation was reformulated in 

terms of standard deviations, which denote only the  
statistical quantity and neglect neither the disturbance due 
to interactions in a quantum measurement nor measure-
ment error20,21. It was know that the validity of Heisen-
berg’s original relation is justified only under limited 
circumstances, and Ozawa13,14 proposed a new univer-
sally valid error–disturbance uncertainty relation. Here, 
we describe a successive spin measurement of neutrons 
that allows determining the error of a spin-component  
measurement and the disturbance caused on another spin-
component measurement11. The results confirm that both 
error and disturbance completely obey Ozawa’s relation, 
but often violate the Heisenberg’s relation. 

From Heisenberg to universally valid uncertainty  
relation 

In 1927, Heisenberg19 proposed the uncertainty relation 
for the error ε(Q) of a electron’s position measurement 
and the disturbance η(P) of the momentum measurement 
in a form ε (Q)η(P) ~ /2, where  is Planck’s constant 
divided by 2π (here, we use /2 for consistency with  
modern treatments). The reciprocal relation σ (Q)σ (P) ≥ 

/2 for standard deviations σ (Q), σ (P) of position and 
momentum was proved by Kennnard20, which was gener-
alized to arbitrary pairs of observables A, B by Robert-
son21 as σ (A)σ (B) ≥ 1/2|〈ψ|[A, B]|ψ〉|, in any state. Here, 
[A, B] represents the commutator [A, B] = AB – BA, and 
the standard deviation is defined as σ (A)2 = 〈ψ|A2|ψ〉 – 
〈ψ|A|ψ〉2. Robertson’s21 relation with standard deviations 
has a mathematical basis. Nevertheless, the proof of the 
reciprocal relation for the error, a generalized form of 
Heisenberg’s error–disturbance uncertainty relation 
 

 ε (A)η(B) ≥ 1
2

|〈ψ|[A, B]|ψ〉|, (1) 

 
is not straightforward. Recently, rigorous and general 
theoretical treatments of quantum measurements have  
revealed the failure of Heisenberg’s relation, i.e. eq. (1), 
and derived a new universally valid uncertainty rela-
tion13,14 given by 
 

 ε (A)η(B) + ε (A)σ  (B) + σ (A)η(B) ≥ 1
2

|〈ψ|[A, B]|ψ〉|. 

 (2) 
 
Here, the error ε (A) is defined as the root mean square 
(rms) of the difference between the output operator OA 
actually measured and the observable A to be measured, 
whereas the disturbance η(B) is defined as the rms of the 
change in the observable B during the measurement. Note 
that the additional second and third terms imply a new 
accuracy limitation, which does not necessarily follow 
the trade-off relation of error and disturbance. 
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Uncertainty relation in successive spin  
measurements 

Here, the validities of two forms of error–disturbance  
relations, eqs (1) and (2) are experimentally tested with 
successive spin measurements of the neutron. The ex-
perimental set-up is depicted in Figure 1. Observables A 
and B are set as σx and σφB (an observable lying on the 
equator with the azimuthal angle φB of the Bloch sphere). 
The initial state |Ψ〉 is set to be +z spin state, |+z〉. In  
order to observe dependence of the error ε(A) and the  
disturbance η(B) on the output observable, OA = 
σx cosφOA + σy

 sinφOA (instead of exactly measuring 
A = σx), the apparatus M1 is designed to actually carry 
out measurements of adjustable observables. For deter-
mination of the error ε (A) and the disturbance η(B), the 
method proposed by Ozawa14 is used. 
 The experiment was carried out at the research reactor 
facility TRIGA Mark II of TU-Vienna. The monochro-
matic neutron beam is polarized crossing a super-mirror 
polarizer and two other super-mirrors are used as analys-
ers. The guide field together with four DC spin rotator 
coils, induces Larmor precession to allow state prepara-
tion and projective measurements of OA in M1 and B in 
M2. To test the error–disturbance uncertainty relation in 
eqs (1) and (2), the standard deviations σ (A), σ (B), the 
error ε (A) and the disturbance η(B) are determined from 
the experimentally obtained data: the measurements of 
the standard deviations σ (A) and σ (B) are carried out by 
M1 and M2 separately, whereas error ε (A) and distur-
bance η(B) are determined by successive projective mea-
surements utilizing M1 and M2. 
 Results of the measurements are shown in two cases: 
(i) B = σy and (ii) B = σx

 cos(5π/6) + σy
 sin(5π /6). The 

azimuthal angle of φOA of the output observable OA is  
varied from 0 to 2π. From the obtained values of error ε (A), 
disturbance η(B), standard deviations σ (A) and σ (B), the 
Heisenberg error–disturbance product ε (A)η(B) and 
 

 
 

Figure 1. Set-up of the neutron optical test of error–disturbance  
uncertainty relation. 

the universally valid expression ε (A)η(B) + ε (A)σ (B) + 
σ (A)η(B) are plotted as a function of the detuned azi-
muthal angle φ 

OA in Figure 2. The figures illustrate the 
fact that the universally valid expression is always larger 
than the limit, whereas the Heisenberg product is often 
below the limit. In particular, in the range φOA = [0, π/2] 
of Figure 2 a, a trade-off relation between the error and 
the disturbance is observed, and the Heisenberg product 
is always below the limit, which is reported in more de-
tail in the literature11,12. In Figure 2 b, the situation is  
observed where the universal expression actually touches 
the limit, which corresponds to the case where the equal 
sign of the inequality eq. (2) really occurs. 

Ex-post uncertainty relations 

The neutron’s spin measurement of ours is the first ex-
perimental test of the error–disturbance uncertainty rela-
tion. The validity of the new relation (eq. (2)) proposed 
as a universally valid error–disturbance relation is dem-
onstrated; moreover, the failure of the old relation as a  
reciprocal relation between the error and disturbance is  
also illustrated. This experiment stimulated further 
 
 

 
 

Figure 2. Experimentally determined values of the universally valid 
uncertainty relation: (i) ε (A)η(B) + ε (A)σ (B) + σ (A)η(B) (orange), 
and (ii) ε (A)η(B) (red) are plotted as a function of the detuning angle φ 
for the cases (a) B = σy and (b) B = σx cos(5π /6) + σy sin(5π /6). 
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studies on the error–disturbance uncertainty relation: in 
fact, experiments using a photonic system were con-
ducted22–24. All measurements concern polarization of the 
photon, which is described as a two-level quantum sys-
tem in the same manner as the 1/2-spin of neutrons.  
Afterwards, a significant extension in theory was made; a 
tighter relation was obtained25 and its validity was con-
firmed by experiments26,27. Now, uncertainty relations 
have again become a hot topic in quantum physics, more 
than 80 years after the publication of the first account of 
the uncertainty principle by Heisenberg. 
 In writing the paper, we are actually aware of the fact 
that ‘our result demonstrates that the new relation solves 
a long-standing problem of describing the relation  
between measurement accuracy and disturbance, and 
sheds light on fundamental limitations of quantum meas-
urements, for instance on the debate of the standard  
quantum limit for monitoring free-mass position’11. Never-
theless, ex post facto critical analysis was made28: for  
instance, state dependence of the error and the disturbance 
by Ozawa are claimed, and state-independent definitions of 
error and disturbance are proposed to reconstruct the  
error–disturbance uncertainty relation in the same form as 
the original one proposed by Heisenberg29. The newly  
defined error and disturbance are ‘state independent, each 
giving the worst-case estimates across all states’: this  
allows overestimate of the measurement error and distur-
bance. This claim is immediately criticized by two papers 
of some authors of the experimental papers30,31: physical 
analysis in the former figures out the new definition as 
‘disturbance power’, and mathematical consideration in 
the latter reveals breakdowns of the new definition. 
 Furthermore, a paper has been published which deals 
with ‘operational constraints’ on the measures of the error 
and disturbance32: it is stated that, since ‘only the change 
in the measurement statistics can be detected by the mea-
surement’, ‘a measurement cannot be treated as dis-
turbed if its outcome statistics is identical to the one for 
the perfect measurement’ (underlines given by the author). 
The fact that this view does not accomplish its intended 
purpose is clearly seen in the first experimental test of 
ours: as we already emphasized as ‘It is worth noting that 
the mean value of the observable A is correctly repro-
duced for any detuning angle φ, that is, 〈+z|OA| + z〉 = 
〈+z|A| + z〉, so that the projective measurement of OA  
reproduces the correct probability distribution of A, whe-
reas we can detect the non-zero r.m.s. error ε(A) for 
φ ≠ 0.’11 It is physically reasonable that the difference of 
the observable OA ≠ A for φ ≠ 0, which is realized in the 
experiment, leads to the error of the measurement, even 
though the measurement results are identical. This is un-
surprisingly understood when one considers, for instance, 
an apparatus which (is broken and) always gives the  
results of the measurement as (+1) and (–1) with a fifty–
fifty chance: can one regard this not a causal but an acci-
dental coincidence as (physically) error-free? As far as 

physical consequences are concerned, causal differences, 
which can appear even in an operational form, are  
resources of the measurement error/disturbance; modern 
quantum measurement schemes, i.e. process tomography 
or that in combination with weak values, can actually  
reveal the operational difference. The functional differ-
ences, emerging only in the final results, can be consid-
ered as informational aspects of the measurements. 
Indeed, another form of noise–disturbance uncertainty  
relation in context of information-theoretic approach has 
been derived33,34, where the correlations of the measure-
ment results are considered as the resource. 

Quantum Cheshire-Cat: paradoxical  
phenomenon in quantum mechanics 

From its very beginning, quantum theory has revealed  
extraordinary and counterintuitive phenomena, such as 
Schrödinger’s Cat35 and quantum nonlocality36. Quantum 
mechanics is still capable of exhibiting counterfactual 
phenomena. For instance, Hardy paradox describes a con-
tradiction between the classical picture and the outcome 
of quantum mechanics37: joint weak measurements of  
trajectories of a photon pair on a post-selected state in a 
pair of Mach–Zehnder interferometers reveal a negative 
value for a joint probability of locations38,39. Here, a weak 
measurement is a technique proposed by Aharonov,  
Albert and Vaidman (AAV)40: a weak value is defined  
as fin ini fin ini

ˆ ˆ| | / |wA A= 〈Ψ Ψ 〉 〈Ψ Ψ 〉  with certain pre- and 
post-selected systems, represented by |Ψini〉 and |Ψfin〉 
Weak values can be obtained by so-called weak meas-
urements with minimal disturbance on the measured sys-
tem, contrary to conventional projective measurements. 
Note that weak values lie over the range of eigenval-
ues41,42, and may even be complex43. The weak value was 
also used as an amplifier to discover new physical effects 
that could not be otherwise detected44. Recently, another 
counterfactual paradox, called quantum Cheshire-Cat,  
attracted attention: in pre- and post-selected circum-
stances, a cat, i.e. a particle, is found in one place and its 
grin, e.g. a spin in another15,16. 

Quantum Cheshire-Cat in a neutron  
interferometer experiment 

Recently, a paradoxical phenomenon within the frame-
work of quantum mechanics has been found and named 
after the ‘Cheshire-Cat’ featured in Lewis Carroll’s novel 
Alice in Wonderland: she disappears, leaving her grin  
behind. The key issues are proper pre- and post-
selections: a particle is prepared in a certain initial state, 
afterwards affected by appropriate post-selection. The 
quantum Cheshire-Cat emerges: it can behave as if a par-
ticle and its property are spatially separated15,16. We  
accomplished the first observation of the quantum
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Figure 3. (Left) The concept of quantum Cheshire-Cat. (Right) Experimental set-up with neutron interferometer. In the Mach–
Zehnder interferometer, a Cat is in the upper beam path while the grin is in the lower beam path. In the neutron interferometric 
version, an incident beam is polarized and falls on the interferometer. The pre-selected state |Ψi〉 is generated in the interferometer 
and post-selection on the state |Ψf〉 is carried out on the beam leaving the interferometer. 

 
 

 
 

Figure 4. Weak measurements of the population of the neutron in the beam path in the interferometer. 
Absorbers with transmissivity of 1, 0.8 and 0.6 are inserted in one of the beam paths in the interferome-
ter. In the upper panel, absorbers in path I (lower path) have no effect on the intensity. In the lower panel, 
the intensity of path II (upper path) decreases by inserting absorbers. Now, one finds neutrons in path I. 

 
 
Cheshire-Cat in a neutron interferometer. In our neutron 
interferometer experiment, the neutron plays a role of the 
cat and its spin does the grin17. The concept of quantum 
Cheshire-Cat as well as the experimental set-up are  
depicted in Figure 3. The pre- and post-selected states are 
set as 
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⎪ Ψ 〉 = − 〉 〉 + 〉
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 (3) 

 
To characterize the population of the neutron in the inter-
ferometer and the location of its spin, weak values of the 
observables, ˆ | |j j jΠ ≡ 〉〈  and ˆˆ s

z jσ〈 Π 〉  with j = I and II are 
determined. Theory predicts the values, I w

ˆ 0,〈Π 〉 =  
II w

ˆ 1,〈Π 〉 =  I w
ˆˆ 1,s

zσ〈 Π 〉 =  and II w
ˆˆ 0.s

zσ〈 Π 〉 =  
 In the experiment, the incident neutron beam is polar-
ized using magnetic prisms and the initial state |Ψi〉 is 
generated. A pair of water-cooled spin-rotators are  
employed in the interferometer. After the relative phase χ 

between the two beams is adjusted by the phase shifter 
and the beams are recombined at the last plate of the in-
terferometer, the O-beam (interfering beam leaving the 
interferometer in the forward direction) is affected by 
spin analysis: the postselection is carried out by a combi-
nation of the phase shifter and the spin analysis system. 
Weak measurements of population of the neutron and the 
location of its spin are performed by the use of absorbers 
and additional spin rotation in one of the beams in the in-
terferometer. 
 Here, we explain the experimental results qualitatively. 
First, in the measurements of population of the neutron, 
an absorber is inserted in one of the beam paths in the  
interferometer. Typical results are shown in Figure 4: the 
absorbers in the beam path I (lower path) do not affect 
the final intensity of the O-beam with a spin analysis, 
while intensity of path II (upper path) decreases accord-
ing to the strength of the absorber. This suggests that the 
neutrons are travelling through the interferometer, follow-
ing beam path I. Next, in the measurement of location of 
the spin of neutron, a fairly weak magnetic field is  
applied in one of the beam paths in the interferometer.
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Figure 5. Weak measurements of the location of spin of the neutrons in the interferometer. A weak magnetic field is applied in 
one of the beam paths of the interferometer. b, Interferogram without a magnitic field plotted as a reference. a, A magnetic field in 
path II (upper path) has (practically) no effect on the interferogram. b, A clear interferogram appears by applying a magnetic field 
in path I (lower path). Now, one finds neutron’s spin in path II. 

 
 
Typical results are shown in Figure 5: the magnetic field 
in the beam path II (upper path) does not affect the final 
intensity of the O-beam with a spin analysis, whereas  
sinusoidal intensity modulation appears by applying the 
magnetic field in path I (lower path). This suggests that 
the spin of the neutron, in turn, is travelling through the 
interferometer, following beam path II. These results are 
consistent with the theoretical prediction16: neutrons, 
which are affected by appropriate pre- and post-selection,  
behave as if they travel in one of the paths, whereas their 
spin is disembodied and located in the other path. 

Quantum Cheshire-Cat in quantum mechanical  
evolution 

A question may arise whether one can view the quantum 
Cheshire-Cat alternatively by following the evolution of 
the wave function of the neutron. This argument is clari-
fied here. Looking at the experimental set-up depicted in 
Figure 3, the population of the neutrons can be intuitively 
understood. The spin analysis behind the interferometer 
allows only neutrons with spin in the forward direction to 
transmit. These are exactly the neutrons in the upper 
beam path: the neutrons in the lower beam path will be 
filtered out by the spin analyser. The first measurement 
shows exactly this situation (Figure 4). How about the  
location of the spin of the neutron? In the measurement of 
spin, a weak magnetic field is applied: the spin vector in 
each beam path is rotated. That is, the spin in the  
forward/backward direction is deviated from the original 
direction by the angle α, followed by spin analysis in for-
ward direction. Since the spin analysis is described by the 

projection, the intensities after the spin analysis on spins 
deviated from the parallel and the anti-parallel are pro-
portional to cos(α/2) and sin(α/2) respectively. There-
fore, the differences in intensity with and without the 
weak magnetic field result in cos(α/2) – 1 ≈ − α2/8  
(parallel spin in the upper path) and sin(α/2) – 0 ≈ α/2 
(anti-parallel spin in the lower path). This means, the in-
fluence of the magnetic field in the upper path is in the 
first order of α, while that in the lower path is in the sec-
ond order. For the parameter α ~ 15° realized in the ex-
periment, the former becomes 0.13, while the latter is 
0.0085: the former is more than one magnitude larger the 
latter. This phenomenon is clearly observed in the inter-
ferograms obtained in the second measurement (Figure 
5). A major change in the case of the magnetic field in 
the lower path for small α is attributed to the spin travel-
ling through the lower path. 

Concluding remarks 

The test of the error–disturbance uncertainty relation pre-
sented here is actually the first experimental test of this 
kind. The demonstration of ours is the first experimental 
evidence for the invalidity of the old (by Heisenberg) and 
validity of the new (by Ozawa) uncertainty relation. It 
should be emphasized here that this experiment opens up 
a new era of uncertainty relation where, more than 80 
years after the Heisenberg’s original publication, the  
topic is taken up again for hot discussions both from the 
theoretical and experimental point of view. Our result 
clarifies a long standing problem of describing the rela-
tion between measurement accuracy and disturbance, and 
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sheds light on fundamental limitations of quantum meas-
urements. It is fair to say that our experiment activates 
this research field. One cannot emphasize too much the 
importance of amending such a fundamental concept not 
only from a purely academic but also a practical point of 
view. The studies of counterfactual phenomena of quan-
tum mechanics are presented, where quantum the  
Cheshire-Cat is generated and observed using a neutron 
interferometer set-up: neutron and its spin are disembod-
ied. Note that weak values, which are defined and  
obtained by pre- and postselection together with special 
estimation strategy of the intermediate state, allow to cre-
ate and confirm the quantum Cheshire-Cat. 
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