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In this article, we begin by briefly reviewing the basics 
of the Leggett–Garg inequality which is a temporal 
analogue of Bell’s inequality, based on the notions of 
realism and noninvasive measurability. This is fol-
lowed by outlining the core ideas and key results of 
two different types of recent studies related to the 
Leggett–Garg inequality, bringing out its ramifica-
tions concerning unsharp measurements and quantum 
key distribution respectively. 
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Introduction 

CENTRAL to the classical world view is the basic notion 
of realism, defined by assuming that at any instant, a sys-
tem is in a definite state for which all its observable proper-
ties have definite values, irrespective of any measurement. 
A remarkable line of study that enables to show that models 
of quantum mechanical (QM) phenomena based on the no-
tion of realism can be experimentally constrained was ush-
ered in by the discovery of Bell’s inequality (BI)1. This led 
to an extensive study of the experimentally verifiable in-
compatibility between BI and QM, BI being an algebraic 
consequence of the notion of realism used in conjunction 
with the locality condition. Enriching this line of study, a 
stimulating ingredient is provided by the Leggett–Garg ine-
quality (LGI)2 that can be regarded as a temporal analogue 
of BI in terms of the time-separated correlation functions 
corresponding to successive measurement outcomes for a 
system whose state may evolve in time. 
 The notion of realism is invoked in deriving LGI by 
assuming that a system is at any given instant in a defi-
nite one of the available states having definite values for 
all its observable attributes, regardless of any measure-
ment being actually performed. A further ingredient for 
obtaining LGI, replacing the locality condition underly-
ing BI, is the notion of noninvasive measurability (NIM) 
which means assuming that it is possible, in principle, to 
determine which of the states the system is in, without  
affecting the state itself or the subsequent evolution of 

the system. Of course, as in the derivation of BI, the prin-
ciple of induction is also used in deriving LGI by assum-
ing that if one measures a quantity on a subset chosen at 
random from a given set, the result one gets should be 
typical of the set as a whole. 
 The experimentally verified incompatibility between 
LGI and the QM predictions in appropriate examples 
would thus signify repudiation of the notion of realism 
that includes the assumption of NIM. (Note that the con-
junction of realism and NIM is often referred to as the 
notion of macro-realism). Therefore, while furnishing a 
signature of distinctly quantum behaviour, the QM viola-
tion of LGI can be regarded as complementing that of BI in 
providing valuable insight into the nature of physical reality 
as entailed by the nonclassicality of quantum systems3,4. 
Hence, it has been of considerable interest to investigate the 
extent to which LGI is violated by QM for various types of 
systems. The original motivation that led to LGI was to use 
it for probing the possible limits of QM in the macroscopic 
regime, e.g. in the context of suitable experiments involving 
the rf-SQUID device5. In recent years, a variety of theoreti-
cal and experimental studies (reviewed, for example, by 
Emary et al.6) have sought to bring out various fundamental 
implications of LGI, and have probed the QM violation of 
LGI pertaining to different types of micro-systems, rang-
ing from, say, solid-state qubits7, nuclear spins8, elec-
trons9 to oscillating neutral kaons and neutrinos10. 
 Against the above backdrop, the present article concen-
trates on providing a concise overview of the essential  
results of two different types of studies along earlier  
unexplored directions concerning LGI that we have re-
cently carried out involving different collaborators. One 
of these11 formulates what has been called Wigner’s form 
of LGI (WLGI), with the robustness of the QM violation 
of WLGI being compared with that of the usual LGI with 
respect to unsharp measurements11. The other work 
probes the possibility of an application of LGI in the con-
text of Quantum Cryptography12. We begin by first  
discussing the standard form of LGI and the robustness of 
its QM violation for unsharp measurements. 

The Leggett–Garg inequality and unsharp  
measurements 

Let us focus on a two-state system whose temporal evolu-
tion consists of oscillations between the states, say, 1 and 
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2. Let Q(t) be an observable quantity such that, whenever 
measured, it is found to take a value +1(−1) depending on 
whether the system is in the state 1(2). Next, consider a 
collection of experimental runs starting from the identical 
initial state at t = 0 (say, the instant from which the tem-
poral evolution is induced by switching on an external 
field), such that in the first series of runs Q is measured at 
times t1 and t2; in the second, at t2 and t3; in the third, at t3 
and t4; and in the fourth, at t1 and t4 (here t1 < t2 < t3 < t4). 
From such measurements, it is straightforward to deter-
mine the temporal correlations Cij ≡ 〈Q(ti)Q(tj)〉. Then it 
is possible to adapt in this context, the argument leading 
to a Bell-type inequality, with the times ti of measure-
ments playing the role of apparatus settings that can be 
chosen at will, and using the following consequence of 
the assumptions of realism and NIM that were mentioned 
earlier. For any collection of runs corresponding to the 
same initial state at t = 0, an individual Q(ti) has the same 
definite value, irrespective of the pair Q(ti)Q(tj) in which 
it occurs; e.g. the value of Q(ti) in any pair does not  
depend on whether any prior or subsequent measurement 
has been made on the system. Consequently, the combi-
nation [Q(t1)Q(t2) + Q(t2)Q(t3) + Q(t3)Q(t4) − Q(t1)Q(t4)] 
is always +2 or −2. Taking the averages of the individual 
product terms in this expression over the respective series 
of runs, and using the assumption of induction mentioned 
earlier, the following form of LGI can then be readily  
obtained pertaining to the entire ensemble of runs 
 
 K ≡ C12 + C23 + C34 − C14 ≤ 2, (1) 
 
which, thus, provides realist constraint on the empirically 
measurable quantities such as the time-separated correla-
tion functions for any two-state oscillation. Now, to ex-
plain how the notion of NIM can be satisfied by invoking 
the idea of negative result measurement (NRM), let  
us consider, say, the case in which Q is measured at t1, 
followed by at t2, corresponding to the determination of a 
typical correlation function, say 
 
C12 = P++(t1, t2) − P+−(t1, t2) + P− −(t1, t2) − P− +(t1, t2), (2) 
 
where P++(t1, t2) is the joint probability of finding the par-
ticle in the state 1 at both the instants t1 and t2; similarly, 
for P+ −(t1, t2), P− −(t1, t2), P− +(t1, t2) Note that the deriva-
tion of LGI requires essentially the first measurement of 
each such pair to satisfy NIM. This can be ensured 
through the NRM procedure as follows. 
 Let the measuring set-up be arranged so that if, say, the 
probe is triggered, Q(t1) = +1, while if it is not, 
Q(t1) = −1, thereby ensuring in the latter case that while 
the untriggered probe provides information about the val-
ue of Q, there is no interaction occurring between the 
probe and the measured particle; in other words, the con-
dition of NIM is then satisfied. Now, if the results of 
those runs are only used for which Q(t1) = −1, followed 

by the measurement of Q at t2, discarding the results of 
the rest runs, these results can be used for determining the 
joint probabilities P− +(t1, t2) and P− −(t1, t2). Similarly, for 
determining the other two joint probabilities P+ −(t1, t2) 
and P+ +(t1, t2) occurring in C12, the measuring set-up can 
be inverted so that a value of Q(t1) = −1 triggers the 
probe, while for Q(t1) = +1, it does not. In this way, one 
can determine C12 and, similarly, all the two-time correla-
tion functions occurring in LGI by ensuring NIM through 
the use of the NRM procedure for the first measurement 
of any pair. 
 Any violation of LGI thus obtained can then be taken 
to repudiate the notion of realism because, as Leggett and 
his coworkers2–4 have argued, the ‘realist’ statement that 
the particle ‘is’ in a definite state corresponding to a defi-
nite value of Q at any instant loses any meaning if the 
state can be affected by the NRM procedure, thereby im-
plying that NIM is a logical corollary of realism in the 
context of NRM. It is, therefore, necessary to invoke the 
NRM procedure in order to ensure NIM which can help 
achieve loophole-free empirical scrutiny of LGI in a way 
that can be regarded as a clear test of realism defined in 
the sense stated earlier. Here it may be noted that  
recently, it has also been argued that NIM necessarily 
implies the notion of realism13. 
 Now, having clarified the relevant basics, let us write 
the general form of LGI involving n pairs expressed in 
the following way6 
 
 −n ≤ Kn ≤ n – 2,  for odd n ≥ 3, 
 
 −(n − 2) ≤ Kn ≤ n – 2,  for even n ≥ 4, (3) 
 
where Kn = C21 + C32 + C43 + … + Cn(n − 1), and the corre-
lation function Cij = 〈QiQj〉. Considering a typical two-
state oscillation, we are focussing here on a system oscil-
lating between the two states |A〉 and |B〉 which are  
degenerate orthogonal eigenstates of the Hamiltonian  
H0 corresponding to energy E0, with a perturbing  
Hamiltonian H ′ inducing oscillatory transition between 
these two states, with 〈A|H ′|B〉 = 〈B|H ′|A〉 = ΔE, and 
〈A|H ′|A〉 = 〈B|H ′|B〉 = E′. The key point here is that at any 
instant, such a system is found to be either in the state |A〉 
or in the state |B〉 corresponding to the measurement of 
the dichotomic observable Q = |A〉〈A| − |B〉〈B| = P+ − P−, 
where P+ = |A〉〈A|, P− = |B〉〈B|. Let the initial state at t1 be 
of the general form ρ0(t1) = |ψ0〉〈ψ0|, where 
 
 |ψ0〉 = cosθ |A〉 + exp(iφ)sinθ |B〉, (4) 
 
and θ, φ ∈ [0, π/2]. For the above state, the probability of 
obtaining the measurement outcome, say, +1 at the in-
stant t1 is given by tr(ρ0(t1)P+), and after this measure-
ment, the pre-measurement state ρ0(t1) changes to the 
state given by ρ+(t1) = P+ρ0(t1)P †

+ /tr(ρ0(t1)P+) where 
P+ = |A〉〈A| = P †

+ . Subsequently, the post-measurement 
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state evolves under the Hamiltonian H = H0 + H ′ to the 
state †

2 1( ) ( )t tt U t Uρρ+ Δ Δ′ = +  at a later instant t2 where 
UΔt = exp(−iHΔt), taking  = 1 and Δt = t2 − t1. Then, 
considering the subsequent measurement of Q at the  
instant t2, the QM value of, say, the joint probability of 
obtaining both the outcomes +1 at the instants t1 and t2 is 
given by 
 
 1 2 0 1 2( ,  ) tr( ( ) )tr( ( ) )P Q Q t P t Pρ ρ+ + +′+ + =  
 
   † 2 2

0 1tr( ( ( ) )  ) cos cos ,t tU P t P U Pρ θ τΔ + + +Δ= =  (5) 
 
where τ = ΔEΔt (in the units of  = 1), and the expression 
for the unitary matrix UΔt = exp(−iHΔt) is as follows 
 

 0( )e [cos i sin (| | | |)].i E E t
tU A B B Aτ τ′− + Δ

Δ = − 〉〈 + 〉〈I   
 (6) 
 
Using similar expressions for other joint probabilities, 
one can therefore compute the QM values of relevant cor-
relations functions for any initial state and study the QM 
incompatibility with LGI for the two-state oscillation un-
der consideration. For any given n, pertaining to the gen-
eral form of LGI given by eq. (3), the maximum QM 
value of Kn is then found to be ncos(π/n) (ref. 6). Hence, 
if the QM predictions are to violate eq. (3), the following 
inequality needs to hold good for any n 
 
 ncos(π/n) > n – 2. (7) 
 
Note that the above treatment is valid essentially assum-
ing ideal measurements. Next, we turn to examining the 
robustness of the QM violation of LGI in the context of 
unsharp measurements; i.e. if the relevant measurements 
are ‘non-ideal’. In order to address this question, we take 
recourse to the formalism of what is known as unsharp 
measurement14–18 which can be regarded as a particular 
case of commutating POVM. Note that for an ideal mea-
surement of the dichotomic observable under considera-
tion given by Q = |A〉〈A| − |B〉〈B| = P+ − P−, the respective 
probabilities of the outcomes ±1 and the way a measure-
ment affects the observed state are determined by the pro-
jection operators that can be written as P± = (1/2)(I ± Q) 
where I = |A〉〈A| + |B〉〈B|. 
 Now, in order to capture the effect of imprecision in-
volved in a non-ideal measurement, using the formalism 
of unsharp measurement14–18, a parameter (λ) known as 
the sharpness parameter is introduced to characterize the 
precision of a measurement by defining what are referred 
to as the effect operators given by 
 
 F± = (1/2)(I ± λQ) = λP± + (1 − λ)I/2, (8) 
 
where (1 − λ) denotes the amount of white noise present 
in any unsharp measurment (0 < λ ≤ 1), and F± are mutu-

ally commuting operators with non-negative eigenvalues; 
F+ + F− = I, while for λ = 1 corresponding to sharp meas-
urements, F± reduce to projection operators P±. Here an 
important point is that, instead of the projection operators 
used in the case of an ideal measurement, in an unsharp 
measurement, the operators F± determine the respective 
probabilities of the outcomes and the way a premeasure-
ment state changes due to measurement. 
 Considering the generalized Lüders operations, for a 
specific type of unsharp measurement pertaining to a giv-
en state ρ, the probability of an outcome, say, +1 is given 
by tr(ρF+) for which the post-measurement state is given 
by †( )/tr( ).F F Fρ ρ+ + +  Thus, in a given experiment, by 
estimating the difference between the actually observed 
probability of an outcome and the corresponding pre-
dicted value for an ideal experiment, the sharpness  
parameter λ pertaining to the experiment in question can 
be determined. This gives an operational significance to 
the parameter λ. 
 Now, using eq. (8) and by following the prescription 
outlined above, it is found that for unsharp measure-
ments, if the QM predictions are to satisfy the general 
form of LGI given by eq. (3), the following inequality 
needs to hold good 
 
 λ2n cos(π/n) ≤ n − 2, (9) 
 
for any n, which implies 
 

 2 .
cos( /2)
n

n
λ

π
−

≤  (10) 

 
By evaluating the derivative of the RHS of eq. (10) with 
respect to n, it is found that as n increases (n ≥ 3), the 
RHS of eq. (10) also increases, thereby implying an in-
crease in the critical value of λ (denoted by, say, λc) 
above which, as measurements become more precise, the 
QM results can violate the general form of LGI given by 
eq. (3). The minimum value of c ( 2/3 0.816)λ = ≈   
occurs for n = 3. For n = 4, λc is given by (1/2)1/4  ≈ 0.84, 
which is the same as the corresponding λc obtained for 
the Bell–CHSH inequality. 

Wigner’s form of the Leggett–Garg inequality  
and unsharp measurements 

It is interesting that closely following the discovery of 
Bell’s inequality, Wigner19 had derived a different form 
of the local realist inequality applicable to the EPR-Bohm 
bipartite entangled state, that has only recently been gen-
eralized for any multipartite state20. Here we discuss the 
temporal version of Wigner’s inequality11 pertaining to an 
ensemble of systems undergoing temporal oscillation  
between the two states 1 and 2, as considered while  
deriving LGI. Wigner’s argument requires assuming, as a 
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consequence of realism, the existence of overall joint 
probabilities, say, ρ(Q1, Q2, Q3) where Qi is the outcome 
(± 1) of measuring Q at ti(i = 1, 2, 3) involving different 
combinations of outcomes of the relevant measurements. 
Here the assumption of noninvasive measurability im-
plies that such overall joint probabilities would remain 
unaffected by measurements, and hence, by appropriate 
marginalization, the pairwise observable joint probabili-
ties can be obtained. For example, the observable joint 
probability P(Q1+, Q2+) of obtaining the outcomes +1 and 
+1 for the sequential measurements of Q at the instants t1 
and t2 respectively, can be written as 
 
 

3

1 2 3( , ) ( , , )
Q

P Q Q Qρ+ +
=±

= + +∑  

 
       ( , , ) ( , , ).ρ ρ= + + + + + + −  (11) 
 
Writing similar expressions for the other measurable 
marginal joint probabilities, say, P(Q1−, Q3−) and 
P(Q2+, Q3−), one obtains 
 
 1 2 1 3 2 3( , ) ( , ) ( , )P Q Q P Q Q P Q Q+ + − − + −+ −   
 
       ( , , ) ( , , ).ρ ρ= + + + + − − −  (12) 
 
Then, invoking non-negativity of the joint probabilities 
occurring on the RHS of eq. (12), the following form of 
what may be called Wigner’s form of LGI (WLGI) can be 
obtained in terms of three pairs of two-time joint prob-
abilities 
 
 P(Q2+, Q3−) − P(Q1+, Q2+) − P(Q1−, Q3−) ≤ 0. (13) 
 
Similarly, other forms of WLGI involving three pairs of 
two-time joint probabilities can be derived using various 
combinations of the observable joint probabilities. The 
complete set of such three-term WLGIs has been given in 
Saha et al.11 which also provides the general form of 
WLGI in terms of n pairs of two-time joint probabilities. 
However, for illustrating the basic relevant features con-
cerning the efficacy of WLGI, it suffices to confine atten-
tion to essentially three-term WLGIs. 
 Pertaining to the specific two-state oscillation consid-
ered earlier section in the text, a comprehensive study us-
ing three-term WLGIs as discussed in Saha et al.11, 
reveals that while the QM violation of all the three-term 
WLGIs depends on the initial state, among all these in-
qualities, the maximum QM violation is obtained for the 
inequality in eq. (13), for the initial state given by eq. (4) 
when θ = 1.0666 rad and φ = π/2, whence the QM value 
of the left-hand side is ≈ 0.5043 taking the time interval 
t2 − t1 = t3 − t2 = Δt, such that τ = ΔEΔt = 1.0083 (in the 
units of  = 1). 
 Now, in order to probe the effect of ‘non-ideal’ or  
unsharp measurements on the QM violation of WLGI, 

taking the parameters characterizing the initial state and 
the time evolution to be the same (as mentioned above) 
for which the QM violation of WLGI in eq. (13) is maxi-
mum for ideal measurements, the QM value of the LHS 
of WLGI in eq. (13) is a function of the sharpness pa-
rameter λ, given by the following form 
 
 P(Q2+, Q3−) − P(Q1+, Q2+) − P(Q1−, Q3−) 
 

  = 0.3816λ(1 − 21 x−  + 0.3726λ2 − 0.25). (14) 
 
Since the expression on the RHS of eq. (14) is a monoto-
cially increasing function of λ ∈ (0, 1], the solution of the 
equation involving this expression put to zero provides 
the critical value of λ above which, as measurements be-
come more precise, WLGI in eq. (13) can be violated by 
the QM results. It is then checked that the only solution 
of such an equation within the allowed range of values of 
λ is approximately 0.69. Thus, the critical value of λ in 
this case is λc ≈ 0.69, i.e. within this bound of λ for un-
sharp measurements, the QM results always satisfy 
WLGI in eq. (13). Now, comparing this value with the 
value of λc for the three-term LGI (which is also the min-
imum value of λc for any n-term LGI, as discussed ear-
lier), it is seen that for the range of values of λ ∈ (0.69, 
0.816], the QM violation of WLGI can occur for unsharp 
or imprecise measurements, whereas in such situations no 
violation of LGI can be shown. This, therefore, shows the 
nonequivalence between WLGI and LGI. 
 It should be stressed that the above results pertain to 
the choice of a two-level system subjected to a suitable 
interaction causing temporal oscillation between the two 
states, and the study is based on a restricted class of gen-
eralized measurements characterized by the model of  
unsharp measurements that involves commuting POVMs. 
Here it is pertinent to note that recently the QM violation 
of LGI for multilevel systems has been studied21. Hence, a 
similar study is required using WLGI, apart from extending 
the comparative study between WLGI and LGI by consid-
ering different types of generalized measurements. 

Application of the Leggett–Garg inequality for  
quantum key distribution 

While in recent years there has been considerable upsurge 
of interest in studying various aspects of LGI, curiously, 
the question as to whether LGI can have any relevance in 
the context of quantum cryptography has yet remained 
unexplored. In this section we indicate a possible line of 
application of LGI for ensuring security against eaves-
dropping in a quantum key distribution (QKD) scheme 
that has recently been suggested12. We begin by briefly 
recapitulating the relevant basics. 
 The Bennett–Brassard 1984 (BB84) scheme was the 
first suggested QKD protocol that allows two remote 
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agents Alice and Bob to privately share a random bit 
string22. Based on quantum features like no-cloning and 
imperfect distinguishability of non-orthogonal states, it 
has been argued that such a QKD protocol can have uncon-
ditional security in the sense of being not dependent on any 
computational power23. On the other hand, the E91 QKD 
protocol was proposed by Ekert24 that uses entangled pairs 
to generate secret bits with the security arising from detect-
ing the violation of a Bell-type inequality. The underlying 
intuition is that if an eavesdropper Eve intervenes, the 
amount of violation of a Bell-type inequality would be  
affected and this would reveal her presence. Subsequently, 
another entanglement-based QKD scheme was proposed 
that was argued to be equivalent with the BB84 scheme25. 
Thereafter, a number of security proofs pertaining to a  
variety of attacks on the transmission channel have endowed 
quantum cryptography with considerable richness. 
 However, it has recently been realized that the uncon-
ditional security proofs of the QKD schemes have limited 
practical value because they depend on assuming that all 
the devices used for state preparation and measurements 
are trusted and well characterized. Certain sophisticated 
attack, known as the device attack (as opposed to the 
usually considered channel attack where Eve intercepts 
the transmitted states) can occur where, for example,  
in the BB84 scheme, the eavesdropper Eve may herself 
be the vendor who supplies states and devices to Alice 
and Bob. The cryptographic scenario in which one seeks 
to ensure security against device attacks is known as the 
device-independent (DI) scenario26,27. While BB84 is  
unconditionally secure against channel attacks, it is not 
secure in the DI scenario. On the other hand, the E91 
scheme is secure in the DI scenario and the use of entan-
glement, involving the violation of Bell’s inequality, is 
believed to be a necessary condition for DI security27. 
 Given the above background, we will now outline the 
basic ideas of the recent attempt12 made to ensure secu-
rity of the BB84 scheme in a DI scenario using a particu-
lar version of LGI proposed by Brukner et al.28 that is  
explained as follows. Let 

1 1
,  t tx x′  denote the measurement 

outcomes (± 1) at the instant t1 for the observables x, x′ 
respectively, while 

2 2
,  t ty y′  are the measurement  

results (± 1) at the instant t2 for the observables y, y′  
respectively. Then, as a consequence of the assumptions 
of realism and NIM, similar to the argument used in  
deriving LGI given by the inequality in eq. (1), the  
following algebraic identity can be argued to be holding 
good for the predetermined measurement outcomes: 

1 2 2 1 2 2
( ,  ) (  ) 2.t t t t t tx y y x y y′ ′ ′+ − = ±  After averaging over 

many runs of a series of measurements, the form of LGI 
relevant to our discussion is then given by 
 
 

1 2 1 2 1 2 1 2
| | 2,t t t t t t t tx y x y x y x y′ ′ ′ ′Λ ≡ 〈 + + − 〉 ≤  (15) 

 
where Alice (Bob) has the choice of measuring the ob-
servables x(y) or x′(y′) at the instants t1 and t2 respec-

tively, where t2 > t1. Note that, unlike the other usual 
forms of LGI, this particular form does not involve time 
evolution of the system in any external field, and may be 
regarded as the temporal version of the Bell-CHSH ine-
quality. Now, let us proceed to discuss how the above 
form of LGI can be invoked in the context of the BB84 
protocol for ensuring security against a specific device at-
tack known as the AGM attack27. 
 We recall that the BB84 protocol involves Alice’s 
transmission of states randomly prepared in the Pauli spin 
bases, X or Z. Bob makes random measurements in one of 
these two bases. Over a classical channel, Alice and Bob 
determine the cases where their bases match, discarding 
the rest. If Eve intercepts Alice’s transmission to acquire 
information, because of the information-vs-disturbance 
trade-off, she inevitably disrupts the BB84 statistics, 
which is then detected by Alice and Bob. This constitutes 
the essential security of BB84. Here it is implicitly as-
sumed that the devices used by Alice and Bob are trust-
worthy and that they are measuring the properties of the 
same particle. In a DI scenario, Eve can cheat by having 
them measure different particles by providing them the 
separable state27 given by 
 

 (12) (12) (34) (34)
00 11

1 ( ) ( ),
4Bρ + + −−= Π + Π ⊗ Π + ΠA  (16) 

 

where Πxy indicates projector to the state |x, y〉. The 
bracketed superscripts in the definition of ρAB are particle 
labels. Eve has so arranged the devices such that particles 
1 and 3 (2 and 4) are with Alice (Bob). When Alice and 
Bob measure Z(X), they measure particles 1 and 2 (3 and 
4). Notice that this reproduces the BB84 statistics, but  
after the public announcement of basis by Alice and Bob, 
Eve has the ‘hidden variable’ pertaining to the specific 
pair of particles Alice and Bob measure, whence she can 
find out their secret bit (0 or 1) with certainty without  
introducing any disturbance. 
 Here Eve’s cheating hinges on the fact that Alice and 
Bob believe their system to be a single system of dimen-
sion two (a qubit), while in fact they are accessing a sys-
tem of higher (= 16) dimensionality. Thus, it becomes 
crucial to rule out the so-called hidden dimensions of the 
Hilbert space describing the quantum systems used for 
QKD. For this purpose, a modified BB84 protocol has 
been proposed12 that involves a type of DI security test 
using the form of LGI given by the inequality in eq. (15). 
The key steps of this scheme (called the LG-BB84 proto-
col) are as follows: 
 (i) An additional basis 1/ 2( )M X Y± ≡ ±  is intro-
duced at Bob’s end, while Alice prepares the transmitted 
states randomly in X or Y basis. 
 (ii) Bob measures the incoming states randomly in X, Y 
or M± basis. Subsequently, Alice and Bob announce their 
preparation and measurement bases respectively. 
 (iii) If Alice and Bob’s bases of preparation and meas-
urement match, this results in a secret key. 
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 (iv) For the mismatch of the bases corresponding to 
Bob’s measurement in the X or Y basis, the measurement 
results are discarded, while for the measurement of Bob 
in the M± basis, the outcomes are used to test the viola-
tion of the form of LGI obtained from eq. (15) by replac-
ing x(x′) and y(y′) with X(Y) and M+(M−) respectively. 
Here Alice has a choice of preparing the state of her par-
ticle to be X or Y at the instant t1, while Bob measures at 
t2(t2 > t1) in either M+ or M− basis. 
 Eve’s intervention in terms of cheat states can be de-
tected in such a LG-BB84 scheme essentially because the 
LGI violating temporal correlation cannot be established 
by making measurements on two different particles. The 
LGI test thus serves to check whether Bob has received 
the same particle that Alice had transmitted. The relevant 
technical details have been discussed in Shenoy et al.12 
pertaining to an eavesdropping model, which is a combi-
nation of channel attack and device attack for which Eve 
mixes with the legitimate BB84 states a fraction of cheat 
states given by eq. (16), thereby demonstrating that the 
condition for security in the LG-BB84 protocol (i.e. when 
the error rate is less than a given tolerable limit) is equiv-
alent to the requirement that Alice–Bob correlation data 
violate LGI. The computed error rate as well as the LGI 
violation observed by Alice and Bob critically depend on 
the fraction of cheat states present in the device attack. 
 To put it in a nutshell, the proposed LG-BB84 scheme 
goes beyond the usual BB84 protocol in ensuring security 
in a typical DI scenario. Importantly, this is achieved 
without the need to make use of entanglement; this is in 
contrast to all the proposed QKD protocols to-date that 
have been considered in the DI scenario. 
 It needs to be mentioned that in the treatment given 
here, it has been assumed that the cheat states are not 
transmitted and that devices used are ‘memory-less’. The 
cryptographic scenario in which the former assumption 
does not hold good is known as the semi-device-
independent scenario29. If the latter assumption is not 
made, ‘memory attacks’30 are allowed in which devices 
procured from adversial suppliers may reveal information 
about inputs and outcomes of earlier runs through the 
public communication channel used in the subsequent 
runs. It should be worthwhile to investigate what form of 
LGI can be used to suitably extend the LG-BB84 scheme 
to those DI scenarios which involve general attacks such 
as the ones mentioned above. 

Concluding remarks 

One-type of study discussed in this article formulates and 
compares Wigner’s form of LGI with the usual LGI in 
terms of the robustness of their respective QM violations 
in the context of unsharp or non-ideal measurements 
which are treated by invoking a particular model of such 
measurements that has been widely discussed. Interest-

ingly, this study indicates the possibility of using the QM 
violation of LGI in order to empirically probe the appli-
cability of such a model of unsharp measurements with 
respect to any given non-ideal measurement set-up. 
 On the other hand, the other study discussed here seeks 
to bring out that LGI can be an important ingredient of 
quantum cryptography. Thus, this opens up a hitherto  
unexplored line of investigation concerning practical uses 
of LGI in the area of quantum information. 
 To summarize, the diversity of the studies reported in 
this article serves to underscore the potentiality of LGI as 
a powerful tool having varied ramifications, ranging from 
quantum foundations to quantum information. 
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