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Quantum ensembles form easily accessible architec-
tures for studying various phenomena in quantum 
physics, quantum information science and spectro-
scopy. Here we review some recent protocols for meas-
urements in quantum ensembles by utilizing ancillary 
systems. We also illustrate these protocols experimen-
tally via nuclear magnetic resonance techniques. In 
particular, we shall review noninvasive measurements, 
extracting expectation values of various operators, 
characterizations of quantum states and quantum 
processes, and finally quantum noise engineering. 
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Introduction 

UNLIKE the classical measurements, measurements in 
quantum physics affect the dynamics of the system. 
Moreover, often a particular experimental technique may 
offer only a limited set of observables which can be  
directly measured. The complete characterization of a 
quantum state or a quantum process requires, in general, 
a series of measurements of noncommuting observables – 
requiring repeated state preparation, and a large number 
of independent measurements. In this article, we review 
recent progresses in the measurement of quantum ensem-
bles and explain how to overcome the above challenges. 
Here we exploit the presence of an ancillary register in-
teracting with the system that is to be measured. In the 
following section we show how to realize noninvasive 
measurements using ancillary qubits. Extracting expecta-
tion values of various types of operators and related  
applications are described in the next section. We then 
describe an efficient protocol for complete quantum state 
characterization and quantum process tomography. We 
also narrate our experiments on noise engineering using 
ancillary qubits, and finally summarize all the topics. In 

all the sections, we illustrate the protocols experimentally 
using nuclear magnetic resonance (NMR) techniques. 

Noninvasive measurements 

A classical measurement can in principle be noninvasive 
in the sense it has no effect on the dynamics of the  
system. The same is not true in general for a quantum 
system, wherein the process of measurement itself may 
affect the dynamics of the system. However, as explained 
below, ancillary qubits can be utilized to realize certain 
quantum measurements without much disturbance, and 
hence extract probabilities or expectation values noninva-
sively to a great extent. Such measurements are often 
termed as noninvasive quantum measurements. 
 Consider the example of a single qubit initialized in 
state ρ (Figure 1 a) and a dichotomic observable Q with 
eigenvalues q ∈ {0, 1}. Suppose we need to extract the 
joint probabilities P(q1, q2) at two time instances, one be-
fore applying an unitary U and the other after applying U 
(Figure 1 a). To realize the first measurement noninva-
sively, we utilize an ancilla qubit (Figure 1 b), a CNOT 
gate, and a final two-qubit projective measurement in 
Q ⊗ Q basis. The CNOT operation copies the probabili-
ties of P(q1) onto the ancilla qubit without projecting the 
system state. Denoting the first qubit as the ancilla and  
 
 

 
 
Figure 1. Circuits describing invasive and non-invasive measure-
ments. The first measurement is invasive in (a). The same is replaced 
by a noninvasive measurement in (b). The final measurements are inva-
sive in both. 
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the second qubit as the system, the diagonal elements of 
the joint density operator ρf store the joint probabilities, 
i.e. P(q1, q2) = 〈q1q2|ρf|q1q2〉. The joint probabilities can 
thus be extracted by a final strong measurement or by a 
diagonal density matrix tomography1. Knee et al.2  
argued that since CNOT operator flips the ancilla qubit if 
the system qubit is in state |1〉, the circuit is not quite 
noninvasive. They also proposed a simple variation, in 
which P(0, 0) and P(0, 1) are measured using the CNOT 
operator, while P(1, 0) and P(1, 1) are measured using an 
anti-CNOT operator (which flips the ancilla only if the 
system qubit is in state |1〉). In this procedure, called ideal 
negative-result measurement (INRM), all the joint prob-
abilities are measured without flipping the ancilla qubit, 
and therefore is considered more noninvasive. In the  
following we describe the application of INRM in study-
ing the Leggett–Garg inequality (LGI). 
 LGI provides one way of distinguishing quantum be-
haviour from macrorealism. Macrorealism is based on the 
following assumptions: (i) the object remains in one or 
the other of many possible states at all times, and (ii) the 
measurements are noninvasive, i.e. they reveal the state 
of the object without disturbing the object or its future 
dynamics. LGI sets up macrorealistic bounds on linear 
combinations of two-time correlations of a dichotomic 
observable belonging to a single dynamical system3. 
Quantum systems are incompatible with these criteria and 
often violate bounds on correlations derived from them, 
thereby allowing us to distinguish the quantum behaviour 
from macrorealism. Violations of LGI by quantum  
systems have been investigated and demonstrated ex-
perimentally in various systems1,4–13. An entropic formu-
lation of LGI has also been introduced by Usha Devi et 
al.14 in terms of classical Shannon entropies associated 
with classical correlations. We had reported an experi-
mental demonstration of violation of entropic LGI 
(ELGI) in an ensemble of spin-1/2 nuclei using NMR 
techniques1. The simplest ELGI study involves three sets 
of two-time joint measurements of a dynamic observable 
belonging to a ‘system’ qubit at time instants (t1, t2), 
(t2, t3) and (t1, t3). The first measurement in each case 
must be noninvasive, and can be performed with the help 
of an ancilla qubit. 
 Usha Devi et al.17 have shown theoretically that for  
n-equidistant measurements on a spin-s system, the  
information deficit 
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where m ∈ {1, …, n}. The conditional probabilities in 
turn are calculated from the joint probabilities using 
Bayes theorem 
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We studied ELGI experimentally by treating the 13C and 
1H nuclear spins of 13CHCl3 (dissolved in CDCl3) as the 
system and the ancilla qubits respectively (Figure 2). The 
resonance offset of 13C was set to 100 Hz and that of 1H 
to 0 Hz (on resonant). The two spins have an indirect 
spin–spin coupling constant J = 209.2 Hz. The NMR  
experiments were carried out at an ambient temperature 
of 300 K on a 500 MHz Bruker NMR spectrometer.  
 As described in earlier, two sets of experiments were 
performed, one with CNOT and the other with anti-
CNOT1. The joint entropies were calculated using the  
experimental probabilities and the information deficit (in 
bits) was calculated using the expression D3 = 
2H(Q2|Q1) – H(Q3|Q1). The theoretical and experimental 
values of D3 for various rotation angles θ are shown in 
Figure 2. According to quantum theory, a maximum vio-
lation of D3 = –0.134 should occur at θ =π /4. The corre-
sponding experimental value, D3(π/4) = –0.114 ± 0.027, 
indicates a clear violation of ELGI. 
 Our other experiments involving noninvasive meas-
urements include: (i) illustrating the inconsistency of 
quantum marginal probabilities with classical probability 
theory1, and (ii) demonstrating that quantum joint prob-
abilities cannot be obtained from moment distribution15. 
 
 

 
 
Figure 2. Information deficit D3 versus θ obtained using INRM pro-
cedure. The mean experimental D3 values are shown as symbols. The 
curves indicate theoretical D3. The horizontal lines at D3 = 0 indicate 
the lower bounds of the macrorealism territories (figure reproduced 
from Athalye et al.1). 
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Extracting expectation values 

Often experimental set-ups allow direct detection of only 
a limited set of observables and to extract their expecta-
tion values. For example, in NMR only transverse magne-
tization operators (〈σx〉 and 〈σy〉) are directly observable 
via real and imaginary components of induced emf. Fig-
ure 3 describes the circuits for measuring expectation 
values of different types of operators using an ancilla 
qubit. Here the expectation values 〈σx〉 and 〈σy〉 of ancilla 
qubit reveal the expectation values of different types of 
operators acting on system qubit. Applications of such 
circuits are illustrated with the help of following experi-
ments: (a) estimation of Franck–Condon factors (FCFs), 
and (b) investigation of quantum contextuality (QC). 

Estimation of Franck–Condon factors 

The Franck–Condon principle states that the transition 
probability between two vibronic levels depends on the 
overlap between the respective vibrational wave func-
tions16. FCFs dictate the intensities of vibronic transi-
tions, and therefore their estimation is an important task 
in understanding absorption and fluorescence spectra and 
related phenomena such as photo-induced dissociations17. 
 We modelled the electronic ground and excited vibra-
tional levels as eigenstates of two harmonic potentials V1  
and V2 respectively. To simulate the one-dimensional 
 
 

 
 
Figure 3. Circuits for (a) NMR measurements of 〈σx〉 and 〈σy〉, (b) 
standard Moussa protocol for expectation values of Hermitian-unitary 
operator A6. Circuits for measuring expectation values of (c) a unitary 
operator U18, (d) a projector P18, (e) a diagonal Hermitian operator  
A and ( f ) joint expectation values of noncommuting unitaries U and 
V15. 

case, we choose the potentials V1 = x2/2 and V2 = 
(x – b)2/2 + ΔE, which are identical up to an overall dis-
placement b in position and/or in energy ΔE.  
 Thus the vibrational Hamiltonians for the two elec-
tronic states are 
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The FCF between |m〉 of the electronic ground state and 
|n〉 of the electronic excited state is given by16 
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where ψm(x), ψn′(x, b) are the corresponding position 
wave functions. 
 Estimation of FCF, fm,n′, is equivalent to measurement 
of expectation value of the projection Pm = |m〉〈m| after 
preparing the system in excited state |n′〉 since18 
 

 , | |m nf n m m n′ ′ ′= 〈 〉〈 〉  
    .m nP ′= 〈 〉  (5) 
 

Three spin-1/2 19F nuclei of iodotriuoroethylene (C2F3I) 
dissolved in acetone-D6 form a three-qubit NMR quan-
tum simulator (Figure 4). F1 qubit is chosen to be the  
 

 
 
Figure 4. Experimental Franck–Condon factors (FCFs) (circles) cor-
responding to four-level harmonic oscillators versus the displacement b 
(in atomic units). The simulated FCFs (dotted lines) for the four-level 
system and analytical FCFs (smooth lines) for infinite-level system are 
also shown for comparison. The dashed curve at the top corresponds to 
the normalization used. The thin vertical dashed lines at b = 2, 1 + 3  
mark the beginning of classically forbidden regions for f0,0′, f0,1′ respec-
tively. (Inset) Molecular structure and qubit labelling are shown (Fig-
ure reproduced from Joshi et al.18). 
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ancilla and the other two qubits are chosen representing 
the lowest four levels of the Harmonic oscillator18. The  
vibrational levels of the electronic ground state are en-
coded onto the spin states such that |0〉 = |↑↑〉, |1〉 = |↑↓〉, 
|2〉 = |↓↑〉 and |3〉 = |↓↓〉. The preparation of excited state 
|n′〉 can be achieved by first initializing the system in the 
corresponding state |n〉 of the electronic ground state and 
translating it in position from origin (x = 0) to the point 
x = b. This translation can be achieved by the unitary  
operator 
 
 UT (b) = e–ipb. (6) 
 
Finally the expectation values 〈Pm〉 were measured ex-
perimentally using the circuit shown in Figure 3 d, and 
then the FCFs fm,n were obtained18 using eq. (5). The re-
sults described in Figure 4 display a good correspondence 
with the theoretically expected values, indicating the suc-
cess of the experimental protocols. 

Investigation of QC in a harmonic oscillator 

QC states that the outcome of the measurement depends 
not only on the system and the observable but also on  
the context of the measurement, i.e., on other compatible 
observables which are measured along with19. Consider 
the following non-local hidden variable (NCHV) inequa-
lity20 
 
 I = 〈AB + BC + CD – AD〉 
 
  = 〈AB〉 + 〈BC〉 + 〈CD〉 – 〈AD〉 ≤ 2. (7) 
 
Su et al.21 theoretically studied QC of eigenstates of  
1D-QHO. They introduced two sets of pseudospin opera-
tors 
 
 , , ,x x y z y z y yσ σ σ σ σΓ = ⊗ Γ = ⊗ Γ = − ⊗1  
 
 , , ,x x z y y z x xσ σ σ σ σ′ ′ ′Γ = ⊗ Γ = ⊗ Γ = − ⊗1  (8) 

 
where 1 is a 2 × 2 identity matrix. Using these operators 
they defined the observables 
 
 , ( ),x x z x z xA B c s c sβ β β βσ σ σ′ ′= Γ = Γ + Γ = ⊗ −  
 
 , ( ),z x z x z xC D c s c sη η η ησ σ σ′ ′= Γ = Γ + Γ = ⊗ −  (9) 
 
where cβ = cos β, sβ = sin β, cη = cos η and sη = sin η. 
Here operators A, B, C, D are unitary and Hermitian, and 
accordingly have eigenvalues ±1, with (A, B), (B, C), 
(C, D) and (D, A) forming compatible pairs. Su et al.53 
have shown that 
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where QM

| QHOl〉I  is the expression on the LHS of inequality 
in eq. (7), l = 0, 1, 2 and 3, and |0〉QHO, |1〉QHO, |2〉QHO and 
|3〉QHO are the first four energy eigenstates of 1D-QHO.  
 We encoded the first four energy eigenstates of  
1D-QHO onto the four Zeeman eigenstates of a pair of 
spin-1/2 nuclei. The circuit shown in Figure 3 f was used 
to extract the expectation value of observables (AB, BC, 
CD and DA) in a joint measurement. We used three 19F 
nuclear spins of trifluoroiodoethylene dissolved in ace-
tone-D6 (inset, Figure 4) as the three-qubit register. The 
first spin, F1, was used as an ancilla qubit and other spins, 
F2 and F3, as the system qubits. The results are shown in 
Figure 5. The maximum theoretical violation22 is 2 2  = 
2.82. The experimental value of maximum violation for 
I0, I1, I2 and I3 are 2.40 ± 0.017, 2.45 ± 0.025, 2.39 ± 
0.016 and 2.42 ± 0.026 respectively22. There is a clear 
violation of the classical bound. Reduced violation than 
the theoretical value is due to T2 decay and inhomogeneity 
in radio frequency (RF) pulses. 

Ancilla-assisted quantum state tomography 

In experimental quantum information studies, quantum 
state tomography (QST) is an important tool that is rou-
tinely used to characterize an instantaneous quantum 
state20. QST can be performed by a series of measure-
ments of noncommuting observables which together en-
ables one to reconstruct the complete complex density 
matrix20. In the standard method, the required number of 
independent experiments grows exponentially with the 
number of input qubits23,24. Anil Kumar and co-workers 
have illustrated QST using a single two-dimensional  
 
 

 
 
Figure 5. I0, I1, I2, and I3 represent evaluation of inequality in eq. (7) 
for eigenstates |0〉QHO, |1〉QHO, |2〉QHO and |3〉QHO respectively22. The 
curved surface represents theoretical values, and the points are experimen-
tal values. Flat planes at I = 2 and I = –2 represent classical bounds. 
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NMR spectrum25. Later Nieuwenhuizen and co-workers 
showed how to reduce the number of independent ex-
periments in the presence of an ancilla register26. We re-
fer to this method as ancilla-assisted QST (AAQST) and 
experimentally demonstrated it using NMR systems27,28. 
AAQST also allows single-shot mapping of density ma-
trix which not only reduces the experimental time, but 
also alleviates the need to prepare the target state repeat-
edly28. 
 To see how AAQST works, consider an input register 
of n-qubits associated with an ancilla register consisting 
of n̂  qubits. The dimension of the combined system of 

ˆn n n= +  qubits is ˆ ˆ ,N NN=  where ˆˆ 2nN = . A comple-
tely resolved NMR spectrum yields nN  real parameters. 
We assume that the ancilla register begins with the 
maximally mixed initial state, with no contribution to  
the spectral lines from it. The deviation density matrix  
of the combined system is ˆ/ .Nρ ρ= ⊗ 1  To perform 
AAQST, we apply a non-local unitary of the form 
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Here Uka is the kth unitary on the input register dependent 
on the ancilla state |a〉 and V is the local unitary on the 
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Intensity of NMR spectrum is proportional to the observ-
able 
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The spectrum of the combined system yields nN  linear 
equations. The minimum number of independent experi-
ments needed is now 2( /( ))O N nN . Choosing ,N N  
AAQST needs fewer than O(N/n) experiments required in 
the standard QST. In particular, when nN  ≥ N2, a single 
optimized unitary suffices for QST. Figure 6 illustrates 
the minimum number (K) of experiments required for 
various sizes of input and ancilla registers. As illustrated, 
QST can be achieved with only one experiment, if an an-
cilla of sufficient size is provided along with28. 
 To demonstrate this procedure experimentally, we used 
three 19F nuclei and two 1H nuclei of 1-bromo-2,4,5-
trifluorobenzene (BTFBz) partially oriented in a liquid 
crystal namely N-(4-methoxybenzaldehyde)-4-butylani-
line (MBBA; Figure 7)28. We chose the three 19F nuclei 

forming the input register and two 1H nuclei forming the  
ancilla register. 
 
 

 
 
Figure 6. Minimum number of independent experiments required for 
quantum state tomography (QST) (with zero ancilla) and ancilla-
assisted QST (AAQST) (figure reproduced from Shukla et al.28). 
 
 
 

 
 
Figure 7. AAQST results for the state described in the text28. The ref-
erence spectrum is in the top trace. The real (middle trace) and the 
imaginary spectra (bottom trace) are obtained in a single-shot AAQST 
experiment. The bar plots correspond to theoretically expected density 
matrices (top row) and those obtained from AAQST experiments (bot-
tom row). The molecular structure and the labelling scheme of  
1-bromo-2,4,5-trifluorobenzene (BTFBz) is shown in the centre (figure 
reproduced from Shukla et al.28). 
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 Figure 7 shows the experimental results corresponding 
to a particular density matrix obtained by applying uni-
tary 
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with τ0 = 2.5 ms, on thermal equilibrium state. The real 
and imaginary parts of the reconstructed density matrix 
along with the theoretically expected matrices are shown 
below the spectra in Figure 7. Fidelity of the experimen-
tal state with the theoretical state was 0.95. The entire 
three-qubit density matrix with 63 unknowns was esti-
mated by a single NMR experiment28. 

Single-scan process tomography 

Often one needs to characterize the overall process acting 
on a quantum system. Such a characterization, achieved 
by a procedure called quantum process tomography 
(QPT), is crucial in designing fault-tolerant quantum 
processors29,30. QPT is realized by considering the quan-
tum process as a map from a complete set of initial states 
to final states, and experimentally characterizing each of 
the final states using QST23. Since QST by itself involves 
repeated preparations of a target state, QPT in general re-
quires a number of independent experiments. Therefore, 
the total number of independent measurements required 
for QPT increases exponentially with the size of the sys-
tem undergoing the process. 
 The physical realization of QPT has been demonstrated 
on various experimental set-ups31–45. Several developments 
in the methodology of QPT have also been reported46,47. 
In particular, it has been shown that ancilla-assisted proc-
ess tomography (AAPT) can characterize a process with a 
single QST31,36,48,49. By combining AAQST and AAPT, 
we have shown that the entire QPT can be carried out 
with a single ensemble measurement50. We refer to this 
procedure as ‘single-scan quantum process tomography 
(SSPT)’50. 
 In the normal QPT procedure, the outcome of the proc-
ess ε is expanded in a complete basis of linearly inde-
pendent elements {ρ1, ρ2, …, ρN2} as well as using 
operator-sum representation, i.e. 
 

 †( ) .j jk k i i
k i

E Eε ρ λ ρ ρ= =∑ ∑  (13) 

 
The complex coefficients λjk can be extracted using QST. 
We can utilize a fixed set of basis operators { },mE  and 
express i m im mE e E= ∑  so that 
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where *= .mn i im ine eχ ∑  The χ matrix completely character-
izes the process ε. Since the set {ρk} forms a complete 
basis, it is also possible to express 
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k
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where mn

jkβ  can be calculated theoretically. Using eqs 
(13)–(15) and using the linear independence of {ρk}, we 
obtain 
 
 βχ = λ,  (16) 
 
from which χ matrix can be extracted by standard meth-
ods in linear algebra. 
 A comparison of QPT, AAPT and SSPT procedures  
for a single qubit process is presented in Figure 8  
(ref. 50). 
 Estimates of the number of measurements for a small 
number of qubits shown in the first column of Table 1  
illustrate the exponential increase of MQPT with n. 
 The experimental demonstration of a single-qubit 
SSPT was carried out using iodotrifluoroethylene  
 
 

 
 
Figure 8. Illustrating (a) single-qubit quantum process tomography 
(QPT) requiring a total of eight NMR scans, (b) ancilla assisted process 
tomography (AAPT) requiring two NMR scans, and (c) single-scan 
quantum process tomography (SSPT) requiring a single-scan NMR  
experiment50. In each case, dotted lines are used to indicate the single-
quantum elements of the density matrix which are directly observable. 
Other elements are observed by converting them to observable single-
quantum coherences by using certain unitary operations in a subsequent 
scan(s) (figure reproduced from Shukla et al.50). 
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dissolved in acetone-D6 as a three-qubit system (Figure 
9)50. The experimentally obtained χ matrices for certain 
quantum processes using the single-scan procedure are 
shown in Figure 9. 

Ancilla-assisted noise engineering 

Preserving coherence is an important aspect to realize 
quantum processors, and hence various techniques have 
been developed to suppress decoherence. They include 
dynamical decoupling (DD) techniques51–54, quantum  
error correction55, adiabatic quantum computation56, and 
use of decoherence-free subspaces57. Earlier Teklemariam 
et al. introduced artificial decoherence by achieving irre-
versible phase damping via constant perturbation of the 
environment qubits (by random classical fields), thus 
mimicking a large dimensional environmental bath. Such 
experiments provide insights about decoherence proc-
esses and may pave the way for improving decoherence 
suppression techniques. 
 
Table 1. Comparison of number of scans and number of ancilla  
  qubits (in parenthesis) required for n-qubit QPT, AAPT and SSPT 

n  MQPT  MAAPT  (nA) MSSPT  (nA, nB) 
 

1  8  2 (1)  1  (1, 1) 
2  32 4 (2)  1  (2, 2) 
3  192  11 (3)  1  (3, 3) 
4  1024  32 (4)  1  (4, 5) 
5  7168  103 (5)  1  (5, 6) 

 
 

 
 
Figure 9. The barplots showing experimental χ-matrices for various 
quantum processes obtained using SSPT. In each case, the left and right 
barplots correspond to the real and imaginary parts respectively, and 
the fidelities are indicated in parenthesis (figure reproduced from 
Shukla et al.50). 

 In our work we simulated such a decoherence process 
on a NMR simulator with two qubits, where one acts as 
the system and the other as environment58. We then sub-
jected the system qubit to certain DD sequences and ob-
served their competition with the engineered decoherence 
through noise spectroscopy. 
 The two-qubit register was initially in the product 
state, ρ(0) = ρs(0) ⊗ ρe(0). Here ρs(0) is the system state 
and ρe(0) is the environment state. We chose 1H and 13C 
nuclear spins in 13C-labelled chloroform (13CHCl3 dis-
solved in CDCl3) as the system and environment qubits 
respectively. The NMR Hamiltonian is 
 

 s e s e
s e ,

2z z z z
Jπ ν σ ν σ σ σ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
H  (17) 

 
where νs and νe are the resonant frequencies of the sys-
tem and the environment qubits respectively, J the cou-
pling strength between the two, and s

zσ , e
zσ  are the Pauli 

operators. In a total duration T, the propagator U = e–iHT 
entangles the system qubit with the environment qubit via 
the interaction J. We engineered decoherence by a series 
of RF kicks of arbitrary angles ε ∈ [–θ, θ] on the envi-
ronment qubit. These kicks induced arti-ficial decoher-
ence on the system qubit. Teklemariam et al.17 proved 
that induced decoherence of the system qubit depends on 
the kick-rate Γ, range of kick-angles θ, and coupling 
strength J59. Their model predicted that for small kick-
angles ε and for lower kick rates Γ, decoherence rate 1/T2 
increases linearly with Γ. After a certain value of Γ, 1/T2 
saturates, and then it decreases exponentially with Γ. 
 Our experimental results for ε ∈ [0°, 1°] and Γ = 
25 kicks/ms are shown in Figure 10 (indicated by stars). 
For comparison we have also shown the decay of mag-
netization without kicks (indicated by filled circles).  
 
 

 
 
Figure 10. Logarithm of transverse magnetization log(Mx) as a func-
tion of time under different pulse sequences as indicated in the legend. 
Here τ = 3.2 ms, Γ = 25 kicks/ms, and ε ∈ [0°, 1°]. The T2 values for 
various pulse sequences are shown in the legend (figure reproduced 
from Hegde and Mahesh58). 
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Evidently, the kicks on the environment have introduced 
additional decoherence thereby increasing the decay of 
system-coherence58. 
 Dynamical decoupling attempts to inhibit decoherence 
of the system by rapid modulation of the system state so 
as to cancel the system–environment joint evolutions. 
The two standard DD sequences are: (i) CPMG51 and (ii) 
UDD52. CPMG consists of a series of equidistant π pulses 
applied in the system qubits. In an N-pulse UDD of cycle 
time tc, the time instant tj of the jth π-pulse is given by  
 

 2sin .
2( 1)j c

jt t
N
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The results of the experiments for tc = 22.4 ms and with 
different kick-parameters are shown in Figure 10. The 
competition between kicks-induced decoherence and DD 
sequences can be readily observed58. 
 Noise spectroscopy provides information about noise 
spectral density, which is the frequency distribution of 
noise and is helpful in not only understanding the per-
formance of standard DD sequences, but also in optimiz-
ing them60–62. In the limit of a large number of π pulses, 
the CPMG filter function resembles a delta peak at ω, and 
samples this particular spectral frequency. The amplitude 
of the noise S(ω) can be determined using the relation63  
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Thus by measuring T2(ω) for a range of ω = π /τ values, 
we can scan the profile of S(ω). 
 

 
 
Figure 11. Experimental spectral density profiles with different kick-
angles (as indicated in the legend) and with kick-rates of 50 kicks/ms 
(top trace) and 25 kicks/ms (bottom trace). In both the traces, experi-
mental spectral density profile without kicks is also shown for compari-
son. The smooth lines correspond to fits with one or two Gaussians 
(figure reproduced from Hegde and Mahesh58). 

 The experimental spectral density profiles of only natu-
ral decoherence (lowest curve in each sub-plot), and with 
kicks of different kick-parameters are shown in Figure 11 
(ref. 24). Clearly, the effect of kicks is to increase the 
area under the spectral density profiles and thereby lead-
ing to faster decoherence. Moreover, for a given kick-rate 
Γ, larger the range of kick-angles, higher is the spectral 
density-profile58. 

Summary 

In this article, we have described several recent protocols 
for efficient measurements on quantum systems, and il-
lustrated their NMR implementations. 
 We have described ancilla-assisted noninvasive meas-
urements, where the measurement result of an intermedi-
ate observable was temporarily stored in an ancilla qubit. 
A final joint-measurement of the system–ancilla register 
revealed the joint probabilities in a noninvasive way. We 
also showed the application of this technique in studying 
entropic LGI1. 
 Then, we described extracting expectation values of 
various types of operators. Applications of these methods 
are illustrated in the estimation of Franck–Condon coeffi-
cients and in the investigation of quantum contextua-
lity18,22. 
 We have also described efficient ways to characterize 
quantum states and quantum processes by exploiting  
ancilla qubits. We have illustrated single-scan quantum 
state tomography as well as single-scan quantum process 
tomography using NMR systems. These techniques not 
only alleviate the need of repeated measurements, but 
also allow the study of random states or dynamic pro-
cesses28,50. 
 Finally we have described ancilla-assisted noise engi-
neering, where random fields applied to the ancilla qubits 
cause controllable decoherence on the system qubits. We 
have illustrated this phenomena using a two-qubit NMR 
system, and studied the engineered decoherence by mea-
suring noise spectrum58. 
 Although we have used NMR techniques to demonstrate 
the above protocols experimentally, these procedures are 
quite general in nature, and can be easily adopted to other 
experimental techniques as well. 
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