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We discuss a recently proposed class of incompatibil-
ity measures for quantum measurements, which is 
based on quantifying the effect of measurements of 
one observable on the statistics of the outcome of an-
other. We summarize the properties of this class of 
measures, and present a tight upper bound for the in-
compatibility of any set of projective measurements in 
finite dimensions. We also discuss non-projective 
measurements, and give a non-trivial upper bound on 
the mutual incompatibility of a pair of Lüders instru-
ments. Using the example of incompatible observables 
that commute on a subspace, we elucidate how this 
class of measures goes beyond uncertainty relations in 
quantifying the mutual incompatibility of quantum 
measurements. 
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Introduction 

THE existence of incompatible observables in quantum 
theory is crucial to realizing several quantum information 
theoretic tasks, including most quantum cryptographic 
protocols. Quantifying the mutual incompatibility of a set 
of quantum measurements is therefore a question of some 
interest, both in quantum foundations and in quantum  
information theory. 
 One approach for quantifying the incompatibility of a 
set of quantum observables is based on uncertainty rela-
tions. In particular, lower bounds on the average uncer-
tainties associated with a set of observables, obtained in 
the form of variance-based1 or entropic2 uncertainty rela-
tions, are often thought to provide an appropriate measure 
of incompatibility. However, this approach does not yield 
an incompatibility measure valid for all sets of observ-
ables, since the lower bound on the average uncertainty 
vanishes even when the observables in question are not 
compatible, but share a single common eigenstate. 
 This has motivated the study of operational measures 
of incompatibility that go beyond uncertainty relations. 
One such measure based on the idea of accessible fidel-
ity3, for example, quantifies the incompatibility of a set of 

observables as manifest in the nonorthogonality of their 
eigenstates4. 
 In this article we discuss a different approach for quan-
tifying incompatibility, based on estimating the change 
due to a measurement of one observable on the statistics 
of the outcomes of another5. If a pair of observables A 
and B does not commute, they are not jointly measurable. 
This implies that there exist states for which a measurement 
of A disturbs the system in such a way that a subsequent 
measurement of B yields probabilities that are different 
from those associated with a measurement of B alone. 
The distance between these two probability distributions – 
one resulting from a B-measurement following an A-measu-
rement and the other resulting from a measurement of B 
alone – is indeed a measure of how the measurement of A 
affects the statistics of the outcomes of a measurement of 
B, for each given state. It was proposed that maximizing 
this over all the states of the system yields a measure of 
incompatibility that is naturally state-independent5. 
 By choosing different measures of distance between 
probability distributions, a class of incompatibility meas-
ures is obtained. These measures indeed go beyond un-
certainty relations in quantifying incompatibility – they 
always yield a strictly positive value even if the non-
commuting observables in question share a common  
eigenstate, unlike uncertainty relations which give a zero 
bound in such cases. In other words, the distance-based 
incompatibility measures vanish iff the observables in 
question commute and are strictly non-zero otherwise. 
 The article is organized as follows. First, we briefly  
review the earlier approach of using uncertainty relations 
to quantify incompatibility in quantum theory. The dis-
tance-based incompatibility measures are then defined 
and their basic properties summarized. Tight upper 
bounds on the incompatibility measures are presented next. 
Exact expressions for the mutual incompatibility of a pair 
of qubit observables and for a specific example of incom-
patible observables that commute on a subspace are also 
discussed. 

Quantifying incompatibility via uncertainty  
relations 

The first quantitative statement on incompatibility of 
non-commuting observables was formulated in terms of 
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variances for canonically conjugate variables1. In particu-
lar, for a pair of observables A and B, the Robertson–
Schrödinger relation gives, 
 

 | |
1( )( ) | | [ , ] | |,
2

A B A Bψ ψ ψ ψ〉 〉Δ Δ ≥ 〈 〉  

 
where 2 2

| | | | |X X Xψ ψ ψ ψ ψ〉Δ = 〈 〉 − 〈 〉  (X = A, B) is 
the variance associated with a measurement of X on dis-
tinct yet identically prepared copies of the state |ψ〉. Sub-
sequently, it was proposed to quantify uncertainty using 
entropic quantities2. 
 For an observable A

i i iA a P= ∑  measured on state ρ, 
the probability distribution Pr ~ { ( )}A Ap iρ ρ  over the out-
comes of the measurement is 
 
 Pr : ( ) tr[ ].A A A

ip i Pρ ρ ρ=  
 
For a set of measurements {A1, A2, ..., AL} with a finite 
set of outcomes, an entropic uncertainty relation (EUR) is 
a lower bound of the form 
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where ( ; ) ({ ( )})jA

jS A S p iρρ =  is a valid entropic function 
of the probability distribution Pr .jA

ρ  The lower bound 
cS({Aj}) is often thought of as a measure of the mutual in-
compatibility of the set of measurements {A1, A2, ..., AL}. 
 There always exists a state ρ such that S(Aj; ρ) = 0 for 
one of the measurements Aj, namely, an eigenstate of Aj. 
Therefore, for a set of L observables in a d-dimensional 
space, the uncertainty lower bound satisfies 
 

 11 log ({ }) 0.S jd c A
L

⎛ ⎞− ≥ ≥⎜ ⎟
⎝ ⎠

 

 
If 1({ }) (1 ) log ,S j Lc A d= −  the set {Aj} is maximally in-
compatible, implying a maximally strong uncertainty re-
lation. However, cS({Aj}) is not a satisfactory measure of 
incompatibility for all sets of incompatible observables: it 
can attain a trivial (zero) value even when observables do 
not commute, whenever they have a single common  
eigenvector. 

Distance-based incompatibility measures 

An alternative, operational approach to quantifying  
incompatibility is based on estimating the change due to 
a measurement of one observable on the statistics of the 
outcomes of another which is measured subsequently. For 
a pair of observables A, B, we may consider the following 
two probability distributions. Let Pr ~ { ( )}B Bp jρ ρ  denote 

the probability distribution over the outcomes of a  
measurement of observable B in state ρ, and 
Pr ~ { ( )}A B A Bq jρ ρ

→ →  denote the probability distribution 
over the outcomes of a B measurement when it follows a 
measurement of A on the same state ρ. If A and B com-
mute, then the two distributions are the same on all 
states. 
 However, if A, B do not commute, there exist states for 
which a measurement of A disturbs the system, so that 
Pr A B

ρ
→  and PrB

ρ  are different. Maximizing the distance 
between Pr A B

ρ
→  and PrB

ρ  over all the states of the system 
gives a measure of incompatibility that is naturally state-
independent. 
 We consider the following well-known measures of 
distance6 between a pair of discrete probability distribu-
tions P ~ {pi} and Q ~ {qj}: 
 
 (i) Variational or L1-distance: 
 

 1
1( , ) | | .
2 i i

i

D P Q p q≡ −∑  

 
 (ii) Fidelity-based distance: 
 
 DF (P, Q) ≡ 1 – (F(P, Q))2, 
 
where F(P, Q) (fidelity or Bhattacharyya distance) is de-
fined as F(P, Q) ≡ .i i ip q∑  
 
 (iii) Chebyshev or L∞-distance: 
 
 ( , ) max | | .i ii

D P Q p q∞ ≡ −  
 

All three measures satisfy 
 
 0 ( , ) 1, ( {1, , }),D p Q Fα α≤ ≤ ∈ ∞  
 
with Dα(P, Q) = 0 if and only if P and Q are identical. 
 Corresponding to the distance measures, we are natu-
rally led to the following measures of incompatibility of 
observable A with B5 
 
 (i) L1-distance based incompatibility measure: 
 
 1 1( ) sup (Pr , Pr ).A B BA B D ρ ρ

ρ

→→ =Q  

 
 (ii) Fidelity-based incompatibility measure: 
 
 2( ) sup[1 (Pr , Pr )].A B B

F A B F ρ ρ
ρ

→→ = −Q  

 
 (iii) L∞-distance based incompatibility measure: 
 
 ( ) sup (Pr , Pr ).A B BA B D ρ ρ

ρ

→
∞ ∞→ =Q  
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All three incompatibility measures satisfy 
 
 0 ( ) 1, {1, , },A B Fα α≤ → ≤ ∈ ∞Q  
 
where the lower bound Qα(A → B) = 0 is attained iff A 
and B commute. The measures defined are not symmetric 
in general: there exist observables A, B, for which, 
Qα(A → B) ≠ Qα(B → A). The incompatibility Qα(A, B) 
of the pair of observables A, B, is therefore defined as 
 

 
( ) ( )

( , ) .
4

A B B A
A B α α

α
→ + →

≡
Q Q

Q  

 
This ensures that Qα(A, B) is large when both Qα(A → B) 
and Qα(B → A) are large, and vice-versa. The incompati-
bility of a set of N observables {A1, A2, ..., AN} is there-
fore given by 
 

 1 2 2
,

1( , ,..., ) ( ).N i j
i j

A A A A A
Nα α≡ →∑Q Q  

A relation between incompatibility and disturbance 

For any observable ~ { },A
iA P  the post-measurement 

transformation of state ρ after a measurement of A is  
described by a CPTP map EA, given by 
 

 ( ) .A A A
i i

i

P Pρ ρ=∑E  

 
The distance between the states EA(ρ) and ρ is a valid 
measure of the disturbance caused to state ρ by a meas-
urement of A7,8. 
 The maximal disturbance due to the measurement of A 
can therefore be estimated by either of the following 
measures 
 

 max
1

1( ) sup tr | ( ) |,
2

AA
ρ

ρ ρ≡ −D E  

 max (min) 2 2( ) 1 [ ( )] 1 [inf ( ( ), )] .A
F A F A F

ρ
ρ ρ≡ − = −D E  

 
It has been shown that the incompatibility of A with B, as 
quantified by the measures {Qα(A → B)}, is always up-
per bounded by the maximal disturbance due to observ-
able A5. 
 
Lemma 1. For a pair of observables A and B with 
purely discrete spectra, the mutual incompatibility 
Qα(A → B) (α ∈ {1, F, ∞}) is bounded above by the 
maximal disturbance due to the measurement of A. That 
is 

 (max)
1( ) ( ), 1, ,A B D Aα α→ ≤ = ∞Q  

 
 (max) (min) 2( ) ( ) 1 [ ( )] .F FA B D A F A→ ≤ = −Q  
 
The above relations between incompatibility and distur-
bance are a direct consequence of the following relations 
between the quantum distance measures and their classi-
cal counterparts7 
 
 1 1~{ }

( , ) max (Pr ,Pr ),
iM

D D ρ σρ σ = M M

M
 

 
 ( , ) min (Pr ,Pr ),F F ρ σρ σ = M M

M
 

 
where the optimization is over positive operator valued 
measures (POVMs). 

Evaluating the incompatibility measures {Qα} 

Using the relation stated in Lemma 1, we may obtain upper 
bounds on the mutual incompatibility of any pair of observ-
ables. We state below the upper bound obtained for the 
fidelity-based incompatibility measure QF(A, B)5. 
 
Theorem 2. For a pair of observables A and B in a  
d-dimensional space, the mutual incompatibility of A and 
B is bounded by 
 

 1 1( , ) 1 .
2F A B

d
⎛ ⎞≤ −⎜ ⎟
⎝ ⎠

Q  

 
The upper bound is attained iff A and B are non-
degenerate observables associated with mutually unbi-
ased bases. 
 
Recall that a pair of non-degenerate observables A ~{|ai〉} 
and B ~{|bj〉} is said to be mutually unbiased iff |〈ai|bj〉|2 = 
1/d, ≤i, j. 
 Theorem 2 has the following important corollary: the  
average pairwise mutual incompatibility of a set of N  
observables {A1, A2, ..., AN} in a d-dimensional space is 
bounded by 
 

 1 2
1 1( , ,..., ) 1 1 .F NA A A
N d

⎛ ⎞⎛ ⎞≤ − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

Q  

 
The bound is attained iff the observables are non-
degenerate and associated with mutually unbiased bases. 
 It is easy to see that the measures Q1(A → B) and 
Q∞(A → B) also attain the same value for a pair of mutu-
ally unbiased observables 
 

 1
1( ) ( ) 1 .A B A B
d∞→ = → = −Q Q  
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It would therefore seem reasonable to conjecture that 
both Q1(A, B) and Q∞(A, B) are also bounded above by 
1 1
2 (1 ),d−  for any pair of observables in a d-dimensional 

space. 

Incompatibility of qubit observables 

Evaluating the incompatibility of a general set of observ-
ables involves solving a hard optimization problem. 
However, all three measures Q1, Q∞ and QF can be 
evaluated exactly for a pair of qubit observables9. Con-
sider a pair of observables A, B on a two-dimensional 
space with corresponding Bloch sphere representations 
A = α1I + α2 a σ⋅  and B = β1I + β2 ,b σ⋅  where 3,a b ∈  
are unit vectors and {αi, βi} ∈ R. Using this parameteri-
zation, it is possible to show that 
 

 2
1

1( ) ( ) 1 ( ) ,
2

A B A B a b∞ → = → = − ⋅Q Q  
 

       21( ) (1 ( ) ).
2F A B a b→ = − ⋅Q  (1) 

 
As expected, all three measures coincide for the limiting 
cases. That is, (a) when A and B commute, 2( ) 1a b⋅ =  and 
all three measures give 0, and, (b) when A and B are mu-
tually unbiased, 0,a b⋅ =  and Q1(A → B) = Q∞(A → B) = 
QF (A → B) = 1/2. For any other pair of qubit observ-
ables, the fidelity-based measure QF (A, B) is in general 
smaller than Q1(A, B) and Q∞(A, B). 

Non-projective measurements: incompatibility of a 
pair of Lüders instruments 

The measures of incompatibility defined above can also 
be extended to the case of general quantum measure-
ments, beyond the class of projective measurements. 
Consider the class of POVMs A with discrete outcomes 
described by a collection of positive operators 
{0 ≤ Ai ≤ I} satisfying ∑iAi = I. One simple implementa-
tion of a measurement of a POVM A is given by the  
so-called Lüders instrument ,AΦL  in which the post-
measurement state after a measurement of observable A 
on state ρ is given by10 
 

 1/ 2 1/ 2

1

( ) .i i
i

A Aρ ρ
=

Φ =∑A
L  

 
The incompatibility of a pair of POVMs A and B, with 
finite number of outcomes NA and NB, and corresponding 
Lüders channels 
 

 1/ 2 1/ 2 1/ 2 1/ 2

1 1

( ) ; ( ) ,
A BN N

i i j j
i j

A A B Bρ ρ ρ ρ
= =

Φ = Φ =∑ ∑A B
L L  

can be shown to be bounded by5 
 

 1( ) 1 .F
AN

Φ →Φ ≤ −A B
L LQ  

Observables that commute on a subspace 

Finally, we consider an example which shows clearly that 
the class of measures {Qα} goes beyond uncertainty rela-
tions in quantifying incompatibility. Consider a pair of 
non-degenerate observables A, B that commutes over a 
subspace of dimension dc, such that, A, B share dc  
common eigenvectors, and are mutually unbiased in the  
(d – dc) dimensional subspace where they do not com-
mute. 
 In other words, the eigenstates {|ai〉} and {|bj〉} of A 
and B satisfy 
 
 | | , 1,..., ,i i ca b i d〉 = 〉 ∀ =  
 
 

 
0 for ,

| | | 0 for , .
1 for ,

c c

i j c c

c
c

i d j d
a b i d j d

i j d
d d

≤ >
〈 〉 = > ≤

>
−

 

 
The mutual incompatibility of A and B is then given by, 
 

 1 1( , ) 1 .
2F

c
A B

d d
⎛ ⎞

= −⎜ ⎟−⎝ ⎠
Q  

 
Clearly, QF(A, B) > 0 for 0 ≤ dc < d − 1. On the other 
hand, the entropic uncertainty lower bound vanishes for 
such a pair of observables, for any dc > 0. Interestingly, 
even optimal entropic uncertainty relations formulated for 
the successive measurement scenario yield a trivial lower 
bound of zero, when the observables in question share a 
single eigenvector11. 

Summary 

We have summarized a novel approach to quantify the 
mutual incompatibility of quantum observables, in terms 
of the change caused by a measurement of one observ-
able on the statistics of the outcomes of a subsequent 
measurement of the other observable. The class of meas-
ures discussed here is indeed distinct from the incompatibil-
ity measure defined in Bandyopadhyay and Mandayam4 
based on the accessible fidelity, though all measures co-
incide for the limiting cases of commuting and mutually 
unbiased observables. The operational setting motivating 
these measures is a commonly encountered one in the 
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context of quantum cryptography, and it is the subject of 
ongoing work to see if these measures can play a direct 
role in analysing the security of quantum cryptographic 
protocols. While the incompatibility measures {Qα} are 
hard to evaluate in general, recent investigations show 
that non-trivial lower bounds can be obtained9, which are 
efficiently computable using convex optimization tech-
niques12. 
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