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We measure the state of a superconducting quantum 
bit (qubit) coupled to a microwave cavity by scattering 
a microwave signal from the cavity. The scattered sig-
nal is amplified using a low-noise Josephson paramet-
ric amplifier. We carried out measurements to infer 
the coherence properties of the qubit. In the strong 
measurement regime, we observe quantum jumps be-
tween the qubit states in real time, while we observe 
stochastic quantum trajectories in the weak measure-
ment regime. The coherence times and measurement 
fidelity obtained are sufficient for implementing quan-
tum error correction. 
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Introduction 

THE past three decades have seen a tremendous rise in 
experiments probing the quantum nature of various 
atomic, photonic and solid-state systems. Though primarily 
driven by the promise of powerful quantum machines1, 
these experiments are forcing us to revisit some of the 
very fundamental ideas and implications of quantum me-
chanics. The thought experiments put forth by the found-
ing fathers of quantum physics have actually been 
implemented in the laboratory and have validated the of-
ten strange outcomes predicted earlier. A striking exam-
ple is that of experiments probing single quantum degrees 
of freedom in contrast to earlier experiments which only 
looked at ensemble behaviour. Another example is the 
measurement process by which one obtains information 
about the state of the quantum system. The textbook pic-
ture is that of an instantaneous collapse of the wavefunc-
tion to an eigenstate of the observable. However, since 
any real experiment involving a quantum measurement 
takes a finite amount of time, the notion of weak meas-
urements, where information about the quantum state is 
obtained slowly was introduced2. It is then natural to talk 
about the evolution of the quantum state during such a 
measurement. This problem is addressed in quantum  
optics using the notion of quantum trajectories3,4 and has 

been discussed more recently in the context of solid-state 
systems using the quantum Bayesian formalism5. In this 
picture, the quantum system undergoing measurement 
evolves slowly due to the back-action of the detector,  
until it ends up in one of the eigenstates of the measured 
observable. So it can be said that the collapse is gradual 
and the state evolution can be inferred from the detector 
output. It is now routinely possible to observe these  
effects in an experiment. 
 Superconducting circuits operating at millikelvin tem-
peratures have emerged as a leading candidate for build-
ing quantum bits for a scalable architecture for quantum 
computing6. These circuits are fabricated using conven-
tional nanolithographic techniques, and the control and 
measurement is implemented using microwave frequency 
signals. Over the last 15 years or so, tremendous progress 
has been made on various fronts, including coherence 
times, high-fidelity measurements and precise control. 
Apart from applications in quantum computing, super-
conducting circuits have been used in experiments in mi-
crowave quantum optics7 with the ability to explore 
regimes not accessible in conventional quantum optics. 
 In this article, we will focus on quantum measurements 
implemented using superconducting circuits. In particu-
lar, we will focus on the circuit QED architecture8,9, 
where a superconducting qubit is coupled to a microwave 
cavity to implement an ideal measurement Hamiltonian. 
This alows one to implement textbook quantum meas-
urements relatively easily. Apart from the qubit and cavity, 
one also needs superconducting parametric amplifiers10,11 
in order to implement quantum measurements with high 
efficiency. The article is organized as follows. First, we 
will introduce the basics of superconducting qubits and 
the circuit QED architecture. We will go on to describe 
the quantum measurement process in the next section, 
with a particular focus on weak or partial measurements. 
Then, we will describe the experimental set-up and discuss 
some basic qubit measurements in the next section. Finally, 
we will conclude and discuss the challenges ahead. 

Superconducting quantum circuits 

Superconducting circuits consist of metallic films of a 
superconducting material like aluminium or niobium  
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patterned on a substrate. The patterns are designed to 
form different kinds of electrical circuit elements like  
inductors, capacitors, planar transmission lines and  
Josephson junctions. These components are combined to 
construct various types of resonators, which can be either 
linear or nonlinear. The nonlinearity is provided by a  
circuit element called the Josephson tunnel junction12, 
which consists of two layers of a superconductor sepa-
rated by a thin insulating layer. A supercurrent I can flow 
through such a junction, such that I = I0 sin δ, while 
V = φ0 / 2δ π  is the voltage across the junction. Here, δ is 
the gauge-invariant phase difference across the junction 
and φ0 = h/(2e) is the magnetic flux quantum. The Jo-
sephson junction can be thought of as a nonlinear induc-
tor with an inductance LJ(I) = LJ0(1 − I2/I2

0)–1/2, where 
LJ0 = IJ(0) = φ0/(2πI0) is the linear part of the inductance. 
The Josephson junction is a remarkable device and is cru-
cial for superconducting qubits as it is the only known 
device which can provide nonlinearity without dissipation 
at such low temperatures. The use of superconducting 
materials for these circuits ensures that all of these  
devices, when operated at dilution fridge temperatures 
(~10 mK), offer very low intrinsic dissipation even at  
microwave frequencies. 
 Various kinds of superconducting qubit designs exist6, 
but the basic qubit can be thought of as a nonlinear quan-
tum oscillator. This is true in particular for the so-called 
transmon qubit13, which can be described as a weakly 
nonlinear oscillator. The design itself is quite simple and 
consists of a single Josepson junction shunted by a capa-
citor (CJ) as shown in Figure 1 a. The transition fre-
quency between the ground and first excited states is 
approximately given by the linear resonant frequency 
ω01 ~ 1/(LJ0CJ)1/2, while the anharmonicity α = ω01 – 
ω12 ~ EC, where EC = e2/(2CJ) is the charging energy13. 
The transition frequency can be made tunable by replacing 
the single junction with two junctions in a superconducing 
loop (Figure 2). Such a combination of junctions is called 
a superconducting quantum interference device (SQUID) 
and implements a tunable inductance which can be varied 
with the help of an external magnetic flux. Though the 
 
 

 
 
Figure 1. a, Circuit diagram of a transmon qubit. It consists of a  
Josephson junction shunted by a capacitor. b, First four energy levels of 
a transmon qubit. Since the potential is anharmonic, the energy levels 
are unequally spaced enabling one to isolate the bottom two levels to 
form a quantum bit (qubit). 

transmon has several low-lying energy levels (Figure 
1 b), the anharmonicity α ~ 250 MHz is sufficient to use 
it as a qubit by selectively addressing the ω01 transition 
using appropriately shaped microwave frequency pulses. 
Other kinds of qubits are constructed by choosing differ-
ent combinations of the three basic circuit elements, i.e. 
inductor, capacitor and the Josephson junction6, and pro-
vide different types of quantum-level structures. The 
transmon qubit is currently the most popular qubit pro-
viding reproducible performance, good coherence times 
and insensitivity to charge noise, and is extensively used 
for quantum information processing applications14,15. 
 Circuit QED (cQED)8 is the circuit implementation of 
the cavity QED architecture16. In cavity QED, a single 
atom interacts coherently with the electromagnetic field 
inside a Fabry–Perot cavity, whereas in cQED a super-
conducting qubit interacts coherently with an on-chip  
superconducting resonator9 or a waveguide cavity17. Fig-
ure 2 shows the basic cQED set-up. This interaction is 
described by the Jaynes–Cummings Hamiltonian 
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where the first term represents the qubit as a pseudo-spin 
(Pauli spin operator), the second term represents the elec-
tromagnetic cavity and the third term is the interaction 
between the qubit and the electromagnetic field in the ro-
tating wave approximation. Here ω01 is the transition fre-
quency between the qubit levels, ωc is the cavity mode 
frequency, g is the coupling strength between the qubit 
and cavity mode and σ± = (σx ± iσy)/2 are the qubit rais-
ing and lowering operators. For measurement, the qubit 
frequency is far detuned from the cavity frequency and in 
this dispersive regime (Δ = ω01 – ωc p g), the Hamilto-
nian reduces to 
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where χ is called the dispersive shift. Since the cavity 
resonant frequency depends on the qubit state, a quantum  
 
 

 
 
Figure 2. a, Circuit QED set-up consisting of a transmon qubit dis-
persively coupled to a single mode of an electromagnetic. The cavity 
resonance is shifted by a change in the qubit state. b, Consequently, a 
microwave signal probing the cavity acquires a qubit state-dependent 
phase shift, shown as two phasors in the I−Q plane. 
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state measurement can be implemented by probing the 
cavity with a microwave signal close to cavity resonant 
frequency. The scattered microwave signal acquires a 
qubit state-dependent phase shift which can be measured 
using a homodyne set-up. In addition to providing a 
mechanism for measurement, the cavity also protects  
the qubit by decoupling it from the environment. Since 
the qubit is coupled to the environment via the cavity, the 
cavity acts like a filter and helps in enhancing the lifetime 
of the qubit18. 

Quantum measurements 

We now discuss the measurement process in a little more 
detail. We start by considering the measurement Hamil-
tonian in eq. (2). The first thing to notice is that the 
qubit–cavity coupling term (∝σza†a) commutes with the 
bare qubit evolution Hamiltonian (∝σz). This implies that 
the eigenstates of the measurement operator are also the 
eigenstates of the qubit. Such measurements are called 
quantum non-demolition measurements and the qubit 
ends up in the eigenstate corresponding to the eigenvalue 
obtained in the measurement. The interaction term results 
in the entanglement between the qubit and the coherent 
state in the energized cavity. The measurement apparatus 
actually detects the coherent state (often called the 
pointer) which leaks out of the cavity. If the two are per-
fectly entangled, the detection of the coherent state in one 
of the two possible phases will project the qubit into the 
corresponding eigenstate. Such a situation corresponds to 
the strong or projective measurement in quantum me-
chanics. This requires that the coherent states correspond-
ing to the two qubit states are perfectly resolved, which in 
practice means that we need to resolve the phase shift of 
the scattered microwave signal in a given measurement 
time. 
 There are four quantities which determine whether the 
phase shifts corresponding to the ground and excited 
states can be resolved. The first is the magnitude of the 
phase shift (Δφ) which is set by the dispersive shift χ and 
the linewidth κ of the cavity. These quantities are fixed 
by design and cannot typically be varied in a given ex-
periment. The second quantity is the magnitude of the 
microwave signal used to probe the cavity, since it is eas-
ier to resolve the phase shift of a larger signal. A related 
quantity is the noise in the phase measurement which 
could be due to the measurement set-up, but more funda-
mentally due to the quantum uncertainty in resolving the 
phase of the coherent state. Finally, there is the measure-
ment or integration time, since a longer integration time, 
(averaging) will lead to better phase resolution. In prac-
tice, such measurements will yield a distribution of  
values for the phase which can be represented as two 
Gaussians centred at phase φm0 and φm1 corresponding to 
the ground and excited states of the qubit respectively. If 

the two distributions have little or no overlap as shown in 
Figure 3 a, the measurement will be called a strong or 
projective measurement. In each measurement, we can 
determine which distribution the measured value of phase 
came from with no ambiguity. Hence, we can assign the 
value 0 or 1 to the measurement result corresponding to 
the qubit state |0〉 or |1〉. 
 Let us now consider what would happen if the distribu-
tions looked like those shown in Figure 3 b. This can be 
achieved experimentally by either reducing the magni-
tude of the microwave signal or by reducing the integra-
tion time. In a single measurement of this type, we can no 
longer assign the measured phase to one of the two histo-
grams. Such measurements are called weak or partial 
measurements2,3, since the measurement is not complete. 
This also implies that the qubit is not projected to one of 
its eigenstates in such partial measurements. Another 
point to note is that increasing the time of integration can 
take you from overlapping distributions (Figure 3 b) to 
well-resolved distributions (Figure 3 a), i.e. from weak to 
strong measurements. This means that a sequence of 
weak measurements can be equal to a strong measure-
ment and both types of measurement are just two regimes 
of the same process. 
 Since the partial measurement does not give a binary 
result, but instead gives a range of random measurement 
outcomes, can we still say something about the qubit state 
after such a measurement? The answer is yes and we use 
the Bayesian formalism19 to describe the procedure. We 
start by considering an example where we know the ini-
tial wavefunction |ψ〉 = α |0〉 + β |1〉 describing the qubit 
state, such that |α|2 + |β |2 = 1. We now perform a weak 
measurement which yields a value φm. The qubit state 
(|ψ ′〉 = α ′|0〉 + β ′|1〉), after the weak measurement is given  
 
 

 
 
Figure 3. Histograms representing the distribution of phase values 
(φm) when a measurement is made in the cQED architecture. The two 
distributions correspond to the qubit prepared in the ground (centred at 
φm0) and excited states (centred at φm1) respectively. a, Strong meas-
urement where the two histograms are well separated. b, Partial or 
weak measurement with overlapping distributions. 
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by the following formula which resembles the Bayes 
theorem for probabilities 
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where P(0|φm) = |α ′|2 is the conditional probability that 
the qubit is in state 0 after a weak measurement yields the 
result φm, P(0) = |α|2 and P(1) = |β |2 are the initial qubit 
state probabilities, while P(φm|0) and P(φm|1) are the 
measurement distributions as shown in Figure 3 b. 
P(φm) = P(0)P(φm|0) + P(1)P(φm|1) is the probability of 
getting the weak measurement result φm. The coefficient 
|β ′|2 is determined by normalization, while the relative 
phase between α ′ and β ′ is the same as for α and β, since 
the measurement reveals no information about the rela-
tive phase19. In this description we have implicity  
assumed that the state remains pure after weak measure-
ment, but that is true only if the quantum efficiency of the 
measurement is unity20,21. This is equivalent to saying 
that the width of the measurement histogram (Figure 3 b) 
is set by quantum uncertainty and not due to technical 
noise in the measurement set-up. In superconducting ar-
chitecture, this is achieved using phase-sensitive Joseph-
son parametric amplifiers (JPA)11 which can provide near 
noiseless amplification of a single quadrature of a micro-
wave signal22,23, allowing one to get close to unit quan-
tum efficiency. When that is achieved, and if the initial 
state is pure, the qubit state remains pure throughout the 
measurement process, i.e. the wavefunction can be 
tracked from its initial state to its final state during the 
process of measurement. Note that the result of a weak 
measurement is random and hence the qubit state evolu-
tion is stochastic under a sequence of weak measure-
ments21,24. This formula is still applicable when the initial 
state of the qubit can only be represented by a density 
matrix. The conditional probability P(0|φm) now relates to 
the diagonal elements of the density matrix21. If ρ and ρ ′ 
represent the density matrix of the qubit before and after 
a weak measurement, they are related by, 
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Experimental set-up and measurements 

We now describe the experimental set-up and discuss 
some basic qubit characterization measurements. The  
devices are made using standard e-beam lithography on 
high-resistivity silicon or sapphire substrates. Thin films 

of aluminium (~30–100 nm) are deposited using an  
e-beam evaporator at a pressure of about 10–7 mBar. For 
circuits containing Josephson junctions, double-angle 
evaporation utilizing a Dolan bridge technique is used to 
get two overlapping aluminium films. Oxygen is intro-
duced into the evaporator chamber before the second 
evaporation to oxidize the surface of the aluminium film 
which forms a thin tunnel barrier. 
 Figure 4 shows a detailed schemetic of the measure-
ment set-up. In our experiments, the transmon qubit is 
placed inside a copper waveguide cavity implementing 
the 3D transmon architecture17. These are then anchored 
to the base plate of a cryofree dilution refrigerator. Heav-
ily attenuated and filtered coaxial lines bring microwave 
signals from room-temperature apparatus to excite the 
qubit and cavity. The output of the cavity goes through a 
low-pass filter, an isolator and a directional coupler, 
where it is combined with a strong microwave tone used 
for energizing the JPA. The combined signal is sent to the 
JPA, which amplifies the chosen quadrature of the meas-
urement signal23. The amplifed signal reflects off the JPA 
and via the circulator goes to the output line, where it is 
further amplified (~80 dB) before it reaches the homo-
dyne set-up at room temperature. The homodyne set-up 
consists of a microwave generator which creates the 
measurement signal that is split into two parts. One part 
goes to the cavity, while the other drives the LO  
(local oscillator) port of a mixer. The amplified signal 
from the cavity is sent to the radio frequency (RF) port of 
the mixer which multiplies the LO and RF signals and 
outputs the in-phase (I) and quadrature-phase (Q) compo-
nents of the measurement signal. Both signals (I, Q) are 
then digitized and processed on a computer to extract the 
amplitude and phase of the measurement signal. A second 
generator is used to create the microwave signals at the 
qubit transition frequency ω01 and is combined with the 
measurement signal before it goes to the qubit–cavity 
system. The continuous microwave signals from the  
generators are modulated with the help of mixers and ar-
bitrary waveform generators to create appropriate pulses 
for qubit manipulation and measurement. 
 We now describe some basic qubit characterization  
experiments25,26. The first experiment typically used to 
characterize a qubit is to drive it resonantly at its transi-
tion frequency ω01 and observe coherent Rabi oscillations 
between the two states. When driven on resonance, the 
qubit state evolves in a sinusoidal manner and oscillates 
between the ground and excited states at a rate that is pro-
portional to the drive amplitude. The Rabi oscillation  
experiment proceeds by sending a variable width micro-
wave pulse at ω01 followed by projective measurement. 
This is repeated several thousand times to create an en-
semble average as shown in Figure 5, where the coherent 
oscillations are clearly visible. The y-axis here is a volt-
age proportional to the phase shift in the measurement 
signal between the ground and excited states of the qubit 
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Figure 4. A detailed schematic of the measurement set-up showing both the room temperature signal generation and detection 
setup (top) and the cryogenic set-up (bottom). The qubit and cavity are anchored to the base temperature plate (20 mK) of the dilu-
tion refrigerator. 

 
 

 
 

Figure 5. Coherent oscillations in the qubit state population as a 
function of pulse width of the resonant microwave drive. The Rabi  
oscillation amplitude shows an exponential decay with a decay constant 
TR = 25 μs. 
 
 
and is represented in digitizer units. The oscillations  
decay with a characteristic time constant TR = 25 μs. The 
decay is due to a combination of qubit relaxation and 

other noise at the Rabi frequency26. The main purpose of 
this experiment is to calibrate the pulse required to put 
the qubit in the excited state (π pulse) or a 50–50 super-
position state (π/2 pulse). 
 With a calibrated π pulse, we can now measure the  
relaxation time of the qubit from its excited state. This 
experiment proceeds by preparing the qubit in its excited 
state and then waiting some time before making a meas-
urement. By repeating this experiment several thousand 
times for different delays between the π pulse and the 
measurement pulse, we obtain an ensemble averaged 
curve as shown in Figure 6. We can observe an exponen-
tial decay with a decay constant given by T1 = 20 μs, 
which is the excited state lifetime. 
 Another important timescale is associated with the 
dephasing process, which scrambles the relative phase of 
a superposition state due to noise that affects the qubit 
transition frequency ω01. This timescale is probed with 
the Ramsey oscillation experiment which proceeds as fol-
lows. We first send a π/2 pulse to prepare a 50–50 superpo-
sition state, but the pulse is created at a slightly detuned 
frequency ω01 – Ω. As described above, this pulse is also 
calibrated using the Rabi oscillation experiment, but with 
a detuned drive. A second π/2 pulse is then sent to the 
qubit after a variable time delay Δτ and immediately  
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followed by a measurement pulse. Since the microwave 
pulse is detuned from resonance, the relative phase of the 
superposition evolves at the detuning frequency Ω in a 
frame rotating at ω01. The time delay Δτ determines how 
the state would transform due to the second π/2 pulse. 
The ensemble averaged result of such an experiment is 
shown in Figure 7. We observe a sinusoidal oscillation  
at frequency Ω with an amplitude decay constant 
T2 = 30 μs. The oscillations decay due to a combination 
of qubit relaxation and low frequency noise in ω01. In the 
absence of any noise in ω01, T2 = 2T1. In general,  
 
 

 
 
Figure 6. The exponential decay of the excited state population as a 
function of the delay time between the π pulse and measurement. The 
decay constant T1 = 20 μs. 
 
 

 
 
Figure 7. Ramsey oscillations in the qubit state population as a func-
tion of the pulse spacing between two detuned π/2 pulses. The Ramsey 
oscillation amplitude shows an exponential decay with a decay constant 
T2 = 30 μs. 

1/T2 = 1/(2T1) + 1/Tϕ, where Tϕ is called the dephasing 
time26 and is associated with the decay due to noise in ω01 
only. For this experiment, Tϕ = 120 μs. These experi-
ments characterize the coherence properties of supercon-
ducting qubits and the numbers obtained are typical for a 
transmon-type qubit in a 3D waveguide cavity17. 
 The measurements discussed so far were ensemble  
averaged measurements which were used to characterize 
the coherence properties of qubits. The signal-to-noise  
ratio in typical cQED set-ups which do not use a paramet-
ric amplifier is not sufficient to reveal adequate information  
 
 

 
 
Figure 8. Four individual single-shot measurement traces taken with 
the qubit prepared in the excited state. Stochastic quantum jumps due to 
spontaneous relaxation are clearly visible. 
 
 

 
 
Figure 9. Five individual quantum trajectories of a qubit prepared in 
a 50–50 superposition state. The stochastic nature of evolution of qubit 
from its initial superposition state to its final eigenstate under weak 
measurement is clearly visible. 
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in a single measurement. The high-gain (20 dB) and near-
quantum limited noise of JPAs10,11 is crucial for  
single-shot measurements. Figure 8 shows four measure-
ment traces taken with the qubit prepared in the excited 
state. The dashed lines indicate the mean level corre-
sponding to the ground and excited states. We note that 
the two levels can be resolved in a very short period of 
time, indicating very high signal-to-noise ratio. Further, 
we observe the real-time relaxation of the qubit from its 
excited state to its ground state, the so-called quantum 
jumps22. The different traces show the jumps at different 
times, since relaxation is a stochastic process. The mean 
time of the jump will however be related to the relaxation 
time T1 (ref. 22). The magnitude of the microwave signal 
used to probe the cavity was chosen to be sufficiently 
high so that the two states could be resolved in a short pe-
riod of time, i.e. the strong measurement regime. We next 
look at the case where we turn down the measurement 
strength so that the projection time is longer. First we  
obtain histograms for qubit states 0 and 1 (as in Figure 
3 b) corresponding to a specific measurement strength 
and integration time. Next we prepare the qubit in a 
known initial state and record the output signal while ap-
plying a long measurement tone of the same strength. We 
then analysed the output signal in this weak measurement  
regime using eq. (3) by breaking down the entire meas-
urement signal into smaller time bins. Each time bin cor-
responds to one weak measurement and we update the 
quantum state after each step. The resulting quantum tra-
jectories21 are shown in Figure 9 for five separate itera-
tions, in each of which the qubit was initially prepared in 
a 50–50 superposition state. Note the stochastic evolution 
of the qubit state and its progression towards its eigen-
states. Since the initial qubit state was a 50–50 superposi-
tion, the final qubit state after a sufficiently long time 
was also distributed equally. 

Conclusion 

We have characterized the coherence properties of a 
transmon qubit coupled to a copper waveguide cavity. 
We obtained a relaxation time T1 = 20 μs and a dephasing 
time Tϕ = 120 μs. Further, we used JPAs to implement 
single-shot measurement of the qubit state and observed 
quantum jumps. By turning down the microwave power 
used to probe the cavity, we explored the weak measure-
ment regime and observed the stochastic evolution of the 
quantum state. These initial measurements are essential 
steps for progressing towards the realization of a practical 
quantum processor. A crucial goal for the near term is the 
implementation of quantum error correction27. Even 
though the coherence times of superconducting qubits 
have improved by nearly five orders of magnitude6 in the 
last 15 years, one needs the ability to preserve an arbi-
trary quantum state for indefinite lengths of time. The 

idea behind quantum error correction27 is to distribute the 
quantum information amongst multiple entangled physi-
cal qubits to implement a single perfect logical qubit. 
This is possible because one can use a special type of 
measurement (syndrome) to detect errors on individual 
physical qubits without revealing information about the 
encoded quantum state. Once detected, the errors can be 
corrected, thus restoring the system to its original state. A 
basic requirement is to have qubits with small enough  
error rates and the coherence times in superconducting 
qubits have just about reached that threshold. Several 
proof of principle experiments have already been imple-
mented14,15,28–30, but a full demonstration of quantum  
error correction still remains a challenge. A massive  
effort is underway to reach this important milestone to-
wards building a quantum processor. 
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