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Weak value is a physical property of a quantum sys-
tem which manifests itself through a weak measure-
ment using different pre- and post-selected ensembles 
of the system. The weak values of an operator may 
differ significantly from its eigenvalues and can even 
lie outside the spectrum if it is bound: they can be  
‘superweak’. The latter, originating due to a coherent 
superposition of waves, may appear as a ‘supershift’ 
on the measuring device. This property has potential 
application in the amplification and detection of ex-
tremely weak signals. 
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Introduction 

THE dynamical laws are time-symmetric, both in classical 
as well as in quantum regime. For example, if the posi-
tion and velocity of a classical system are known at a 
given instant t, its past (before t) and future (after t) can 
in principle be predicted from the laws of classical me-
chanics. Similarly, an isolated quantum system undergoes 
a deterministic, unitary, continuous time-evolution that is 
governed by the Schrödinger equation (or Dirac equation 
in relativistic limit) and its state and associated properties 
both in the past as well as the future can be obtained, in 
principle, by solving the equation. For any physical prop-
erty (observable), the state of the system can be expressed 
as a linear combination of the eigenstates of the related 
operator; the observable then has a finite probability to 
take any one of the eigenvalues. In reality, however, the 
determination of a physical observable requires a direct 
or indirect measurement which leads to collapse of the 
state of the system to one of the eigenstates, with the  
observable given by the corresponding eigenvalue. After 
the collapse, the system again evolves according to the 
Schrödinger equation. But due to collapse, the state of the 
system in the past can no longer be determined, thus  
resulting in time-asymmetry. In other words, a measure-
ment disturbs/alters the quantum system. 
 All measurements begin with an interaction between 
the system under consideration and a measuring device. 

The latter is simply another physical system, governed by 
the same set of physical laws as the one being measured. 
For quantum systems, however, the measurement is a 
two-way process: any such interaction must also disturb 
the system being measured. Consequently, even if the 
state of a system is known at time t, and its Hamiltonian 
is known at all times, the result of a measurement per-
formed at a later time t1 or previous time t0 cannot be  
exactly predicted. Thus both ‘past’ and ‘future’ of a 
quantum system are equivalent (equally good or bad) as 
far as prediction of the ‘present’ is concerned. This then 
leads to the question: Why should one always express the 
present state in terms of the past one only? Why not use 
the evolution from both states, past (or pre) as well as fu-
ture (or post), which at least preserves time-symmetry? 
This idea of ‘two state’ quantum mechanics1 led to the  
introduction of a new concept, namely, ‘weak values’, 
which are the values obtained for an observable on its 
‘weak measurement’. The latter, a technique invented by 
Aharonov and co-workers about 20 years ago, is a way of 
probing a quantum system which minimizes the meas-
urement disturbance2–6. The most interesting feature of a 
weak measurement is revealed when it is subjected to 
conditions involving pre-selection and post-selection of 
the state of the quantum system: for a post-selection with 
very low probability (that is, if the measurement is condi-
tioned on finding the system in a very unlikely final 
state), the measurement outcome can be unexpectedly 
large, larger than any expected value for the property be-
ing measured. 
 For a clear understanding of how weak values arise in a 
weak measurement, it is imperative to first review the 
standard measurement techniques. An ideal measurement 
of an observable A requires that the state of the system 
remains unchanged after the measurement: if before 
measurement, the system is in an eigenstate of A with an 
eigenvalue an, the outcome of the measurement is an.  
To understand how the eigenvalue appears on the measur-
ing device, one has to consider its interaction with the 
system. 
 In standard measurement procedure of a variable A of a 
quantum system, if Q refers to the pointer variable of the 
measuring device, then its conjugate variable P couples 
with A. The Hamiltonian for the interaction between the 
measuring device and the system can then be described 
by (von Neumann Hamiltonian)2 
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 Hint(t) = λ(t)AP,  (1) 
 
where λ(t) is the coupling function specifying the time of 
the measurement interaction. Clearly, for the state of the 
system to remain unchanged after the measurement, it is 
necessary that Hint is applicable for a very short time, that 
is, λ(t) is non-zero only for a short time δ t. As the Hamil-
tonian of the system (non-interacting part) is negligible 
during the time of measurement, the equation of motion 
for the pointer variable Q can be given as 
 

 int
d [ , ] .
d
Q i H Q A
t

λ= =  (2) 

 
It is easy to see from the above that the shift in position Q 
of the pointer gives the measured value of A 
 
 Qf − Qi = λA, (3) 
 
with Qi and Qf as the initial and final positions of the 
pointer variable. 
 An ideal measurement therefore requires both Qi, Qf to 
be well-defined. In real measurements, however, the state 
of the pointer of the measuring device is given by a dis-
tribution, say Φ(Q) of width Δ. As a consequence, the  
final pointer state does not give a precise value of the ob-
servable A. This can be explained as follows. Consider 
the initial states of the system and measuring device  
before measurement to be |i〉 and |Φ〉 respectively. The 
coupled state of the system + measuring device can then 
be given as 
 
 ( / ) d ( / )e | | e | | .i H t i PAi iλ− ∫ −〉 Φ〉 = 〉 Φ〉  (4) 
 
The final pointer state |ψ〉 after the measurement corre-
sponding to system-state |i〉 now becomes |ψ〉 = 

( / )|e | | ,i PAi iλ−〈 〉 Φ〉  which in position representation Q 
can be written as 
 
 ( / )( ) |e | ( ).i PAQ i i Qλψ −= 〈 〉 Φ  (5) 
 
For a measurement of A, it is physically motivating to 
express the initial state |i〉 of the system in the eigenbasis 
of A. Consider A as an operator with bound spectrum, 
with an as the eigenvalues and |an〉 corresponding eigen-
functions (n = 1, ..., N). One can then write |i〉 = ∑ncn|an〉 
with cn as the coefficients. This gives the final pointer 
state as a combination of many copies of the initial 
pointer state, each one centred around an eigenvalue 
 

 2( ) | | e ( )n Qa
n

n

Q c Qλψ − ∂= Φ∑  

    2| | ( ).n n
n

c Q aλ= Φ −∑  (6) 

As clear from the above, the final pointer state is a distri-
bution, with error Δ, around mean λ∑k|cn|2an. Note the lat-
ter is just the expectation value of A in the state |i〉; thus 
the mean pointer position 〈Q〉 gives 〈A〉. Although the  
error in the final pointer state can be reduced by choosing 
Δ → 0 (or Δ ^ Δ(an)), it enhances the error associated 
with the momentum P (i.e. the conjugate variable of Q) 
of the pointer. This in turn increases the interaction be-
tween the system and the measuring device (see eq. (1)) 
and the system, after the measurement, is no longer the 
same as before. Consequently, the measurement necessar-
ily disturbs the subsequent measurements of all observ-
ables, say B non-commuting with A: the result of 
measurement of B after A will be different from B before 
A (ref. 2). 
 As the objective of any measurement would be to leave 
the system unperturbed for subsequent measurements, it 
is necessary to keep the interaction between the measur-
ing device and the system weak. Such a ‘weak measure-
ment’, however, causes a large uncertainty in the pointer 
variable Q (Hint → 0 → P → 0 → Δ → large p spectrum 
length) and the state of pointer is then centred around 〈A〉 
with spread Δ. Although one such measurement gives no 
information (as Δ p 〈A〉), repeating it, say M times, on a 
given system reduces the uncertainty by 1/ .M  Alterna-
tively, one can make the same measurement on each 
member of a sufficiently large ensemble of systems, all in 
a same initial state (and each connected to a separate 
measuring device). This will again reduce the uncertainty 
by 1/ M  while keeping the average at 〈A〉. Enlarging 
the ensemble will lead to the measurement of 〈A〉 with 
any desired precision. Furthermore, as the measurements 
hardly disturb the ensemble, they characterize the ensem-
ble during all intermediate times. And even non-
commuting operators can be measured at the same time 
(as a single measurement is imprecise). 
 As mentioned above, the outcome of the measurement 
is sensitive to the size of the ensemble (consisting of ex-
act replicas of the system). This leads to curiosity about 
the exact role of the ensemble: can the outcome be 
changed by averaging over Q-values of only a part of the 
original ensemble? In other words, what happens if the 
‘post-selected’ ensemble which is considered to obtain 
the average over Q, is just a sub-ensemble of the original 
ensemble over which the measurement was performed? 
The original ensemble can therefore be referred as the 
‘pre-selected’ ensemble. It is important to emphasize here 
that the ‘post-selected’ ensemble refers to a sub-ensemble 
of systems and not of measuring devices; (a sub-
ensemble of the latter can always be chosen in a trivial 
way to change the outcome, e.g. considering only those 
measuring devices with large value of Q will maximize 
the outcome). In fact, as shown by Aharonov and collabo-
rators2, a suitable choice of pre- and post-selected ensem-
bles can lead to values different from 〈A〉. This clearly 
indicates the lack of ergodicity in the ensemble of  
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systems which could be due to restrictions imposed by a 
uncertainty. 
 There is another reason to choose different pre- and 
post-selected ensembles: measurement via an initial state 
ensemble only breaks time-symmetry. The latter can be 
preserved by selecting both past as well as future of a 
state at time t, i.e. by choosing two ensembles of the sys-
tem, one prior to and the other after the measurement. 
Measuring an operator A weakly at time t between a pre-
selected state, say |i〉 at time t0 < t and a post-selected 
state, say | f 〉 at t1 > t yields values that need not be  
eigenvalues or even classically allowed; these values, 
known as weak values, can be described by 
 

 w
| | .

|
f A iA

f i
〈 〉

=
〈 〉

 (7) 

 
It is worth noting that Aw is a complex number and is dif-
ferent from 〈A〉 if |i〉 and | f 〉 are different. As mentioned 
above, the weak measurement of A at time t with an ini-
tial ensemble of size M at time t0 gives the final pointer 
state centred around expectation value 〈A〉 with error 

/ .MΔ  The weak measurement, for both past and future 
ensemble chosen, replaces 〈A〉 by Re(Aw); here Im(Aw) 
gives the shift of the momentum of the pointer of the 
measuring device. In case of an operator with a bound 
spectrum, the weak-value measurement may lead to sur-
prising, unexpected results: as well known, the expecta-
tion value 〈A〉 never lies outside the range of a bound 
spectrum, but the weak value (i.e. Re(Aw) or Im(Aw)) can 
lie outside the spectrum range. It can be a superweak 
value. An example of the weak value is the local expecta-
tion value of an operator A at position r, which can be  
described as the real part of the weak value of A in state 
|ψ〉 with position r post-selected 
 

 
1
2

ˆ ˆˆ ˆ| ( ( ) ( )) |
( )

ˆ| ( ) |
A A

A r
ψ δ δ ψ

ψ δ ψ
〈 − + − 〉

=
〈 − 〉

r r r r
r r

 

 

   
ˆ| |Re .
|
A ψ
ψ

〈 〉
=

〈 〉
r

r
 (8) 

 
The appearance of weak values in pointer-state distribu-
tion can be explained follows: after an impulsive meas-
urement of A and projection onto a final system-state | f 〉, 
the final state of the measuring device is 
 

 
i

int( ) | e | ( ).HQ f i Qψ −= 〈 〉Φ  (9) 
 
As Hint, given by eq. (1), is small for a weak measure-
ment (|P| is small for Δ → large), one can approximate 
 

 ( ) |1 | ( )iQ f PA i Qλψ ≈ − Φ  

    w| exp ( )if i PA Qλ⎡ ⎤≈ 〈 〉 − Φ⎢ ⎥⎣ ⎦
 

 
    w| ( ),f i Q Aλ≈ 〈 〉Φ −  (10) 
 
with Aw given by eq. (7). As clear from the above, the  
final pointer state in this case is just the initial pointer 
state with a shifted centre and a modified amplitude; the 
shift is proportional to the weak value Aw. An important 
point to note here is that while the amplitude of ψ(Q) is 
proportional to 〈 f |i〉, the latter appears in the denomina-
tor of Aw. Thus although a suitable choice of post- and 
pre-selected states, e.g. (those nearly orthogonal mutu-
ally) makes Aw very large, it also makes the final pointer 
state very weak. 
 The sensitivity of the results of weak measurements to 
the choice of pre- and post-selected states makes it rele-
vant to probe their role in more detail. An important 
question in this connection is as to how weak values are 
typically distributed if the pre- and post-selected states 
are random states? It is also important to know the influ-
ence, if any, of the type of randomness and whether  
superweak values are common or rare? Seeking the an-
swers in Berry and Shukla7,8, the probability distribution 
P(Awr) of Awr ≡ ReAw was calculated for random pre- and 
post-states in the eigenbasis of A (i.e. |i〉 = ∑in|an〉 and 
| f 〉 = ∑nfn|an〉 with in and fn randomly distributed); note 
this corresponds to considering an ensemble of states |i〉 
and | f 〉 which should not be confused with pre- and post-
selected ensembles of systems, each one of which is at 
the same state |i〉 and | f 〉 respectively. For arbitrary ran-
domness, we find an unanticipated universality in the dis-
tribution of weak values. If there are many eigenvalues 
lying within a finite range, this distribution takes a simple 
generalized Lorentzian form 
 

 
2

wr 2 2 3/ 2
wr

( ) .
2( )

n

n

a
P A

a A
〈 〉

=
〈 〉 +

 (11) 

 
The distribution P(Awr) of the imaginary part of weak  
values Awi ≡ ImAw also turns out to be analogous. This 
gives the superweak probability of the weak value lying 
outside the spectrum of A as 
 

 
min

max

super wr wr wr wrd ( ) d ( )
a

a

P A P A A P A
∞

−∞

= +∫ ∫  

 

    
max

wr wr2 d ( )
a

A P A
∞

= ∫  

 

    max
2 2

max

1 .
n

a
a a

= −
〈 〉 +

 (12) 
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The above indicates the universality of the superweak 
probability and as shown in Berry and Shukla7 by the  
examples of interesting eigenvalue distributions, e.g. uni-
form, semicircle, bimodal, etc. the superweak probability 
of weak values lying outside the spectrum can be as large 
as 0.293 (almost 30% chance of a weak value being  
superweak). By contrast, the familiar expectation values 
always lie within the spectral range, and their distribu-
tion, although approximately Gaussian for many eigen-
values, is not universal7. 
 As indicated by eq. (11), the distribution of weak val-
ues for large spectra has a generalized universal form, in-
dependent of size N of a spectrum, its nature (whether 
eigenvalues are randomly distributed or regularly arran-
ged), and, of the nature of pre- and post-selected ensem-
bles. Note P(ReAw) and P(ImAw) for large N are similar 
and smooth functions in which the only indication of the 
extent of the spectrum of the observable A is a scaling 
variable, a measure of the distribution of N eigenvalues. 
By contrast, for N = 2, P(ReAw) and P(ImAw) are differ-
ent and can be discontinuous too. But the distributions for 
both small (N = 2) and large N decay in the same way for 
large |Aw| (as |Aw|–3). The superweak probabilities in the 
two cases are also not very different: for large N, Psuper 
can be as large as 0.293..., for N = 2, Psuper = 1/3. An in-
teresting point to note here is that Psuper is the same as the 
super-oscillation probability for Gaussian random mono-
chromatic waves in two dimensions10. 
 A weak value as well as a superweak value result from 
a conspiracy of pre- and post-selected states and the op-
erator A. Mathematically the origin of superweak value 
can be explained using the concept of super-oscillation of 
functions. The latter is defined as the oscillations in a 
band-limited function faster than the maximum frequency 
over arbitrarily large intervals. This leads to a natural 
query whether a superweak value always shows up on a 
measuring device and under what conditions will it lead 
to a super-shift of the pointer? The latter can be explained 
as follows: from eq. (10), final state Φ of the pointer is a 
superposition of the shifted copies of the initial pointer 
state. A coherent interference can give rise to a reproduc-
tion of Φ centred far away from any of the copies, albeit 
greatly reduced in strength: this is called a supershift. As 
discussed in Berry and Shukla9, the occurrence of super-
shift is a bigger conspiracy; it not only depends on the 
choice of pre- and post-selected states but also on Δ, the 
uncertainty associated with the initial pointer state. It re-
quires pointer state φ (q) to be broad enough, i.e. φ (p) 
must decay fast enough, not to kill super-oscillations in 
the Fourier transform of the overlap 〈 f |i〉 of the pre–post 
pair. The analysis discussed in Berry and Shukla9 indicates 
that although superweak value exists for the pre–post 
pair, the supershift can be seen only for the Gaussian and 
Lorentzian shapes of φ (q) but not for exponential shapes. 
In other words, the supershift is a kind of ‘resurrection 
from the dead’ involving the tail of φ (q); it may or may 

not happen, depending on the interplay of the analytic 
form of the tail of φ (q) and the chosen pre-, and post-states. 
 It is worth considering the relevance of weak and  
superweak values from an application point of view. A 
measurement result is preferable if it is independent of 
the choice of the ensemble used to reduce the error intro-
duced by a single weak measurement. The independence 
of the distribution of weak values from the nature of the 
pre- and post-selected ensembles, in contrast to ensemble 
dependence of the distribution of expectation values, 
suggests weak values as a better tool for the measure-
ment. Weak value technique can also be used for amplifi-
cation of extremely weak signals. But a sacrifice is 
necessary to achieve amplification: it comes in the form 
of throwing away most of the data in the post-selection 
process. This has already been applied successfully in 
many experiments. For example, the technique has been 
used by Hosten and Kwiat11 to amplify the displacement 
of a laser beam by a factor of thousand. This allowed 
them to measure the displacement of 0.1 nm and thus 
confirm the existence of spin Hall effect for light. The 
technique also helped in the detection of a spin-dependent 
displacement perpendicular to the refractive index gradi-
ent for photons passing through an air–glass interface; 
this in turn indicates universality of the Hall effect for 
particles of a different nature. Using the technique along 
with a Sagnac ring interferometer, Ben Dixon et al.12 
were able to detect very small transverse deflections (of 
order 10 fm) of an optical beam. Recently, the weak 
value concept was applied to explore the possibility of 
the apparent superluminal velocity of the neutrinos as a 
superweak value of the velocity difference operator13. 
Weak values can assist in understanding many counterin-
tuitive quantum results: they can be used as a fundamen-
tal test of quantum mechanics by ruling out a class of 
macro-realistic hidden variable theories, and are equivalent 
to the violation of generalized Leggett–Garg inequali-
ties14, help resolve quantum paradoxes such as Hardy 
paradox15, apparent superluminal travel16, and counterfac-
tual problems such as the three-box problem. 
 In the end, we emphasize that both the eigenvalues as 
well as weak values are fundamental aspects of quantum 
systems; they exist, one measures them or not. But weak 
value is a normalized matrix element of an operator bet-
ween |pre〉 and 〈post| whose normalization with 〈post|pre〉 
only takes meaning because of the uncertainty in measur-
ing device. Further a conventional ‘strong’ measurement 
done with pre/post state will never give a superweak value, 
although it may exist. A weak measurement can give a su-
perweak value only if the measuring device uncertainty is 
large enough so as not to kill the super-oscillatory behav-
iour of the pre- and post-state combination. 
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