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An important non-classical feature of quantum meas-
urements is the celebrated uncertainty trade-off, 
namely that the uncertainties in the outcomes of 
measurements performed on distinct yet identically 
prepared ensembles of systems cannot all be made  
arbitrarily small. Recently, we have shown that quan-
tum measurements also exhibit another non-classical 
feature of disturbance trade-off namely, that the dis-
turbances associated with measurements performed 
on distinct yet identically prepared ensembles of sys-
tems in a pure state cannot all be made arbitrarily 
small. In this article, we review the known results on 
uncertainty trade-off and disturbance trade-off for 
projective and non-projective measurements. 
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Introduction 

THE uncertainty principle is one of the central distin-
guishing features of quantum mechanics, and plays an 
important role in the study of quantum information theory 
and quantum cryptography. In its original formulation 
envisioned by Heisenberg1, the uncertainty principle was 
stated as an effect of the disturbance caused due to a 
measurement of one observable on a succeeding meas-
urement of another. However, the subsequent mathe- 
matical formulation due to Robertson2 and Schrödinger3 
in terms of variances, and the more recent entropic  
formulations of the uncertainty principle4, pertain to an 
entirely different situation. They demonstrate the exis-
tence of a fundamental trade-off for the uncertainties  
associated with independent measurements of incompati-
ble observables on identically prepared ensembles of sys-
tems. 
 In this article, we review our recent results on the exis-
tence of a similar principle of trade-off for the distur-
bances associated with the measurements of a set of 
observables5. It is a fundamental feature of quantum the-
ory that when an observable is measured on an ensemble 
of systems, the density operator of the resulting ensemble 

is in general different from that prior to the measurement. 
The distance between these two density operators is 
therefore a measure of the disturbance due to measure-
ment. Different measures of distance between density  
operators6,7 give rise to different measures of disturbance. 
For a general class of such disturbance measures, we 
demonstrate the existence of a fundamental trade-off 
principle for the disturbances associated with quantum 
measurements performed on distinct yet identically pre-
pared copies of a pure state. 
 We show that the average of the disturbances associ-
ated with a set of projective measurements is strictly 
greater than zero whenever the associated set of observ-
ables do not have a common eigenvector. In the particular 
case when the disturbance is characterized by the square 
of the fidelity function, there is a mathematical equiva-
lence between the disturbance due to the measurement of 
an observable on a pure state and the uncertainty as quan-
tified by the Tsallis entropy (T2) of order 2 of the pro-
bability distribution over the outcomes of such a 
measurement. This provides a new operational signifi-
cance to the T2 entropy in the context of quantum infor-
mation theory. Some of the known results on entropic 
uncertainty relations (EURs) can be made use of to obtain 
disturbance trade-off relations for specific classes of  
observables. We also show an optimal disturbance trade-
off relation for a pair of qubit observables, which is based 
on a new, tight T2 EUR.  
 For the more general class of observables given by 
positive operator valued measures (POVMs), the associ-
ated measurements are characterized by completely posi-
tive (CP) instruments. For this class of non-projective 
measurements, we show that the disturbance and uncer-
tainty trade-offs are significantly different; they indeed 
capture different aspects of the complementarity of a set 
of measurements. 
 The rest of the article is organized as follows. We  
begin with a brief review of the mathematical formalism 
of uncertainty trade-offs in the form of entropic uncer-
tainty relations. Next, we define the class of disturbance 
measures, derive the trade-off principle for projective 
measurements and discuss the equivalence between the 
fidelity-based measure and the Tsallis entropy of order 2 
(T2). Finally, we discuss the disturbance trade-off princi-
ple for non-projective measurements. 
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Uncertainty trade-off for quantum measurements 

We restrict our attention to observables and measure-
ments with a discrete set of outcomes. In conventional 
quantum mechanics, these correspond to self-adjoint  
operators with a purely discrete spectrum. Any such ob-
servable A has a spectral resolution 
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i i

i

A a P=∑  

 
where { }A

iP  is a discrete projection valued measure 
(PVM), that is, { }A

iP  are projectors satisfying 
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If ρ is the density operator representing the state of an en-
semble of systems, the probabilities for obtaining various 
outcomes are given by pi = tr [ ].A

iPρ  
 More generally, a quantum observable with discrete 
outcomes is represented by a POVM. A POVM A is 
characterized by a set of positive operators {Ai} satisfy-
ing 0 ≤ Ai ≤ I, with ∑i Ai = I. The probabilities of obtain-
ing various outcomes are now given by pi = tr[ρAi]. 

Entropic measures of uncertainty 

The uncertainty in the outcome of a measurement is  
reflected in the spread of the associated probability dis-
tribution. In information theory, this is measured by vari-
ous measures of entropy of the probability distribution. 
For example, we have the Shannon entropy, defined as 
H({pi}) = –∑i pi log pi. More generally, we have the  
Rényi class of entropies 
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of which the Shannon entropy is a special case, obtained 
as limα→1, Hα. For a finite number of outcomes d, Shan-
non and Rényi entropies satisfy 0 ≤ Hα ≤ log d (≤α), 
where the lower limit is attained for the deterministic or 
zero-spread probability distribution pi = δij, for some j 
and the upper limit is attained for the uniform distribution 
pi = 1/d, ≤i. 
 We also have the Tsallis class of entropies defined as 
follows8 
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The Tsallis entropy reduces to the Shannon entropy in the 
limit β → 1. In particular 
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where once again the lower limit is attained for the zero-
spread probability distribution pi = δij for some j and the 
upper limit is attained for the uniform distribution 
pi = 1/d, ≤i. 

Uncertainty trade-off 

The uncertainty in the outcome of a measurement of  
observable A = A

i i ia P∑  in state ρ is given by S(A; ρ) = 
({tr[ ]}),A

iS Pρ  where S is any entropic measure. In the 
case of Shannon and Tsallis entropies, and the Rényi en-
tropy for α ≤ 1, S(A; ρ) is a concave function of ρ. Thus, 
for a pair of observables A, B, an entropic uncertainty  
relation (EUR) is a state-independent lower bound on the 
average of the entropies of A, B, of the form 
 

 1 [ ( ; ) ( ; )] ( , ), ,
2 SS A S B C A Bρ ρ ρ+ ≥ ∀  

 
where the observables A and B are measured on distinct 
and identically prepared ensembles of systems. Entropic 
uncertainty relations have been obtained for specific 
classes of observables for both the Shannon and Rényi 
entropies9–17, as well as for the Tsallis entropies18–21. For 
a comprehensive survey on EURs, we refer to the review 
article by Wehner and Winter4. EURs play a central role 
in proving security of quantum cryptographic protocols 
and are often thought to provide a measure of incompati-
bility of quantum measurements. 
 For the case of projective measurements, we recall the 
well-known necessary and sufficient condition for zero 
uncertainty trade-off. 
 
Lemma 1: 
 

 1( , ) inf [ ( ; ) ( ; )] 0,
2SC A B S A S B

ρ
ρ ρ= + =  

 
iff the observables A, B have a common eigenvector. 
 
 For a POVM A, the associated uncertainty can be  
similarly defined in terms of the entropy S(A, ρ) = 
S({tr[ρAi]}). The well-known Shannon EUR for a pair of 
POVMs A, B derived by Krishna and Parthasarathy22 
states that 
 
 1/ 2 1/ 2

,
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The following lemma5 gives the condition under which 
the uncertainty trade-off vanishes for a pair of POVMs. 
 
Lemma 2: Let A ~ {Ai} and B ~ {Bi} be two POVMs. If 
S is any suitable entropy measure, the lower bound on the 
average uncertainty 
 

 1( , ) inf [ ( ; ) ( ; )] 0,
2Sc S S

ρ
ρ ρ= + =A B A B  

 

iff there exists a state |ψ〉 such that Ak|ψ〉 = Bl|ψ〉 = |ψ〉 for 
some k, l. 
 
 Note that the Shannon EUR lower bound for POVMs 
stated in eq. (1) is consistent with this condition. 

Projective and non-projective measurements 

For an observable with a discrete spectrum, the von Neu-
mann-Lüders collapse postulate specifies the state of a 
system after the measurement. When an ensemble of  
systems in state ρ is subject to a measurement of the ob-
servable A = ,A

i i ia P∑  the post-measurement state of the 
sub-ensemble of all those systems which yield outcome ai 
is given by 
 

 / tr[ ].A A A
i i iP P Pρ ρ  

 
Thus, the post-measurement state of the entire ensemble 
is given by 
 

 ( ) .A A A
i i

i

P Pρ ρΦ =∑  (2) 

Uncertainty trade-offs for sequential projective 
measurements 

Once we have the collapse postulate given in eq. (2), we 
can discuss the uncertainty trade-off between observables 
A, B which are measured sequentially on a system in state 
ρ. Now, the uncertainty in the outcome of an A-measure-
ment is given as before by S(A; ρ), but the uncertainty of 
the outcome of the subsequent B-measurement is given 
by S(B; ΦA(ρ)). The following is the optimal Shannon 
EUR for sequential measurement of a pair of observ-
ables23. 
 
Theorem 3: The optimal Shannon EUR for a pair of 
observables A, B with discrete spectra measured sequen-
tially on state ρ is given by: 
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Further, when A and B have non-degenerate spectra, 
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Thus, in the sequential measurement case also, the uncer-
tainty trade-off bound vanishes iff the two observables 
have a common eigenvector. Further, it can also be 
shown that the uncertainty trade-off for sequential meas-
urements is greater than or equal to that for distinct 
measurements done on identically prepared systems 
 
  inf [ ( ; ) ( ; ( ))]AS A S B

ρ
ρ ρ+ Φ  

 inf [ ( ; ) ( ; )].S A S B
ρ

ρ ρ≥ +  (5) 

 
In Figure 1, we compare the different entropic uncer-
tainty lower bounds for a pair of qubit observables with 
Bloch vectors at an angle θ. ΛD1(θ) is the Deutch bound, 
ΛD2(θ) is the Maassen–Uffink bound, and ΛD(θ) is the op-
timal bound for the case of distinct measurements due to 
Sanchez-Ruiz15 and Ghirardi et al.24. ΛS(θ) is the optimal 
bound for the successive measurement scenario given in 
eq. (4). 

Non-projective measurements 

For a POVM A ~ {Ai}, there is no canonical specification 
of the post-measurement state; the associated measure-
ment transformation can now be chosen as any CP in-
strument ΦA implementing the POVM A (ref. 25). A CP 
instrument ΦA implementing A is a collection of com-
pletely positive linear maps iΦA  such that, the probabil-
ity of realizing outcome i is given by 
 
 tr[ ( )] tr[ ], .i iAρ ρ ρΦ = ∀A  
 
The overall transformation of state ρ by instrument ΦA is 
described by a quantum channel, that is, a completely 
positive trace-preserving (CPTP) map (also denoted by 
ΦA) 
 

 ( ) ( ).i
i

ρ ρΦ = Φ∑A A  

 
Recall that any CPTP map can be represented in the form 

†( ) ,i i iK Kρ ρΦ = ∑A  where the Kraus operators {Ki} sat-
isfy † .i i iK K∑ = I  The same observable can indeed be 
implemented by several different instruments. One simple 
implementation of a measurement of observable A ~ {Ai} 
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Figure 1. Uncertainty bounds for a pair of qubit observables with Bloch vectors at an angle θ (reproduced from ref. 23). 
 
 
is given by the Lüders instrument ,ΦAL  in which the post-
measurement state after a measurement of observable A 
on state ρ is given by 
 

 1/ 2 1/ 2( ) .i i
i

A Aρ ρΦ =∑A
L  

 
The class of CP instruments is the appropriate generaliza-
tion of the von Neumann–Lüders collapse postulate, 
viewed as a transformation on the class of density opera-
tors. Unfortunately, it does not provide any appropriate 
generalization of the von Neumann–Lüders collapse pos-
tulate for observables with a continuous spectrum, 
namely a generalization which satisfies either the gener-
alized Born statistical formula (which is the standard  
prescription for joint probabilities of commuting observ-
ables)26,27 or the repeatability property28. 
 This can be seen by noting that the dual of the meas-
urement transformation ρ → ΦA(ρ) = ,A A

i i iP Pρ∑  namely 
the map C → A A

i i iP CP∑  defines a conditional expecta-
tion on the set of all bounded operators B(H). The map 
C → A A

i i iP CP∑  characterizes a normal conditional ex-
pectation (a la Umegaki, Nakamura, Turumuru, Tomi-
yama29), B(H) → ,A′U  where A′U  is the commutant 
{ } ,A

iP ′  i.e. the set of all bounded operators commuting 
with A. The generalized Born statistical formula implies 
that the dual of the CPTP channel that characterizes the 
collapse should indeed be such a normal conditional ex-
pectation. However, it is a general mathematical result 
due to Arveson, Stormer30 and Davies31 that there are no 

such normal conditional expectations onto the commutant 
generated by the projectors of an observable with a con-
tinuous spectrum. Hence, there is no CPTP instrument 
implementing the measurement of an observable with 
continuous spectrum, which is consistent with the gener-
alized Born statistical formula. 

Measures of disturbance 

As explained above, for a general quantum measurement 
A on an ensemble of systems in state ρ, the postmeas-
urement state ΦA(ρ) of the ensemble is described via the 
action of a CPTP map ΦA. The distance between the 
states ρ and ΦA(ρ) is a valid measure of the disturbance 
caused to state ρ by a measurement A. 
 Using some of the standard measures of distance  
between density operators6, we define the following 
measures of disturbance due to measurement A 
 

 1
1( ; ) tr | ( ) |,
2

ρ ρ ρ≡ Φ −D AA  

 
 2( ; ) 1 [ ( ), ],F Fρ ρ ρ≡ − ΦD AA  
 
 ( ; ) || ( ) ||,ρ ρ ρ∞ ≡ Φ −D AA  (6) 
 
where tr|C| = tr(C†C)1/2 is the trace-norm, F[ρ, σ] = 
tr[σ 1/2ρσ1/2]1/2 is the fidelity and ||C|| is the operator 
norm. 
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 All three disturbance measures satisfy 
 
 0 ( ; ) 1, {1, , },Fα ρ α≤ ≤ ∈ ∞D A  
 
with Dα(A; ρ) = 0 iff ΦA(ρ) = ρ. Recently, this class of 
disturbance measures has been used in the context of 
quantifying incompatibility of a pair of observables7. The 
distance 1

2 tr | ( ) |ρ ρΦ −A  is convex in ρ, so that the corre-
sponding disturbance measure D1(A; ρ) attains its  
supremum for pure states. Similarly, the measures 
DF(A; ρ) and D∞(A; ρ) also attain supremum for pure 
states. 
 The following lemma5 summarizes the conditions for a 
pure state to be left undisturbed by a measurement. 
 
Lemma 4 (Zero-disturbance conditions): (a) For the 
projective measurement associated with a self-adjoint  
operator A with a purely discrete spectrum, Dα(A; |ψ〉) = 0 
(α ∈ {1, F, ∞}) if and only if |ψ〉 is an eigenstate of A. 
 
(b) If A ~ {Ai} is a POVM implemented by the Lüders  

instrument ,ΦAL  Dα(A; |ψ〉) = 0 (α ∈ {1, F, ∞}) if and 
only if |ψ〉 is a common eigenstate of the operators 
{Ai}32,33. 

 
(c) If A is a POVM implemented by a general CP instru-

ment †( ) ,i i iK Kρ ρΦ = ∑A  Dα(A; |ψ〉) = 0 (α ∈ {1, F, 
∞}) if and only if the state |ψ〉 satisfies 

 

 2| | | | 1.i
i

Kψ ψ〈 〉 =∑  

Disturbance trade-off for projective  
measurements 

From the condition for zero-disturbance for pure states in 
a projective measurement, we observe the following. For 
a pair of observables A and B with purely discrete spec-
tra, define the quantity 
 

 
|

1( , ) inf [ ( ;| ) ( ;| )].
2

d A B A Bα α αψ
ψ ψ

〉
≡ 〉 + 〉D D  

 
Then, 0 ≤ dα(A, B) ≤ 1 (α ∈ {1, F, ∞}), with dα(A, B) = 0 
if and only if A and B have a common eigenvector. Thus 
we have the following disturbance trade-off principle: 
 
For any two observables A and B with purely discrete 
spectra which do not have any common eignevector, 
there exists a quantity dα(A, B) > 0, such that for any 
pure state |ψ〉, the average of the disturbances due to 
measurements of A and B (performed independently, on 
identically prepared copies of |ψ〉) is greater than or 
equal to dα (A, B). 

A general disturbance trade-off for a set of observables 
{A1, A2, …, AN} is a state-independent lower bound of the 
form 
 

 1
1

1 ( ;| ) ( ,..., ), | ,
N

i N
i

A d A A
N α αψ ψ

=

〉 ≥ ∀ 〉∑D  

 
where dα (A1,…, AN) > 0 whenever the set of observables 
{Ai} do not have any common eigenvector. 
 The above disturbance trade-off principle holds only 
for pure state ensembles. If we take into consideration 
mixed states as well, then there is no non-trivial lower 
bound. In finite-dimension d, we have the maximally 
mixed state I/d, which is not disturbed by the measure-
ment of any observable, irrespective of the disturbance 
measure used. 
 Finally, we note that, although we have formulated the 
trade-off principle using a specific class of distance 
measures Dα, such a trade-off principle holds for any dis-
turbance measure which is based on a distance D(ρ, σ ) 
satisfying D(ρ, σ ) = 0 iff ρ = σ. 

Disturbance and uncertainty 

The disturbance trade-off principle for projective meas-
urements seems to bear a close resemblance to the well-
known uncertainty trade-off principle; the lower bounds 
in both cases vanish iff the set of observables has a com-
mon eigenvector. However, both conceptually and 
mathematically, the notions of disturbance and uncer-
tainty associated with a measurement are very different. 
Indeed, the disturbance measures in eq. (6) do not involve 
the probabilities for obtaining different outcomes in a 
measurement; whereas the entropies which are used to 
quantify uncertainty, measure the spread in the probabi-
lity distribution over the outcomes. 
 Thus, there is no obvious relation between the distur-
bance caused by a measurement and the uncertainty over 
its outcomes. However, for projective measurements, the 
eigenstates of the observable are the states which are left 
undisturbed by the measurement, and they are also the 
states in which the spread of the probability distribution 
is zero. Therefore, for projective measurements, the set of 
pure states with zero disturbance coincides with the set of 
zero uncertainty states. 
 Further, it is easy to see that there is a mathematical 
equivalence between the fidelity-based disturbance meas-
ure and the Tsallis entropy T2, for the case of projective 
measurements. 
 

 2
| 2( ;| ) 1 ( ( )) ( ;| ).A

F
i

p i T Aψψ ψ〉〉 = − = 〉∑D A  (7) 

 
This interesting equivalence between the fidelity-based 
measure of disturbance and the uncertainty measure given 
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by the T2 entropy holds only for pure states. For mixed 
states, the disturbance DF (A; ρ) is in general less than 
T2(A; ρ). 
 Using the equivalence in eq. (7), we can directly obtain 
disturbance trade-off inequalities for those classes of ob-
servables for which a T2 EUR can be obtained. 

Disturbance trade-off for mutually unbiased bases 

Let Bm ≡ {|im〉, i = 1, …, d} (m = 1, …, N) denote a set of 
N mutually unbiased bases (MUBs) in d-dimensions. Re-
call that two bases Bm, Bn are said to be mutually unbi-
ased if their respective basis vectors satisfy 
 

 2 1| | | , , .m ni j i j
d

〈 〉 = ∀  

 
Any set of N MUBs in d-dimensions satisfies the follow-
ing disturbance trade-off relation 
 

 
1

1 1 1( ;| ) 1 1 .
N

F m
mN N d

ψ
=

⎛ ⎞⎛ ⎞〉 ≥ − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠∑D B  

 
In dimensions where a complete set of (d + 1) MUBs  
exists, the disturbance trade-off relation becomes an exact 
equality for the complete set of (d + 1) MUBs. The above 
relation can be obtained as a direct consequence of the 
following bound due to Wu et al.34 
 

 2
|

1 1

1( ( )) 1 ,m

d N

i m

Np i
dψ 〉

= =

−
≤ +∑∑ B  

 
where 2

| ( ) | | |m
mp i iψ ψ〉 = 〈 〉B  denotes the probability of  

obtaining the ith outcome while measuring Bm on a pure 
state |ψ〉. 

Disturbance trade-off for qubit observables 

For any pair of observables in a two-dimensional Hilbert 
space, we have the following optimal disturbance trade-
off relation5. 
 
Theorem 5: For a pair of qubit observables A, B  
with spectral decompositions A = 2

1 | |,i i i ia a a=∑ 〉〈  B = 
2

1 | |,j j j jb b b=∑ 〉〈  and any pure state |ψ〉 ∈ C2, 
 

 21 1[ ( ;| ) ( ;| )] (1 ),
2 2F FA B cψ ψ〉 + 〉 ≥ −D D  (8) 

 
where c ≡ maxi,j = 1,2|〈ai|bj〉|. 
 
 The question of finding the lower bound on the average 
disturbance simplifies considerably once we use the 

Bloch sphere representation for qubit observables. In 
other words, we parameterize A and B in terms of unit 
vectors 3,a b ∈  and real parameters {αi, βi} as follows: 

1 2A aα α σ= + ⋅I  and 1 2 .B bβ β σ= + ⋅I  The quantity c is 
then given by 
 

 

1 , ( , 0);
2

1 , ( , 0).
2

a bc a b

a bc a b

+ ⋅
= >

− ⋅
= <

 

 
We refer to Mandayam and Srinivas5 for the further  
details of the proof. 
 We can also show that this bound is tight. When 

2( ) 1,a b⋅ =  c = 0, A and B commute and the RHS reduces 
to 0. This lower bound is attained for the common eigen-
states of A, B. When 0,a b⋅ =  1

2c =  A and B are mutu-
ally unbiased. The bound is 1/4, which is attained for any 
eigenstate of A or B. For any other value of ,a b⋅  the 
lower bound is attained for the states whose Bloch vec-
tors bisect the angle between a  and .b  The minimizing 
states are thus given by 
 

 1| | .
2 2

a b
c

ψ ψ σ± ±

⎛ ⎞⎡ ⎤±
〉〈 = + ⋅⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

I  

 
Since our disturbance measure DF (A; |ψ〉) is in fact the 
same as the entropy T2(A; |ψ〉), the trade-off relation in 
eq. (8) is nothing but a tight entropic uncertainty relation 
for the T2 entropy: 
 

 2
2 2

1 1[ ( ; | ) ( ; | )] (1 ).
2 2

T A T B cψ ψ〉 + 〉 ≥ −  (9) 

 
Our result for T2 assumes importance in the light of the 
fact that such optimal analytical bounds are known only 
for a handful of entropic functions, namely the Rényi  
entropies H2 (ref. 35), H1/2, and the Tsallis entropy T1/2 
(ref. 20). For the Shannon entropy, there is in general 
only a numerical estimate of the bound15,24. 

Disturbance trade-off for non-projective  
measurements 

In this section we consider the more general class of dis-
crete observables characterized by POV measures and  
associated measurement transformations characterized by 
CP instruments. While the uncertainty trade-off for a pair 
of POVM observables depends only on the positive  
operators characterizing the observables (see Lemma 2 
above), the associated disturbance trade-off crucially  
depends on the CP instruments which implement the 
measurements of these observables. We state our result 
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concerning the disturbance trade-off principle for such 
observables here and refer to Mandayam and Srinivas5 
for the proof. 
 
Theorem 6: For a pair of discrete POVMs A ~ {Ai} 
and B ~ {Bj}, whose measurements are implemented by 
appropriate CP instruments ΦA and ΦB, the average dis-
turbance 
 

 
|

1( , ) inf [ ( ; | ) ( ; | )],
2

dα α αψ
ψ ψ

〉
≡ 〉 + 〉D DA B A B  

 
satisfies 0 ≤ dα(A, B) ≤ 1 (α ∈ {1, F, ∞}). Further, if the 
measurements of A and B are implemented by Lüders 
channels ΦAL  and ,ΦBL  then,  
 
(i) dα(A, B) = 0 if and only if all the positive operators 

{A1, A2, …, B1, B2, …} have a common eigenvector. 
 
(ii) For any suitable entropy measure S, if cS(A, B) is  

the uncertainty trade-off, then, cS(A, B) = 0 ⇒ 
dα(A, B) = 0, but not vice versa. 

 
Our result thus implies that the disturbance trade-off for a 
pair of Lüders POVMs vanishes whenever the corre-
sponding entropic uncertainty trade-off vanishes, but not 
vice versa. We may illustrate this further by comparing 
the fidelity-based disturbance measure DF(A; |ψ〉) for a 
POVM A implemented by a Lüders channel ΦAL  meas-
ured on state |ψ〉, with the T2 entropy of the correspond-
ing probability distribution. Unlike in the case of 
projective measurements, the fidelity-based disturbance is 
less than or equal to the Tsallis T2 entropy for a POVM A 
measured via a Lüders Channel 
 

 2
2( ; | ) 1 | | ( ; | ).F i

i

A T Aψ ψ ψ ψ〉 ≤ − 〈 〉 = 〉∑D A  

 
Furthermore, using measurements which are more gen-
eral than the Lüders class, we can construct examples 
where the uncertainty trade-off cS(A, B) vanishes for a 
particular state |ψ〉, but the disturbances Dα(A; |ψ〉) and 
Dα(B; |ψ〉) are both strictly positive. 
 
Example 1: (dα(A, B) = 0 i cS(A, B) = 0). 
 
Let |φ1〉, |φ2〉, |φ3〉 ∈ H3 be an orthonormal basis for a 
three-dimensional Hilbert space H3. Consider the POVM 
A = {A1, A2, A3}. 
 

 1 1 1 2 2 3 3
1 1| | (| | | | ),
6 2

A φ φ φ φ φ φ= 〉〈 + 〉〈 + 〉〈  

 

 2 1 1 2 2 3 3
2 1| | (| | | | ),
3 2

A φ φ φ φ φ φ= 〉〈 + 〉〈 + 〉〈  

 3 1 1
1 | | .
6

A φ φ= 〉〈  

 
Consider a different POVM B constructed with vectors 

1 2 3{| , | ,| },φ φ φ′ ′〉 〉 〉  which form another orthonormal basis 
for H3. 
 

 1 1 1 2 2 3 3
1 1| | (| | | | ),
6 2

B φ φ φ φ φ φ′ ′ ′ ′= 〉〈 + 〉〈 + 〉〈  

 

 2 1 1 2 2 3 3
2 1| | (| | | | ),
3 2

B φ φ φ φ φ φ′ ′ ′ ′= 〉〈 + 〉〈 + 〉〈  

 

 3 1 1
1 | | .
6

B φ φ= 〉〈  

 
|φ1〉 is a common eigenvector of all the operators {Ai, Bj, 
i, j = 1, 2, 3}. Hence, measurements of A, B via Lüders 
instruments lead to a zero disturbance trade-off in state 
|φ1〉. Therefore, dα(A, B) = 0. However, since none of the 
POV elements {Ai, Bj, i, j = 1, 2, 3} has eigenvalue 1, 
there is no state with a zero uncertainty trade-off. There-
fore, cS(A, B) ≠ 0. A, B is thus an example of a pair of 
POVMs which has a zero disturbance trade-off, but at the 
same time a non-zero uncertainty trade-off. 

Concluding remarks 

The above example clearly shows that dα(A, B) = 0 i 
cS(A, B) = 0. Similarly, we have instances of general 
non-projective measurements where uncertainty trade-off 
vanishes in a state in which the disturbance trade-off is 
non-zero. The disturbance trade-off and the uncertainty 
trade-off are thus two distinct principles which reflect 
different aspects of complementarity between quantum 
measurements. 
 Our work thus brings to light an interesting aspect of 
complementarity in quantum theory, namely that over and 
in addition to the trade-off in uncertainties, there is a 
trade-off in the measurement-induced disturbances also. 
It will be interesting to investigate whether the lower 
bounds on the sum of disturbances for specific sets of  
observables assume further operational significance in the 
context of quantum cryptography. 
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