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The year 2015 is the centenary of Einstein’s creation 
of general relativity. Over the century general relati-
vity has gradually increased its footprints on main-
stream physics and this article highlights advances in 
the classical aspects of general relativity since its crea-
tion. 
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Introduction 

EINSTEIN arrived at General Relativity (GR), his relativis-
tic classical theory of gravitation on 25 November 1915 
(ref. 1). The prime motivation was to have a theory of 
gravity compatible with special relativity (SR) that 
agreed with Newton’s theory in the appropriate limit. 
Unlike SR that came in its final form over a year in 1905 
and involved only himself, GR went through manifold 
‘tinkering phases’ over eight long years and involved  
collaboration on mathematical aspects with Marcel 
Grossman and Michele Besso. As was later shown by 
Lovelock2, if one allows only second order equations and 
a single 4-dimensional ST metric, GR is the unique gravi-
tation theory based on Riemannian geometry. Beyond the 
new mathematical description was also a profound physi-
cal insight. The geometry of spacetime (ST) was no 
longer a fixed backdrop but a dynamical physical entity 
determined by the matter-energy content and nonlinear 
equations. The geodesics of ST determined the paths of 
light and freely falling particles. The geodesic deviation 
equation determines the curvature and the tidal forces; 
the curvature is determined by the matter and motion con-
tent of ST. The metric in the non-relativistic limit is re-
lated to the gravitational potential. Standard physics 
based on linearity is not adequate in general and the 
search for exact solutions using tensor calculus, covariant 
equations, structures in non-Euclidean geometry and co-
ordinate-free methods, the way forward. Generalizations 
of GR do exist. They include scalar tensor theories, theo-
ries with higher derivatives or torsion, bimetric theory, 
unimodular theories and theories in higher dimensions3. 
 Not only is GR universally acknowledged to being the 
epitome of mathematical elegance and conceptual depth 

but importantly for over a century demonstrated remark-
able observational success. Being very nonlinear, it has 
collaterally led to many developments in analytic and 
numerical techniques. GR is mathematically a compli-
cated nonlinear theory. So it was surprising to Einstein 
himself that an exact solution could be found so quickly: 
the Schwarzschild solution4 that describes the gravita-
tional field exterior to a spherically symmetric body as 
also the Schwarzschild constant density interior solution. 
Other interesting solutions included the linearized gravity 
solutions describing gravitational waves in analogy to 
electromagnetic waves, solutions corresponding to the 
Einstein static universe5, static de Sitter6, Friedman7,8 and 
Lemaître9 expanding models10 describing the gravita-
tional field of the whole universe, Vaidya metric11 repre-
senting a spherically symmetric radiating solution and 
Majumdar–Papapetrou solution representing system of 
charged black holes in equilibrium under their gravita-
tional and electrostatic forces12. For a long time this  
inspired mathematical research in GR to seek exact solu-
tions of Einstein’s equations (EE). The complexity of EE 
made this an interesting mathematical challenge even if 
the physical interpretation of some of these solutions was 
not very obvious. It led to interesting developments in al-
gebraic computing for long computations in tensor calcu-
lus typical of GR and later means to classify solutions of 
EE and recognize equivalent solutions that appeared new 
due to a different choice of coordinates. The use of sym-
metry groups to simplify the system of equations, the 
classification of exact solutions on the basis of symme-
tries, the search for techniques to generate new solutions 
from old constituted a major area of research in GR for 
many years13. It naturally led to the use of coordinate free 
methods, tetrad formalism, use of null tetrads, the New-
man Penrose formalism14 and methods to investigate  
kinematical properties of null and timelike vector fields 
describing radiation and matter respectively. In spite of 
these theoretical developments, in its first half century of 
its existence, GR was outside of mainstream physics in 
contrast to the following fifty years with increasing pro-
found applications in astronomy, astrophysics and cos-
mology. Though classical differential geometry was an 
adequate starting point for the initial studies, later deve-
lopments required a careful understanding of the global 
structure of spacetime, singularities and asymptotics to 
interpret these solutions15 and formalisms to disentangle 
physical effects from coordinate or gauge-dependent 
ones. 
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 In 1939 Oppenheimer and Snyder16 showed that col-
lapse of matter (greater than Chandrasekhar mass limit) 
due to gravitational self-attraction leads to astrophysical 
black holes (BH). Yet BH were not considered physical 
up to seventies due to twin concerns that the above result 
was based on exact spherical symmetry and used as 
source dust of uniform density. Insight into distinction 
between the coordinate and physical singularities led to 
the correct understanding of the Schwarzschild singular-
ity as a coordinate singularity17,18, the distinction of  
notions of infinite red shift surface and one way mem-
brane or event horizon and the Schwarzschild black hole. 
Penrose pointed out that higher multipoles would be radi-
ated away and hence generic collapse of massive stars 
also lead to BH19. This was confirmed by Price’s pertur-
bative calculations later. Using global methods Penrose 
showed that if appropriate causality conditions hold and 
matter and fields satisfy suitable energy conditions (satis-
fied by normal matter but violated by scalar fields leading 
to inflation) then closed trapped surfaces will form lead-
ing to singularities in gravitational collapse. Closed 
trapped surface occurs because the gravitational field is 
so strong that outgoing null rays from a two-sphere can-
not escape. The discovery of quasars brought about the 
transformation of BH from just mathematical curiosities 
to physical entities. Dramatic theoretical developments 
followed. The discovery of the Kerr solution20 which was 
realized to be a generalization of the Schwarzschild solu-
tion, its systematic global analysis by Carter21 and Boyer 
and Lindquist22, the critical distinction between the event 
horizon and infinite redshift surface23 leading to the no-
tion of the ergosphere, possibility of energy extraction, 
uniqueness theorems for BH, study of perturbations of 
BH, their stability24 and quasi-normal modes25, the amaz-
ing discovery of the laws of BH mechanics and their 
close analogy to laws of thermodynamics26,27. Not just for 
BH but more generally, relativistic effects play an impor-
tant role in the stability analysis of neutron stars and thus 
in the case of neutron stars lead to constraints on equa-
tions of state of nuclear matter at high densities28. 
 Hawking proved singularity results in the cosmological 
case leading on to the fundamental question of whether 
these were only a consequence of the high symmetry of 
these spacetimes or a feature of more generic situations. 
Direct analyses of the field equations was not adequate to 
address this question and an alternative characterization 
of singularities by geodesic incompleteness more effec-
tive15. Focusing or defocusing of geodesics is related to 
spacetime curvature and the trace of geodesic equation 
for timelike geodesics is the famous Raychaudhuri equa-
tion29 which relates the kinematical and dynamical pro-
perties of timelike and null vector fields to their 
acceleration, expansion, shear, and rotation and plays a 
key role in discussions of the singularity theorems. Going 
beyond is the question of the stability of the solutions of 
EE since it is not obvious whether small gravitational 

perturbations of Minkowski spacetime will fade away 
leading to its stability or grow to form a BH leading to 
instability. A mathematical opus is the Christodoulou-
Klainerman30 proof of nonlinear stability of Minkowski 
ST. One also has Friedrich’s proof of the stability of De 
Sitter31. Two open questions in mathematical relativity 
are the Strong Cosmic Censorship (SCC) conjecture and 
the Weak Cosmic Censorship (WCC) conjecture. The 
former relates to the generic nature of solutions of EE 
that are geodesically incomplete and the latter whether 
solutions of EE in gravitational collapse generically leads 
to formation of BH and not a naked singularity32. The 
stability of Kerr is still an open question. 
 GR is a mathematically elegant geometric description 
of gravitation. The technical structure of this picture as a 
partial differential equation system on the other hand is 
very complex. It is not merely nonlinear but unlike other 
familiar equations of physics not generally classifiable as 
a wave-like, potential-like or heat-like system. Choquet-
Bruhat33 first proved that EE is a well-posed Cauchy 
problem demonstrating that GR is like other physical 
theories and its initial configurations and motion deter-
mine its future evolution. This well-posedness makes 
possible numerical simulations to accurately model phe-
nomena in strong field regime by splitting the problem 
into two independent parts: 4 constraint equations to 
characterize the initial gravitational field and its rate of 
change, 6 equations to compute the evolution of the 
gravitational field and construct ST and its associated  
geometry. Unlike in EM, constraints of EE are harder to 
handle. In the popular conformal method one has seed 
data that can be freely chosen and determined data ob-
tained by solving constraint equations using the chosen 
seed data. This leads to an effective parametrization of 
the degrees of freedom of the gravitational field enabling 
one to develop initial data sets corresponding to the phys-
ics one is trying to describe. Important techniques include 
conformal thin sandwich method, simple connected sum 
gluing techniques and more recently Corvino gluing34 
that proves how very general interior gravitational con-
figurations can be smoothly glued to Schwarzschild exte-
rior. A very important development was the Arnowitt, 
Deser, Misner (ADM) formalism35 that delineates the ini-
tial data required and the constraints it satisfied for well-
defined ST development. The existence and uniqueness 
of maximal Cauchy development is studied by using 
functional analysis methods based on Sobolev spaces. EE 
has turned out to be an interesting and important system 
in partial differential equations (PDE) theory and geometric 
analysis. These led to the following significant results of 
mathematical relativity like the Positive energy theorem 
(Schoen, Yau, Witten)36,37 and the the Penrose inequality 
theorem38. For physical fields in Minkowski ST total  
energy-momentum is causal and future directed. In the 
presence of a gravitational field the result is not obvious 
because gravitational potential energy is negative.  
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Positive energy theorem shows that if matter sources 
have future directed causal 4 momentum density, both the 
total ADM 4 momentum and Bondi 4 momentum  
(4-momentum at any retarded instant) are also future  
directed and time-like. This led to a new invariant for  
asympotically flat Riemannian manifolds of interest to 
mathematicians. This work exposed general relativists to 
the powerful techniques at the interface of geometry and 
PDE (nonlinear geometric analysis) and attracted a new 
generation of mathematicians to unexplored profound 
global problems in GR. 
 From its preliminary exploratory studies in the seven-
ties, numerical relativity came of age in the last decade 
with the discovery by Choptiuk39 of critical phenomena 
in gravitational collapse providing unforeseen insights 
into full nonlinear regime of GR. He showed that in the 
evolution of a one parameter family of initial data set so-
lutions with large values collapse to BH and those with 
small values disperse. The transition value solution has 
special features including time symmetry described by 
scaling laws. There is universality in that it is seen for all 
choices of one parameter families. No general mathematical 
proof of its existence is known in GR. More recently, by 
a combination of geometric analysis and numerical meth-
ods it has been discovered that though Anti De Sitter is 
linearly stable it is nonlinearly unstable40. 
 The GR problem of motion goes back to the 1916 to 
the works of Einstein, Droste and De Sitter. They intro-
duced the post Newtonian (PN) approximation method 
that combines a weak-field expansion, slow-motion  
expansion and a near-zone expansion. The 1PN correc-
tions to Newtonian Gravity for describing the dynamics 
of N-extended bodies had problems related to treatment 
of the internal structures of the bodies and only in the  
famous 1938 work of Einstein, Infeld and Hoffmann 
(EIH)41 did the GR N-body problem reach its first stage 
of maturity as expounded in the books of Fock et al. and 
of Landau–Lifschitz42. In the 1916 paper exploring 
physical implications of GR, Einstein43 proposed the ex-
istence of gravitational waves (GW) as one of its impor-
tant consequences. Soon after, Einstein44 calculated the 
flux of energy far from source; the famous quadrupole 
formula and discussed in analogy with EM the related  
radiation reaction or radiation damping, distinguishing 
between energy carrying waves in contrast to non-energy 
carrying wave-like coordinate artefacts. In 1922, Edding-
ton pointed inapplicability of the above derivation for 
self-gravitating systems45. Landau and Lifshitz and Fock 
extended the quadrupole formula to weakly self-
gravitating systems and these constitute two different  
approaches to GW generation today. The complication 
for the self-gravitating case is fundamental since higher 
order PN calculations require dealing with higher order 
non-linearities of EE. The physical reality of GW re-
mained in dispute for decades because of issues related to 
delineating physical degrees of freedom from coordinate 

or gauge effects. Pirani46 by focussing on the effect of 
GW rather than its generation showed that GW are Weyl 
tensor waves. In the sixties Bondi et al.47 proved that far 
from the source one can define a News function (deriva-
tive of shear) to describe energy carried away by GW. 
Chandrasekhar48 was first to show conceptually that ra-
diation reaction problem could be solved for continuous 
systems. Energy and angular momentum radiated as GW 
was correctly balanced by the loss of mechanical energy 
and angular momentum. His work gave astrophysicists 
confidence that GR was physically reasonable and well 
behaved. However, in the gauge he used, some terms at 
2PN were divergent raising doubts for more mathemati-
cally demanding relativists49. The discovery in 1974 by 
Hulse and Taylor50 of the binary pulsar 1913 + 16 was a 
watershed event. Radio pulsar timing observations allow 
one to reconstruct the orbit and measure the related inspi-
ral of this system due to emission of GW. This provides 
high quality data that is proof that GW exist leading to a 
Nobel Prize in 1993 to Hulse and Taylor51. The prospects 
of testing theory against the Hulse-Taylor system once 
again revived more critical questions regarding existing 
treatments of GW, forcing a revisit to approximation 
methods in GR to remedy their mathematical shortcom-
ings52. It mandated improved approaches to the N-body 
problem: modern versions of EIH going beyond 1PN 
relativistic effects to 2.5PN EOM, i.e. inclusion of terms 
of O(v5/c5) beyond the leading Newtonian acceleration. 
This involved careful control of ultraviolet (uv) diver-
gences arising from the use of delta functions to model 
point particles in a nonlinear theory. The discovery of 
similar binary neutron star systems implies the existence 
of binary neutron star population emitting GW for hun-
dreds of million years before coalescing spectacularly in 
sensitivity bandwidth of GW detectors like LIGO and 
Virgo. Even GW from such strong systems are weak sig-
nals buried in the noise of the detector requiring tech-
niques like matched filtering both for detection and later 
for characterization53. Matched filtering requires the best 
possible model of the gravitational waveform favoring 
sources like coalescing compact binaries (CCB) (NS-NS, 
BH-BH, NS-BH) over unmodelled sources like superno-
vae. This has led to spectacular theoretical progress in  
2-body problem in GR54–56 complementing spectacular 
experimental progress in GW detection endeavours. 
Many approximation methods have been employed in this 
quest. The ADM approach has been effective for compu-
tations of the EOM while the MPM-PN approach of 
Blanchet et al.55 has been also crucial in the computation 
of the far zone fluxes including the hereditary contribu-
tions to them. Other methods include the strong field 
point particle approach56, the Effective Field Theory57, 
Direct Integration of the relaxed Einstein equation 
(DIRE)58,59 and the perturbation approach in the test par-
ticle limit54. The conservative terms in the two-body 
problem is computed to 4PN order beyond the Newtonian 
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Table 1. Breakup of different areas of GR as represented in the triennial meetings of the International Society of General Relativity and Gravita-
tion (ISGRG) as documented in the available proceedings. Beyond 1983 the notation a + b represents plenaries (a) and workshops (b). In the  
  earlier meetings the proceedings are not as uniform. In some like 1959, 1968 and 1977 they represent all the talks and not just the plenaries 

Year   GRn   Place  Class.  Quant.  Cosm.  Ap.  GW  Exp. Others 
 

1955  GR0  Berne  17  5  7  0  1  2  – 
1957  GR1  Chapel Hill  9  7  4  0  1  1  2 
1959 GR2  Royaument  31  5  1  0  8  – – 
1962  GR3  Jablonna  26  6  5  0  1  2  1 
1965  GR4  London  17  1  1  5  1  – – 
1968  GR5  Tbilisi  85  18  13  – – 8  9 
1971  GR6  Copenhagen  1 + 7  1 + 4  2 + 2  2 + 1  2 + 1  2 + 1  – 
1974  GR7  Tel Aviv  4  2  1  2  1  2  2 
1977  GR8  Waterloo  244  71  22  28  28  8  – 
1980  GR9  Jena  7  3  – – 3 1 4 
1983  GR10  Padova  5 + 4  3 + 2  4 + 2  0 + 1  3 + 2  1 + 2  1 
1986  GR11  Stockholm  6 + 7  3 + 2  1 + 3  1 + 0  1 + 2  1 + 2  = 
1989  GR12  Colorado  4 + 7  3 + 5  3 + 3  2 + 1  2 + 2  2 + 2  2 
1992  GR13  Cordoba  6 + 6  5 + 3  2 + 3  2 + 1  2 + 2  1 + 1  – 
1995 GR14  Florence  6 + 5  3 + 3  2 + 2  2 + 1  4 + 1  – – 
1997  GR15  Pune  6 + 5  3 + 4  2 + 4  2 + 1  3 + 5  1 + 0  3 
2001  GR16  Durban  6 + 5  3 + 4  2 + 4  1 + 13 + 5  0 + 1  1 
2004  GR17  Dublin  3 + 5  5 + 3  3 + 0  2 + 3  3 + 6  0 + 1  2 
2007  GR18 Amaldi7 Sydney  3 + 5  3 + 4  2 + 2  1 + 2  3 + 6  1 + 1  – 
2010  GR19  Mexico  3 + 3  3 + 4  2 + 2  4 + 2  3 + 5  0 + 1  – 
2013  GR20 Amaldi10 Prague  5 + 6  3 + 2  2 + 23 + 1  5 + 8  1 + 1  2 

 
 
acceleration in the comparable mass case60. In the compa-
rable mass case, the GW flux is known to 3.5PN order 
beyond the leading Einstein quadrupole formula corre-
sponding to 6PN dissipative terms in the acceleration61. 
In the test particle limit the GW flux for the 
Schwarzschild case is known to 22PN (ref. 62) and for 
the Kerr case to 11PN (ref. 63). The PN approximations 
break down eventually around the LSO but resummation 
techniques like Pade approximants can be used to extend 
their domain of applicability64. The Effective-One-Body 
(EOB) approach is a particular non-perturbative resum-
mation of PN-expanded EOM to extend validity of PN 
results beyond the last stable orbit (LSO), and up to the 
merger and ringdown42. Today we know that GW must 
exist in any relativistic theory of gravitation like GR but 
the properties on GW in different theories can be different. 
Thus, when GW detections become routine it has the  
potential to become an essential tool for astrophysics, 
precision cosmology and eventually fundamental phys-
ics65. 
 A tour de force in the effort to compute GW from CCB 
was due to Pretorius66 who produced the first simulation 
with large number of orbits through merger using modi-
fied harmonic coordinates, compactification of numerical 
domain at spatial infinity, singularity excision and damp-
ing of constraints. Post his amazing breakthrough in NR, 
one has reliable waveforms for the late inspiral and 
merger parts of the binary evolution which can be used 
for constructing templates including merger and ring-
down. Other groups using other methods like Baumgarte, 
Shapiro, Shibata, Nakamura (BSSN) equations and punc-

ture methods have followed. The waveforms are cali-
brated and interpreted by PN inspiral results. They 
showed late inspirals, plunge and mergers are tamer than 
expected: there are no spin flips at merger or signatures 
of nonlinear dynamics at plunge. Unforeseen was also the 
substantial kick of the final BH from coalescence for 
spinning black holes with aligned spins67. There is work 
on building bridges between analytical and numerical 
methods via quasi-local horizons and definitions of mass, 
angular momentum, multipole moments associated with 
them and balance laws. The aim is to construct invariant 
tools to extract physics from numerical simulations in 
fully nonlinear and dynamical regimes68. The state of the 
art in numerical relativity (NR) simulation69 has pro-
gressed tremendously over the decade since then. From 
short simulations of about 20 orbits; the latest one based 
on Spectral Einstein Code (SpEC) is 25 times longer. We 
have the first NR simulation of compact binary (mass ra-
tio 7; total mass 45.5 M?, 125 orbits) whose gravitational 
waveform is long enough to cover the entire frequency 
band of Advanced LIGO. There is good consistency of 
various approaches and a possibility to compare them to 
models based on PN, EOB and phenomenological models 
for inspiral, merger and ringdown (IMR). 
 In the Chapel hill meeting of 1957 considered GR1, 
classical GR was referred to as unquantized gravitation 
probably reflecting the hope that quantum gravitation was 
just around the corner. Since then, classical GR has re-
vealed unforeseen facets and gone far beyond the initial 
traditional mathematics connections to symbiotic ex-
changes with new emerging areas like geometric analysis, 
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Table 2. Interesting topics in classical GR in the GRn meetings 

1955: GR0: Equations of motion (EOM) 
1957: GR1: Initial value problem 
1959: GR2: Equations of motion, conservation laws 
1962: GR3: Petrov classification, characteristic initial value problem 
1965: GR4: Relativistic collapse, gravitational radiation, lensing 
1968: GR5: Singularity, Newman Penrose, global structure of Kerr, separability of wave equations in Kerr 
1971: GR6: Global structure, gravitational collapse, gravitational wave (GW) detection, cosmological singularities, parametrized post Newtonian 

framework 
1974: GR7: Bondi Metzner Sachs, Processes around BH 
1977: GR8: Algebraic computing, NR of colliding BH, BH perturbations, singularities, solution generation techniques, rotational instabilities, 

binary pulsar, EOM, cosmic censorship 
1980: GR9: Algebraic computation, initial value problem, BH, singularities, global issues, positive energy theorem, twistors, exact solutions 
1983: GR10: Perturbations of BH, cosmic censorship, asymptotics, EOM of compact bodies and GW, positive energy 
1986: GR11: BH uniqueness, twistors, NR, positive energy 
1989: GR12: Global properties of EE, rotating NS, NR, colliding waves 
1992: GR13: NR, stability of Minkowski, GW 
1995: GR14: NR in cosmology and BH, stability, cosmic censorship 
1997: GR15: Critical phenomena, asymptotics, NR 
2001: GR16: Inequalities, PN generation of GW, Constraint Eqns, NR 
2004: GR17: NR, mathematical GR, gravitational self-force 
2007:  R18: Cosmic censorship, isolated horizons, stellar dynamics 
2010: GR19: Stability of Kerr, BH uniqueness, NR 
2013: GR20: Instability of ADS, geometric inequalities, exact solutions in higher dimensions, NR, GW by effective field theory. 

 
 
numerical computations, high energy physics and gravita-
tional wave astronomy. Classical GR has become an inte-
gral part of the core toolkit every physicist must be 
equipped with to investigate and comprehend the uni-
verse we live in. 
 In Table 1, is displayed the distribution of topics 
among classical GR, quantum GR, cosmology, astrophys-
ics, gravitational waves, gravity experiments and other 
topics in the triennial GRn conferences since its inception 
in 1955. In Table 2, before concluding, I also enumerate 
the important topics in classical GR covered in these con-
ferences to give a rough idea of how things evolved. 
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