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The equations of motion describing all physical  
systems, excluding gravity, remain invariant if a con-
stant is added to the Lagrangian. In the conventional 
approach, gravitational theories break this symmetry 
exhibited by all other physical systems. Restoring this 
symmetry to gravity and demanding that gravitational 
field equations should also remain invariant under the 
addition of a constant to a Lagrangian, leads to the in-
terpretation of gravity as the thermodynamic limit of 
the kinetic theory of atoms of space. This approach  
selects, in a very natural fashion, Einstein’s general 
relativity in d = 4. Developing this paradigm at a dee-
per level, one can obtain the distribution function for 
the atoms of space and connect it up with the thermo-
dynamic description of spacetime. This extension  
relies on a curious fact that the quantum spacetime 
endows each event with a finite area but zero volume. 
This approach allows us determine the numerical  
value of the cosmological constant and suggests a new 
perspective on cosmology. 
 

Keywords: Emergent gravity, horizon thermodynam-
ics, quantum gravity, spacetime entropy. 

The importance of being hot 

A crucial fact about normal matter, say, a glass of water, 
which is almost never stressed in textbooks is the follow-
ing: You could have figured out that water must be made 
of discrete atoms without ever probing it at scales com-
parable to atomic dimensions! All you need to realize is 
that water can be heated and hence must have an internal 
mechanism to store the energy which you supply to it. This 
is the breakthrough in the understanding of the nature of 
heat and temperature1 which came with the work of Boltz-
mann, who essentially said: ‘If you can heat it, it has micro-
scopic degrees of freedom.’ This profound insight 
underscores the following fact: The existence of micro-
scopic degrees of freedom leaves a clear signature even at 
the largest macroscopic scales in the form of temperature 
and heat. One can even count the number of atoms (see note 
1), using purely macroscopic variables through the relation 
 

 B .
(1/ 2)

ENk R
T

= =  (1) 

 

Again, standard textbooks do not stress the beauty of this 
result. The variables in the right hand side, E and T, have 

valid interpretations in the continuum (thermodynamic) 
limit, but N in the left hand side has no meaning in the 
same limit. The N actually counts the number of atoms in 
the system, the very existence of which is not recognized 
by continuum thermodynamics! So you do not need the 
technology capable of probing matter at angstrom scales 
in order to figure out that matter is actually made of  
atoms. The mere fact that matter can be hot, is enough – 
if you are as clever as Boltzmann. 
 The key new variable which distinguishes thermody-
namics from point mechanics is the heat content TS of 
matter which is the difference F – E between the free en-
ergy and internal energy of the system. Expressed in 
terms of densities, the Gibbs–Duhem relation (for  
systems with zero chemical potential) tells us that 
Ts = P + ρ, where s is the entropy density, ρ the energy 
density and P the pressure. The heat density is something 
uniquely thermodynamic and has no direct analog in point 
mechanics. More is indeed different. 
 Let us now proceed from normal matter to the fabric of 
spacetime. Work done in the last several decades2–6 
shows that even spacetime, like matter, can possess a heat 
density. As I will soon describe, it is possible to associate 
a temperature and entropy density with every event in 
spacetime just as you could have done it to a glass of  
water. On the other hand, one traditionally described the 
dynamics of spacetime through some field equation for 
gravity because Einstein told us that gravity is nothing 
but the curvature of spacetime. If we take both  
these results seriously, we are led to the following con-
clusions: 
 
• The Boltzmann principle tells us that if spacetime can 

be hot, it must have microstructure. What is more, we 
should be able to count the atoms of spacetime without 
having the technology to do Planck scale experiments 
just as Boltzmann guessed the existence of atoms of 
matter without doing angstrom scale experiments. We 
would expect a relation like eq. (1) to exist for the 
spacetime. 

• If the spacetime is like a fluid made of atoms, the 
gravitational field equations must have the same status 
as the equations describing, say, the flow of water. 
Therefore, we should be able to derive them from a 
purely thermodynamic variational principle. Further, 
the equation itself should allow a reinterpretation in a 
purely thermodynamic language rather than in the 
conventional geometrical language. Consequently, we 
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would expect several variables, which are usually con-
sidered geometrical, to have an underlying thermody-
namic interpretation. 

• The discreteness of matter can be taken into account in 
the kinetic theory by introducing a distribution func-
tion f (xi, pi) such that dN = f (xi, pi)d3xd3p counts the 
number of atoms in a phase volume. Such a description 
recognizes discreteness but yet works at scales such 
that the volume d3x is large enough to, say, contain 
sufficient number of atoms. We should be able to  
develop a similar concept for spacetime which recog-
nizes the discreteness at the Planck scale and yet  
allows the use of continuum mathematics to describe 
the phenomena. 

 
It turns out that the above goals can indeed be achieved 
thereby providing a thermodynamic description of (what 
we call) gravity. Further, such an approach allows us to 
understand several aspects of conventional gravity at a 
deeper level and – most importantly – provides a novel 
perspective on cosmology capable of predicting the  
numerical value of cosmological constant. I will now  
describe how all these come about. 

Why are spacetimes hot? 

The temperature of a material object is purely kinematic 
in the sense that a metal rod and a glass of water – having 
completely different structural properties – can possess 
the same temperature. Similarly, one can associate a tem-
perature with an event in a spacetime which is completely 
independent of the field equations of gravity which  
determined the structure of that spacetime. Let me briefly 
describe how one arrives at this concept just from the  
kinematics of spacetime. 
 Principle of equivalence tells us that (i) the gravita-
tional field is described by the metric of a curved space-
time and (ii) one can determine the influence of gravity 
on all other systems by a judicious application of the laws 
of special relativity in the freely falling frame (FFF), 
around any event. This influence can be completely en-
coded in the equation 0,a

a bT∇ =  where a
bT  is the sym-

metric energy momentum tensor of the matter and the a∇   
depends on the background geometry describing a gravi-
tational field. Applying this to the electromagnetic field, 
one finds that gravity affects the propagation of light rays 
and thus the causal structure. In particular, it is easy to 
construct observers (i.e. timelike congruences) in any 
spacetime such that part of the spacetime will be inacces-
sible to them. A generic example of such an observer  
is provided by the local Rindler observers7 constructed  
as follows: Start with the FFF around any event P, with 
coordinates (T, X) and boost to a local Rindler  
frame (LRF) with coordinates (t, x) constructed using  
some acceleration a, through the transformations:  

X = x cosh(at), T = x sinh(at). There will be a null surface 
passing though P which will be the X = T surface in the 
FFF; this null surface will now act as a patch of horizon 
to the x = constant Rindler observers. 
 This LRF leads to the most beautiful result4 we know 
of that arises on combining the principles of general rela-
tivity and quantum field theory: The local vacuum state, 
of the freely falling observers around an event, will  
appear as a thermal state to the local Rindler observer 
with the temperature 
 
 B ( / )( /2 ),k T c a π=  (2) 
 
where a is the acceleration of the local Rindler observer 
which can be related to other geometrical variables of the 
spacetime if required. This temperature tells us that 
around any event, in any spacetime, there exist observers 
who will perceive the spacetime as hot. These local  
Rindler observers will also notice that matter takes a very 
long time to cross the local Rindler horizon thereby  
allowing for thermalization to take place. Since the local 
Rindler observer attributes a temperature T to the hori-
zon, she will interpret the energy associated with the mat-
ter that crosses the null surface (asymptotically), as some 
amount of energy ΔE being dumped on a hot surface, 
thereby contributing a heat content ΔQm = ΔE. One can 
show that the resulting heat density (energy per unit area 
per unit time) of the null surface, contributed by matter 
dumped a local Rindler horizon, as interpreted by the  
local Rindler observer, is given by 
 

 m
m 2

d
[ ] .

d d
a b

a ab
Q

T
xγ λ

≡ =H  (3) 

 
The heat transfered by matter is obtained by integrating 
Hm with the integration measure 2d d dxγ λΣ ≡  over the 
null surface generated by the null congruence a,  
parametrized by λ. (The factor 2d xγ  is the transverse 
area element of the λ = constant cross-section of the null 
surface.) There are two features which are noteworthy  
regarding Hm. 
 
• If we add a constant to the matter Lagrangian (i.e. 

Lm → Lm + constant, the a
bT  changes by a

bT  → a
bT  + 

(constant) .a
bδ  The Hm, defined by eq. (3) remains  

invariant under this transformation. 
• The heat density vanishes if .a a

b bT δ∝  So the cosmo-
logical constant has zero heat density though it has 
non-zero energy density. In fact, for an ideal, comov-
ing fluid, Tab

a b = (ρ + P) and hence the heat density 
vanishes only for the cosmological constant with equa-
tion of state ρ = −P. 

 
Thus the kinematics of spacetime allows us to associate 
an (observer dependent) temperature with every event in 
spacetime and a heat density contributed by matter with 
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every null surface. Our next job is to develop a thermo-
dynamic variational principle to obtain the dynamics of 
the spacetime. 

The guiding principle for gravitational dynamics 

Recall that the equations of motion for matter remain in-
variant when we add a constant to the Lagrangian. It 
seems reasonable to postulate that the gravity should not 
break this symmetry which is present in the matter sector. 
Since Tab is the most natural source for gravity (as can  
be argued from the principle of equivalence and  
considerations of the Newtonian limit), this leads to the 
demand 
 
• The extremum principle which determines the dynam-

ics of spacetime must remain invariant under the shift 
a

bT  → a
bT  + (constant) .a

bδ  
 
It can be easily proved8 that this principle rules out the 
possibility of varying the metric tensor gab (in an unre-
stricted manner) in a covariant, local, action principle to 
obtain the field equations! Therefore, our variational 
principle cannot use gab as the dynamical variables and 
we need to introduce some other auxiliary variables. Fur-
ther, in the traditional approach, Tab arises as the source 
when we vary the metric in the matter Lagrangian. But 
since we are not varying gab, but still want Tab to be the 
source, we need to explicitly include Tab in the variational 
principle. So the variational principle has to depend on 
Tab and yet be invariant under a

bT  → a
bT  + (constant) .a

bδ  
The simplest choice (involving the least number of auxil-
iary degrees of freedom) will be to demand that the varia-
tional principle has the form 
 

 tot m g md ( ); [ ] ,a b
a abQ n T n n≡ Σ + ≡∫ H H H  (4) 

 
where the null vector na acts as the auxiliary variable. 
Since Qtot depends (linearly) on Tab only through the heat 
density Hm[na] in eq. (3), it is obviously invariant  
under the shift a

bT  → a
bT  + (constant) .a

bδ  The Hg is  
the corresponding contribution from gravity which is  
yet to be determined. This approach introduces an  
arbitrary null vector na into the variational principle 
which, at this stage, is just an auxiliary field. But since no 
null vector is special, the extremum condition should 
hold for all na, leading to a constraint on the background 
metric gab thereby determining the dynamics of space-
time. 
 Obviously, the form of the gravitational heat density 
Hg determines the spacetime structure, just as the form of 
entropy functional determines the structure of a material 
body. A natural choice9,10 for Hg, which is quadratic in 
∇n will have the form 

 g 2
1 (4 ),

16
ab c d

cd a b
P

P n n
Lπ

⎛ ⎞
= − ∇ ∇⎜ ⎟⎜ ⎟

⎝ ⎠
H  (5) 

 
where ab

cdP  is a dimensionless tensor to be determined 
and 2

PL  is an arbitrary constant, with the dimensions of 
area. (This expression, by itself, may not look thermody-
namical but it is indeed the heat density of gravity – 
which should be obvious from the fact that we are adding 
it to the heat density of matter. This will become clearer 
later on, see eq. (8).) We require that the condition, 
δQtot/δna = 0 for all null vectors na at a given event, 
should constrain the background geometry. This require-
ment leads to the expression 
 
 2 2 m m 2 2 m m

2 2 m m 2 2 m m

...
... ... ,aba b a b c d c dab

cd cdc d c d a b a bP R Rδ∝  (6) 

 
where 2 2 m m

2 2 m m

...
...

aba b a b
cdc d c dδ  is the totally antisymmetric m-dimen-

sional determinant tensor. The resulting field equation is 
identical to that of (what is known as) the Lanczos–
Lovelock model9–11 with the cosmological constant  
appearing as an integration constant. (These models have 
the interesting – and unique – feature that, the field equa-
tions are second degree in gab!) The ‘entropy tensor’ ab

cdP  
determines the entropy of horizons in the resulting theory 
through the expression6,11 
 

 1 ,
8

abcd
ab cds Pγ ε ε= −  (7) 

 
(where εab is the binormal to the horizon surface). One 
can show that the onshell value of Qtot is indeed (the dif-
ference in) the corresponding heat density of the theory 
 
 2

2

2
tot locd ( )| .Q x T s λ

λ= ∫  (8) 

 
(This result also confirms that the Hg – which is added to 
the heat density of matter – can indeed be interpreted as 
the heat density of gravity.) Thus, the specification of  
horizon entropy specifies the ab

cdP  and selects the corre-
sponding Lanczos–Lovelock model. The temperature of 
the spacetime, as we saw before, is purely kinematic, but 
specifying the form of horizon entropy in eq. (7), speci-
fies the dynamics of the theory. This is precisely what we 
expect in the thermodynamic description of a system. 
 In d = 4 dimensions, ab

cdP  reduces to ab
cdP  = (1/2) × 

( ).a b b a
c d c dδ δ δ δ−  The resulting equation for the back-

ground spacetime is identical to Einstein’s equation 
 
 2(8 )a a a

b P b bG L Tπ δ= + Λ  (9) 
 
with an undetermined cosmological constant. By the  
very construction, the cosmological constant (for which 

( ) 0)a b
abT n nΛ =  cannot appear in the extremum principle; 
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but since the theory is invariant under the shift 
a

bT  → a
bT  + (constant) ,a

bδ  it arises as an integration 
constant. (So we need a further principle to fix its value 
once and for all. I will come back to this issue later on.) 
 Equation (9) is written in the standard form found in 
the text books. It is, however, quite incongruous to claim 
that gravity is thermodynamics and then write the field 
equations in terms of conventional geometrical language! 
I will briefly describe how one can rewrite the same 
equation in a purely thermodynamic language and also 
use it to count the density of atoms of spacetime in ex-
actly the same manner as we could use eq. (1) to count 
the atoms of matter. 
 To begin with, let us consider any static spacetime  
foliated by a series of spacelike hypersurfaces. Let V be  
a 3-dimensional region in a spacelike hypersurface with a 
2-dimensional boundary ∂V, which we could choose to be 
an equipotential surface (corresponding to constant lapse 
function). We can then show that12,13 the gravitating 
(Komar) energy EKomar contained in V is equal to the 
equipartition heat energy of the surface ∂V if we associate 
dN = dA/ 2

PL  degrees of freedom with each area element 
dA. That is, we can show 
 

 
2

Komar B loc sur B avg2
d 1 1 ( ),

2 2P

x
E k T N k T

L
γ ⎛ ⎞= ≡⎜ ⎟

⎝ ⎠∫  (10) 

 
where Tavg is the average temperature of ∂V and 
Nsur = Asur/L 2

P . So we can actually count the microscopic 
degrees of freedom through an equipartition law which – 
since it relates bulk and boundary energies – could be 
called holographic equipartition. (One can rescale 
(1/2)kBT → (ν/2)kBT, Nsur → Asur/νL 2

P  without changing 
the result; we have chosen ν = 1.) 
 We can do better. Consider the most general spacetime 
rather than static spacetimes. In this case, we can associ-
ate with the bulk energy EKomar the number Nbulk, defined 
as the number of degrees of freedom in V if EKomar is at 
equipartition at the temperature Tavg. That is 
 

 Komar
bulk

avg

| |
.

(1/ 2)
E

N
T

≡  (11) 

 
It then turns out that14 the time evolution of the spacetime 
geometry in V is driven by the difference between the 
bulk and boundary degrees of freedom. Specifically 
 

 3
avg sur bulk

1 1d £ ( ),
8 2

ij a
a ijx hu g N T N Nξπ

= −∫  (12) 

 
where (1/ 2)( ),c c c d c d

ab ab a ab b adN δ δ≡ −Γ + Γ + Γ  ξa ≡ Nua is 
the time evolution vector, where ua is the velocity of the 
observers moving normal to the foliation. A simple corol-
lary is that all static12,13 spacetimes maintain holographic 

equipartition in terms of the number of degrees of free-
dom in the bulk and boundary 
 
 Nsur = Nbulk, (13) 
 
which, of course, is a nicer restatement of eq. (10). 
 The role of Planck constant  in this approach is worth 
emphasizing. Relativity brings in the speed of light c, the 
Davies–Unruh temperature brings in  and the expression 
for heat density Hg introduces the quantum of area 2 .PL  
When we take the Newtonian limit of the gravitational 
field equations, we will end up getting the gravitational 
force to be 
 

 
3 2

1 2
2 .Pc L m m

F
r

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (14) 

 
We should resist the temptation to call the combination 

3 2( / )Pc L  as G which is independent of . Equation (14) 
tells us that the  → 0 limit does not exist: Gravity is 
quantum mechanical at all scales! Just as matter is quan-
tum mechanical at all scales – the individual atoms will 
collapse  → 0 limit – the spacetime and gravity are also 
quantum mechanical at all scales. The Planck constant 
plays a more crucial role in this approach than in the 
usual paradigm. 

Distribution function for the atoms of space 

The above discussion highlights the clear analogy between, 
say, a fluid and the spacetime from a thermodynamic per-
spective. The equipartition laws in eq. (1) and eq. (10), in 
particular, allow us to count the number density of atoms in 
either of these systems. The next logical step will be to take 
these ideas one level deeper and obtain the gravitational 
heat density Hg from microscopic considerations. 
 To do this, we need to take into account the discreteness 
of spacetime, arising from the quantum of area 2 ,PL  without 
losing the privilege of using continuum mathematics in our 
description. In the case of normal fluid, the use of a distri-
bution function allows us to reconcile these two mutually 
contradictory requirements. When you say dN = f (xi, pi) × 
d3xd3p counts the number of atoms around an event xi (with 
momentum pi) in a small phase volume, you are assuming 
that d3x is small enough to be considered infinitesimal and 
yet big enough to contain sufficiently large number of  
atoms; by the very process of counting, f (xi, pi) incorpo-
rates discreteness while allowing the use of continuum 
mathematics. Proceeding by analogy, we are looking for a 
distribution function f (xi, nj) which could count the num-
ber of atoms of space at an event xi with an additional  
dynamical variable nj. One might guess that nj could  
possibly be related to the null vector which occurs in the 
gravitational heat density Hg but this remains to be  
obtained from the microscopic analysis. 
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 Since the distribution function has to be a primitive 
construct in the spacetime, it seems natural to assume that 
the number of atoms of spacetime will be proportional ei-
ther to the volume measure or the area measure associ-
ated with a given event. In the continuum description of 
spacetime, an event has zero area or volume associated 
with it and hence we cannot hope to obtain a f (xi, nj) from 
such a construction. This is, however, understandable. Un-
less we incorporate the quantum of area into the description 
of spacetime, one cannot hope to get a sensible distribution 
function for the atoms of spacetime. So, our strategy will be 
to incorporate the zero-point area 2

PL  into the fundamental 
description of spacetime in a suitable manner, define ap-
propriate area and volume measures in such a quantum cor-
rected spacetime and extract the distribution function from 
these primitive constructs. Of course, there is no guarantee 
that the quantum spacetime will endow an event with a 
non-zero area (or volume) but, incredibly enough, it does. I 
will now describe this procedure in some detail. 
 Before we start, it is convenient to re-write Hg in an 
equivalent dimensionless form. Using the fact that 
Hg ∝ 2 ab

cdP ∇anc∇bnd and Kg ∝ Rabnanb differ by an ignor-
able total divergence14, we could as well use the Kg  
instead of Hg in our variational principle. Introducing the 
appropriate numerical factors, it is convenient to work 
with the dimensionless combination 
 

 
2

2 3

d( / )
.

8d( d d / )
g P a bP

g ab
P

Q E L
R n n

x L πγ λ
≡ ≡ −K  (15) 

 

It is this quantity which we hope to obtain from some 
primitive construct in the quantum spacetime. 
 Our first task is to incorporate the zero-point area into 
the spacetime, which could be done in a model independ-
ent manner along the following lines. There is consider-
able amount of evidence15 to suggest that a primary effect 
of quantum gravity is to modify the geodesic interval 
σ 2(x, x′) in a spacetime to another form S(σ 2) such that 
S(0) ≡ 2

0L  is a finite constant of the order of 2 .PL  For  
illustrative purposes, we will take S(σ 2) = σ 2 + 2

0L  
though none of our results depend on this explicit form. 
One can show that such a modification is equivalent to 
working with a renormalized spacetime metric (called 
qmetric) qab(x, x′; 2

0 )L  instead of the original classical 
metric gab(x). The explicit form of the qmetric is given by 
 

 1 1; ,ab ab a b
ab ab a bq Ah Bn n q h n n

A B
= + = +  (16) 

 

where 
 

 
12/ 2 22

0
2 2 2

0
; ;

D

a a
S

L
B A n

L
σσ σ

σ σ

⎛ ⎞ +Δ
= = = ∇⎜ ⎟

Δ+ ⎝ ⎠
 

  (17) 
and Δ is the Van Vleck determinant related to the geo-
desic interval σ 2 by 

 21 1( , ) det{ ( , )}.
2 ( ) ( )

x x
a bx x x x

g x g x
σ′′ ′Δ = ∇ ∇

′
 (18) 

 
The ΔS is the corresponding quantity computed with σ 2 
replaced by S(σ 2) in eq. (18). 
 The qmetric is a bi-tensor depending on x and x′ 
through σ 2(x, x′) and is singular everywhere in the space-
time in the limit of x′ → x with finite L0. On the other 
hand, qab → gab when L0 → 0 at all events. Given some 
scalar Φ[gab(x)] constructed from the background metric 
and its derivatives, we can compute the corresponding 
(bi)scalar Φ[qab(x, x′); 2

0L ] for the renormalized spacetime 
by replacing gab by qab in Φ[gab(x)] and evaluating all the 
derivatives at x, keeping x′ fixed. The renormalized value 
of Φ[qab(x, x′); 2

0L ] is then obtained by taking the limit 
x → x′ in this expression keeping 2

0L  non-zero. It turns 
out that many useful scalars like R, K, etc. remain  
finite16–18 and local in this limit even though the qmetric 
itself is singular when x → x′ with non-zero 2

0.L  The  
algebraic reason for this curious fact16 is that the follow-
ing two limits do not commute 
 

2 2
0 0

2 2
0 0

0 0
lim lim [ ( , ); ] lim lim [ ( , ); ].ab abx x x xL L

q x x L q x x L
′ ′→ →→ →

′ ′Φ ≠ Φ   

 (19) 
 
It is now easy to see how null surfaces and null vectors 
are singled out in this approach. In all calculations we 
will eventually take the limit σ 2 → 0 in the Euclidean 
sector. But this limit, σ 2 → 0, will translate into a null 
surface in the Minkowski spacetime (see note 2) and the 
normal vector ni = ∇iσ (which occurs in the qmetric and 
all the resulting constructs) will pick out the null vector 
which is the normal to the null surface. More generally, 
σ 2(x, x′) → 0 selects out events which are connected by a 
null geodesic and hence na will correspond to a null vec-
tor in the Minkowski spacetime. This is how a null vector 
field ni is introduced in the description from a micro-
scopic point of view. 
 With this mathematical structure in place, we can de-
fine the volume and area measure of the renormalized 
spacetime as follows. It is convenient to describe the Euc-
lidean background spacetime in synchronous coordinates 
(σ, θ1, θ2, θ3) where σ (the geodesic distance from the 
origin) is the ‘radial’ coordinates and θi are the angular 
coordinates on the equi-geodesic surfaces corresponding 
to σ = constant. We next introduce the zero-point-area by 
constructing the corresponding qmetric. (The equigeodesic 
surfaces remain equi-geodesic surfaces in the renormal-
ized spacetime.) Using the qmetric one can then compute 
the volume measure, 4d ,q x  as well as the area measure 
of the equi-geodesic surfaces, 3d .h x  Both q  and h  
will be now bi scalars and we define their value at a given 
event by taking the limit of x′ → x corresponding to 
σ 2 → 0. As mentioned earlier, this will lead to a depend-
ence on a null vector ni which could be in any direction at 
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the given event (and is reminiscent of the momentum 
variable which occurs in the distribution function of nor-
mal matter.) Such a computation shows that the volume 
and area measures behave as follows (see note 3) 
 

 2 2 2 2
0 0

1( ) 1 ( ) ,
6

q L L hσ σ σ Ω
⎡ ⎤= + − +⎢ ⎥⎣ ⎦

E  (20) 

 

 2 2 3/2 2 2
0 0

1( ) 1 ( ) ,
6

h L L hσ σ Ω
⎡ ⎤= + − +⎢ ⎥⎣ ⎦

E  (21) 

 

where E ≡ Rabnanb. When 2
0L  → 0 we recover the result in 

classical differential geometry known to Gauss, as we 
should. But our interest is in the limit σ 2 → 0 at finite L0. 
Something remarkable happens when we do this. The  
volume measure q  vanishes but the area measure h  
has a non-zero limit given by 
 

 3 2
0 0

11 .
6

h L L hΩ
⎡ ⎤= −⎢ ⎥⎣ ⎦

E  (22) 

 

The renormalized spacetime attributes to every point in 
the spacetime a finite area measure but a zero volume 
measure! Since 3

0L hΩ  is the volume measure of the 
σ = L0 surface, the dimensionless density of the atoms of 
spacetime, contributing to the gravitational heat is given by 
 

 2 2
0 03

0

1 1( , ) 1 1 .
6 6

i a b
a ab

hf x n L L R n n
L hΩ

≡ = − = −E   

  (23) 
 

This matches with what we need if we take 2
0L =  

2(3/4 ) .PLπ  Briefly stated, quantum gravity endows each 
event in spacetime with a finite area but zero volume. It 
is this area measure which we compute to obtain a natural 
estimate for f (xi, na). In the macroscopic limit, the contri-
bution to the gravitational heat in any volume is obtained 
by integrating f (xi, nj) over the volume. So the expression 
for the heating rate, in dimensionless form is given by 
 

 
2

2
2

d d
( , )

d
g i

P j
P

Q x
L f x n

L
γ

λ
= ∫  

 

     
2

2
2
d 11 ( ) ,

8
a b

P ab
P

x
L R n n

L
γ

π
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which gives the correct expression – with the crucial  
minus sign – plus a constant. So one can indeed interpret 
the gravitational heat density as the area measure of the 
renormalized spacetime. 
 While the second term in eq. (23) gives what we want 
for the variational principle, the first term tells us that 
there is a zero-point contribution to the degrees of free-
dom in spacetime, which, in dimensionless form, is just 
unity. Therefore, it makes sense to ascribe 2/ PA L  degrees 
of freedom to an area A, which is consistent with what we 
saw in the macroscopic description. We also see that a 

two sphere of radius LP has 2 24 / 4P PL Lπ π=  degrees of 
freedom. This was the crucial input which was used in a 
previous work to determine the numerical value of the 
cosmological constant for our universe. Using this result, 
one can show express the energy density corresponding 
to the cosmological constant in the form19,20 
 

 
3/2

2inf
1/2
eq

4 exp( 36 ),
27

ρ
ρ π

ρΛ ≈ −  (25) 

 

where ρinf is the energy density during inflation and ρeq is 
the energy density at the epoch of matter radiation equality. 
From cosmological observations, we find that 1/4

eqρ  = 
(0.86 – 0.09) eV; if we take the range of the inflationary 
energy scale as 1/4

infρ  = (1.084 – 1.241) × 1015 GeV, we 
get ρΛ 2

PL  = (1.204 – 1.500) × 10–123, which is consistent 
with observations! 
 This novel approach for solving the cosmological con-
stant problem provides a unified view of cosmic evolu-
tion, connecting all the three phases through eq. (25); this 
is to be contrasted with standard cosmology in which the 
three phases are put together in an unrelated, ad hoc 
manner. Further, this approach to the cosmological con-
stant problem makes a falsifiable prediction, unlike any 
other approach I know of. From the observed values of ρΛ 
and ρeq we can constrain the energy scale of inflation to a 
very narrow band – to within a factor of about five, if we 
consider the ambiguities in re-heating. If future observa-
tions show that inflation took place at energy scales outside 
the band of (1–5) × 1015 GeV, this model for explaining the 
value of cosmological constant is ruled out. 

Outlook 

We have completed the programme outlined in the intro-
duction using essentially two ingredients: (a) We postu-
lated that the extremum principle determining spacetime 
dynamics should be invariant under the shift a

bT  → 
a

bT  + (constant) a
bδ  this allowed us to obtain an expres-

sion for gravitational heat density which depended on a 
null vector that acted as an auxiliary variable. (b) We  
introduced the zero-point area into the spacetime by the 
replacement σ 2 → σ 2 + 2

0.L  The modified spacetime led 
to an area measure which, in dimensionless form, 
matched precisely with the gravitational heat density we 
needed. We interpreted the microscopic origin in terms of 
the distribution function for the atoms of spacetime. 
 This approach raises several important issues for fur-
ther studies and let me mention a couple of them. First, 
we need to understand precisely what is counted by 
f (xi, nj). We called it atoms of space which stands for the 
microscopic degrees of freedom of quantum space(time) 
parametrized by a null vector ni. One could equally well 
have thought of it as related to number of microscopic 
states available to quantum geometry. This suggests that, 
in the suitable limit, one can introduce a probability  
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P(xi, na) for na at each event xi and define the partition 
function 
 

 ( ) 4e ( , ) exp[ ],
iS x i a b

i a P abn P x n L T n nμ∝ ∫D  (26) 
 

where μ is a numerical factor of order unity. If we take 
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π
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∝ ∝ −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 (27) 
 

then the saddle point evaluation will peak at the geometry 
determined by Einstein’s equation with an arbitrary cos-
mological constant. (The choice μ = 1/4 will allow P to 
be interpreted as number of microstates.) Alternatively, 
one can think of P(xi, na) to be such as to give the correla-
tor 〈nanb〉 ≈ (4π/μ 2 1)P abL R−  which allows us to write the 
field equations in the form 
 

 4 42 2 1.a b a b
P ab P abL T n n L T n nμ μ〈 〉 ≈ 〈 〉〈 〉 =  (28) 

 

The averaging 〈⋅⋅⋅〉 now indicates both expectation values 
for the quantum operator Tab as well as a probabilistic av-
eraging of nanb. Equation (28) has a Machian flavour. 
One cannot set 〈Tab〉 = 0 and study the resulting spacetime 
since it will lead to 0 = 1! Matter and geometry must 
emerge and co-exist together in a manner we have not yet 
understood. There is no such thing as flat spacetime  
existing in the absence of matter! 
 Second, a thermodynamic approach to gravity strongly 
suggests that cosmology should not be treated as a part of 
general relativity and we should look at cosmic questions 
afresh. The study of thermodynamics, distribution func-
tions for atoms of space, etc. pre-supposes some unstated 
notion of equilibrium at the microscopic scales, which, in 
turn, will involve certain timescales over which such an 
equilibrium can be established. For normal systems char-
acterized by timescales much less than the age of the uni-
verse, one could possibly assume that Planck scale 
physics has established the necessary equilibrium condi-
tions. But such an assumption is likely to break down 
when we consider the entire universe as a physical sys-
tem. Instead, one is led to a picture in which larger and 
larger spatial scales achieve microscopic equilibrium as the 
cosmic time evolves. In such a scenario, one could even  
argue that the space as we know itself emerges21 as a con-
densate of the atoms of space as the cosmic time evolves. 
The deviations from microscopic equilibrium can then 
have important implications for the large scale dynamics 
of the universe, a glimpse of which was seen in the sug-
gested solution to the cosmological constant problem. 

Notes 

1. Throughout this article I will use the word ‘atoms’ 
when I mean ‘microscopic degrees of freedom’ or 

‘number of relevant microstates’; they usually differ 
by an unimportant numerical factor. 

2. The local Rindler observers who live on the hyperbol-
oid r2 − t2 = σ 2 see the null cone r2 – t2 = 0 as the  
horizon. In the Euclidean sector the hyperboloid  
becomes the sphere 2 2 2

E Er t σ+ =  and approaching 
the Euclidean origin, σE → 0, translates to approach-
ing the light cone in the Minkowski space. 

3. These results are somewhat subtle algebraically. The 
leading order behaviour of q dσ ≈ σ dσ, which 
makes the volumes scale as σ 2 (while the area meas-
ure is finite) produces the following result22: The  
effective dimension of the renormalized spacetime  
reduces to D = 2 close to Planck scales. I will not  
elaborate on this result here. 
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