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Einstein established the theory of general relativity 
and the corresponding field equation in 1915 and its 
vacuum solutions were obtained by Schwarzschild and 
Kerr for, respectively, static and rotating black holes, 
in 1916 and 1963, respectively. They are, however, still 
playing an indispensable role, even after 100 years of 
their original discovery, to explain high energy astro-
physical phenomena. Application of the solutions of 
Einstein’s equation to resolve astrophysical phenom-
ena has formed an important branch, namely relativ-
istic astrophysics. I devote this article to enlightening 
some of the current astrophysical problems based on 
general relativity. However, there seem to be some is-
sues with regard to explaining certain astrophysical 
phenomena based on Einstein’s theory alone. I show 
that Einstein’s theory and its modified form, both are 
necessary to explain modern astrophysical processes, 
in particular, those related to compact objects. 
 
Keywords: Accretion disks, black holes, Einstein’s 
field equation and its modification, white dwarfs and neu-
tron stars, supernovae. 

Introduction 

WITHIN a few months of the celebrated discovery of Ein-
stein’s field equation1, Schwarzschild obtained its vac-
uum solution in spherical symmetry2. However, it took 
almost another half a century before Kerr obtained its 
vacuum solution for an axisymmetric spacetime3, which 
was a very complicated job at that time. The former solu-
tion is useful to understand the spacetime properties 
around a static black hole, called Schwarzschild black 
hole. The latter solution corresponds to the spacetime 
properties around a rotating black hole, called Kerr black 
hole, in particular after its generalization by Boyer and 
Lindquist4 to its maximal analytic extension. Both the so-
lutions have enormous applications to relativistic astro-
physics; however, as black holes in general possess spin, 
the Kerr solution is much more important. In the Boyer–
Lindquist coordinates, the outer radius of a black hole is 
defined as r+ = GM/c2 (1 + 21 ),a−  when M is the mass 
of the black hole, c the speed of light, G the Newton’s 
gravitational constant and a the spin parameter (angular 
momentum per unit mass) of the black hole. Hence, for 
|a| > 1, the collapsed object will form a naked singularity 

without an event horizon, rather than a black hole. In  
addition, a = 0 corresponds to the Schwarzschild black 
hole. Hence, predicting a of black holes from observed 
data would serve as a natural proof for the existence of 
the Kerr metric in the universe. 
 In the presence of matter (i.e. nonvanishing energy-
momentun tensor of the source field Tμν), there are a  
variety of solutions of Einstein’s equations (e.g. refs 5–
7), depending upon the equation of state (EoS). In order 
to understand the properties of neutron stars, and also 
white dwarfs, these solutions serve as important tools. In 
this context, an important class of objects is binary pulsars, 
which are one of the few objects that help to test Ein-
stein’s general relativity (GR). Such binary systems have 
a pulsating star along with a companion, often a white 
dwarf or a neutron star. PSR B1913 + 16 was the first bi-
nary pulsar discovered by Taylor and Hulse which led to 
them wining the Nobel Prize in Physics in 1993 (ref. 8). 
It has been found that its pulsating rate varies regularly 
due to the Doppler effect, when it is orbiting another star 
very closely at a high velocity. PSR B1913 + 16 also al-
lowed determining accurately the masses of neutron stars, 
using relativistic timing effects. When the two compo-
nents of the binary system are coming closer, the gravita-
tional field appears to be stronger and, hence, creating 
time delays which furthermore in turn increase pulse pe-
riod. Binary pulsars, as of now, are perhaps the only tools 
based on which gravitational waves are being evident. 
According to GR, two neutron stars in a binary system 
would emit gravitational waves while orbiting a common 
centre of mass and, hence, carrying away orbital energy. 
As a result, the two stars come closer together, shortening 
their orbital period, which we observe. 
 Although the validity of the solutions of Einstein’s 
equation, i.e. GR, has been well tested, particularly in the 
weak field regime – such as through laboratory experi-
ments and solar system tests – question remains, whether 
GR is the ultimate theory of gravitation or it requires 
modification in the strong gravity regime. Indeed, scien-
tists have been trying to resolve the astrophysical prob-
lems related to the strong field regimes, like expanding 
universe, massive neutron stars, by introducing modified 
theories of GR (e.g. refs 9–11). Recently, there are obser-
vational evidences for massive neutron star binary pulsars 
PSR J1614-2230 (ref. 12) and PSR J0348+0432 (ref. 13) 
with masses 1.97 M? and 2.01 M? respectively, where M? 
is solar mass. Similarly, there is a lot of interest in  
exploring massive white dwarfs (see later section for  



SPECIAL SECTION: GENERAL RELATIVITY 
 

CURRENT SCIENCE, VOL. 109, NO. 12, 25 DECEMBER 2015 2251

details). The possibility of very massive neutron stars has 
been examined14 in the presence of hyperons and the 
conditions to obtain the same. Note that the likely pres-
ence of Λ-baryons in dense hadronic matter tends to sof-
ten EoS such that the above mentioned massive neutron 
stars are difficult to explain, known as ‘hyperon prob-
lem’. Based on the quark–meson coupling model, it has 
been shown15 that the maximum mass of neutron stars 
could be ≈2 M?, when nuclear matter is in β-equilibrium 
and hyperons must appear. Apart from the EoS based ex-
ploration, neutron stars with mass á 2 M? have been 
shown to be possible by exploring effects of magnetic 
fields, with central field ~1016 G (ref. 16), and modifica-
tion to GR10,11,17. 
 Black holes are not visible and neutron stars too are 
hardly visible, unless the latter possess stronger magnetic 
fields. Hence, in order to understand their properties, 
light coming out off the matter infalling towards them (as 
well as influenced by them), called accretion, plays an 
important role. Study of accretion around compact ob-
jects is a vast part of relativistic astrophysics. While a 
simple spherical accretion model in the Newtonian 
framework was introduced by Bondi in the fifties18, later 
its general relativistic version was worked out by  
Michael19 in the Schwarzschild spacetime, which was 
perhaps the first venture into accretion physics in GR. 
However, generically, accretion flows possess angular 
momentum, as inferred from observed data, forming ac-
cretion disks around compact objects. Such a (Keplerian) 
disk model in the general relativistic framework was for-
mulated by Novikov and Thorne20 (whose Newtonian 
version21 is highly popular as well). Later on, to satisfac-
torily explain observed hard X-rays, the geometrically 
thick (and sub-Keplerian) disk model was initiated, in the 
Newtonian (e.g. refs 22, 23), pseudo-Newtonian (e.g. refs 
24, 25), as well as general relativistic (e.g. refs 26–29) 
frameworks. All of them explicitly reveal the importance 
of GR in accretion flows. 
 Furthermore, observed jets from black hole sources 
have been demonstrated to be governed by general rela-
tivistic effects in accretion-outflow/jet systems, based on 
general relativistic magnetohydrodynamic (GRMHD) 
simulations, with and without the effects of radiation (e.g. 
refs 30–32). It has been demonstrated therein that the 
spin of black holes plays a crucial role to control the un-
derlying processes. It is also known that accretion flows 
(directly or indirectly) are intertwined with several other 
observed relativistic features in modern astrophysics, e.g. 
quasi-periodic oscillation (QPO) in compact sources, 
gamma-ray bursts (combined disk-jet systems), superno-
vae, etc. In recent years, many observations reveal that 
several gamma-ray bursts (which are the extremely ener-
getic explosions that have been observed in distant galax-
ies) occur in coincidence with core-collapse supernovae, 
which are related to the formation of black holes and neu-
tron stars. 

 American federal institutions such as NASA, European 
agencies such as ESO, Japanese institutions, etc. have 
been devoted to conduct numerous satellite experiments 
(such as HST, Chandra, XMM-Newton, Swift, Fermi,  
Astro-H, Suzaku, etc.) which regularly receive data from 
galactic and extragalactic (compact) sources, producing 
all the above mentioned features. Similarly, Indian satel-
lite Astrosat is gathering data from black hole, white 
dwarf and neutron star sources. All these missions help in 
understanding relativistic astrophysical sources, their 
evolution and up-to-date status. They furthermore help to 
verify theoretical concepts of GR.  
 In the present article, I plan to touch upon some of the 
specific issues in relativistic astrophysics, the ones which 
are hot-topics at present and I am working on them, in de-
tail. However, before I go into their detailed discussions, 
in the next section, let me recall some of their basic 
building blocks. 

Some basic formulation 

Let me start with the four-dimensional action as33 
 

 41 ( ) d ,
16 MS f R g x
π
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where g is the determinant of the spacetime metric gμν, 
LM the Lagrangian density of the matter field, R the sca-
lar curvature defined as R = gμνRμν, where Rμν is the Ricci 
tensor and f is an arbitrary function of R; in GR, f (R) = R 
and d4x is four-dimensional volume element. Now, on  
extremizing the above action for GR, one obtains Ein-
stein’s field equation as 
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where Gμν is called the Einstein’s field tensor. 
 For black holes, Tμν = 0 and, hence, the spacetime met-
ric for the vacuum solution of a charged, rotating black 
hole (Kerr–Newman black hole) with G = c = 1 in the 
Boyer–Lindquist coordinates is 
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where Δ = r2 − 2Mr + a2 + Q2, 2ρ  = r2 + a2 cos2 θ, Q is 
the charge per unit mass of the black hole. For Q = 0, the 
metric eq. (3) reduces to the Kerr metric (rotating  
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uncharged black hole), for a = Q = 0 it reduces to the 
Schwarzschild metric (non-rotating uncharged black 
hole) and for a = 0 it reduces to the Reissner–Nordström 
metric (charged non-rotating black hole). 
 For a neutron star (as well as white dwarf which, how-
ever, generally could be explained mostly by the Newto-
nian theory, except the cases described in the section 
‘massive magnetized, rotating white dwarfs in GR and 
modified GR’), Tμν ≠ 0 and the solution of eq. (2)  
depends on EoS and in general there is no analytic solu-
tion6,7 (see, however, ref. 5). Therefore, for most com-
monly observed stationary, axisymmetric (rotating) 
neutron stars and white dwarfs, gtt, grr, gθθ, gφφ and gtφ 
could be obtained as numerical functions of r and θ (e.g. 
ref. 7), and M(r) therein would be interpreted as the mass 
enclosed in the star up to the radial distance r from the 
centre. 
 In order to obtain the solutions of accreting matter 
around a black hole and stellar structure for a neutron star 
and a white dwarf, one has to solve the stress-energy ten-
sor equation (general relativistic version of the energy-
momentum balance equation), along with the equation for 
the estimate of mass, under the background of above 
mentioned respective metrics, given by 
 
 ; 0,T μν

ν =  
 
where  
 
 Tμν = (P + ρ + U)uμuν + Pgμν,  
 
and  
 
 (ρuμ);μ = 0, (4) 
 
for a perfect fluid, where P, ρ and U are respectively the 
pressure, mass density and internal energy density of the 
matter (as well as the magnetic field, if present) and uμ is 
its 4-velocity. 

Measuring spin of black holes from accretion 
properties 

Measuring spin of black holes, i.e. the Kerr parameter, of 
observed black hole sources is a challenging job, while 
mass is comparatively easier to measure. The main meth-
ods for spin measurements are: (1) fitting the thermal 
continuum from accretion disks, (2) inner disk reflection 
modelling, (3) modeling the QPOs. The first two methods 
are more popular, however often producing contradictory 
results34,35. The main reason for the third method not  
being as popular is the uncertainty behind the origin of 
QPOs. Nevertheless, I myself explored QPOs to deter-
mine the spin of stellar mass black holes and neutron 
stars36,37 by a unified scheme. 

 Another approach, also related to the accretion proper-
ties, is to establish a relation between the mass and spin 
of black holes and, hence, measuring spin by supplying 
the mass38. Although the event horizon is a function of 
the mass and spin of black holes, it does not serve the 
purpose as it is not unique for all black holes. Hence, in 
order to relate the mass and spin, one may plan to rely 
upon the properties of accretion disks. Following No-
vikov and Thorne20, the solutions of eq. (4) for insignifi-
cant radial velocity for the metric given by eq. (3) with 
Q = 0, the luminosity of the disk around a rotating black 
hole can be given by 
 

 

out out

ISCO ISCO

26 2 1

1 3 1 1/ 2
*

d [7 10 erg cm s ]

( ) d ,

r r

r r

L F r

mm r B C Q r

−

− − − −

= = ×

×

∫ ∫  

(5)

 

 
where m = M/M?, Edd/ ,m M M=  M  and EddM  respec-
tively, being the mass accretion rate and the Eddington 
accretion rate, r is the arbitrary distance in the accretion 
disk from the black hole, rout and rISCO are respectively, 
the outer and inner radii of the disk, and B, C, Q are func-
tions of M and a (see ref. 20 for exact expressions). Since 
L is (approximately) fixed for a given class of black 
holes, eq. (5) reveals to be a 3-parameter algebraic equa-
tion, relating M, a and .m  Hence, if m  is known, eq. (5) 
is useful to measure a for a known M. 
 Stellar mass black hole sources mainly exhibit two  
(extreme) classes of accretion flow: (1) an optically thick 
and geometrically thin accretion disk (Keplerian flow) 
with L ~ 1037–1038 erg/sec and m  ~ 0.1, (2) an optically 
thin and geometrically thick accretion disk (sub-
Keplerian flow) with L é 1035 erg/sec and m  é 10–4. On 
the other hand, supermassive black holes are classified 
into many groups, e.g. LINER, Seyfert, FR-I, FR-II, 
again based on their respective luminosities and the class 
of, e.g., quasars harbouring the respective black holes. 
 Eighty quasars with known respective m , M and L are 
given in ref. 39. Hence, using eq. (5), I predict each of 
their a, some of which are listed in Table 1. It clearly 
shows that a spans the range from a very low to a high  
 
 
Table 1. Spins of supermassive black holes with known optical lumi-
nosity, Lopt, in units of erg/sec, accretion rate m  in units of M?/year  
  and mass 

Object  log (m)  log ( )m   log (Lopt)  a 
 

1425 + 267  9.53 0.07 45.55  0.977 
1048 − 090  9.01 0.30 45.45  0.781 
0947 + 396  8.71 0.19 45.20  0.582 
2251 + 113  8.86 0.66 45.60  0.444 
1226 + 023  9.01 1.18 46.03  0.222 
1302 − 102  8.76 0.92 45.71  0.043 
2112 + 059  8.85 1.16 45.92 –0.057 
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value, without clustering around a particular a. This 
proves that there is no bias in this calculation. Interest-
ingly, our theory shows that a black hole may form with 
a → 1 and, then, a may exceed unity by accreting matter; 
furthermore, leading to the formation of a naked singula-
rity, which in turn may enlighten the issue of cosmic  
censorship. 

Massive, magnetized, rotating white dwarfs in 
general relativity and modified general relativity 

General relativity 

Type Ia supernovae (SNeIa) are believed to result from 
the violent thermonuclear explosion of a carbon–oxygen 
white dwarf, when its mass approaches the famous 
Chandrasekhar limit of 1.44 M?. For the discovery of the 
mass-limit of white dwarfs, S. Chandrasekhar was 
awarded the Nobel Prize in Physics in 1983 along with 
W. A. Fowler who contributed towards the formation of 
the chemical elements in the universe. SNIa is used as a 
standard candle in understanding the expansion history of 
the universe40. This very feature led to the Nobel Prize in 
Physics in 2011, awarded to S. Perlmutter, B. P. Schmidt 
and A. G. Riess, who, by observing distant SNeIa, dis-
covered that the universe is undergoing an accelerated 
expansion. 
 However, some of these SNeIa are highly over-
luminous, e.g. SN 2003fg, SN 2006gz, SN 2007if, SN 
2009dc (refs 41, 42), and some others are highly under-
luminous, e.g. SN 1991bg, SN 1997cn, SN 1998de, SN 
1999by (refs 43, 44). The luminosity of the former group 
(super-SNeIa) implies highly super-Chandrasekhar white 
dwarfs, having mass 2.1–2.8 M?, as their most plausible 
progenitors41,42. While, the latter group (sub-SNeIa) pre-
dicts that the progenitor mass could be as low as ~M? 
(ref. 43). The models attempted to explain them so far  
entail caveats. 
 In a series of papers, with my collaborators, I argued 
that highly magnetized white dwarfs could be as massive 
as inferred from the above observations45–47. As a strong 
magnetic field corresponds to non-negligible magnetic 
pressure and magnetic density controlling the equilibrium 
structure of the star, apart from its possible quantum  
mechanical effects (Landau quantization), a general rela-
tivistic treatment is more useful to describe such white 
dwarfs48. This is more so as their radius could be less 
than 500 km – they are much more compact than their 
nonmagnetic counterparts – in particular for poloidally 
dominated magnetic field configurations. Hence, the  
effects of GR are important to take into account to de-
scribe highly magnetized white dwarfs, just like in the 
case of neutron stars. The formalism to describe such a 
star, which may be highly spheroidal in shape, depending 
upon the field strength, has been elaborated in e.g.  

ref. 16. These authors have also made available a code 
developed to describe highly magnetized neutron stars in 
GR, namely XNS, to the public. This is basically a solver-
code of eq. (4) in hydro/magnetostatic conditions for a 
given set of spacetime metric and EoS. 
 Furthermore, my collaborators and myself modified the 
XNS code in order to make it appropriate for white 
dwarfs. I showed that poloidally dominated white dwarfs 
are smaller in size (with an equatorial radius substantially 
smaller than 1000 km), whereas toroidally dominated 
ones have larger radii48. However, either of them could be 
significantly super-Chandrasekhar. 
 Subsequently, along with my collaborator, I explored 
the effects of rotation in white dwarfs and found that  
rotation alone can increase the mass only up to ~1.8 M? 
before rotational instability may set in49, while the com-
bined effects of rotation and magnetic field lead to much 
more massive white dwarfs. Indeed, white dwarfs should 
be both rotating and magnetized in general. Figure 1 
shows a typical geometry of poloidal magnetic field and 
Figure 2 shows the shape of a poloidally dominated white 
dwarf having mass ~2 M? and radius ~750 km. Further-
more, Table 2 shows that the mass of a differentially ro-
tating, toroidally dominated white dwarf could exceed 
3 M?. Note that I restrict the ratios of kinetic to gravita-
tional energies (KE/GE) and magnetic to gravitational 
energies (ME/GE) to 0.2 in order to assure stability. 
Higher values still could reveal equilibrium white dwarfs 
with much higher masses48,50. 

Modified general relativity 

Magnetized white dwarfs are unable to explain the under-
luminous SNeIa mentioned above. There are however  
 

 
 
Figure 1. Illustration of poloidal magnetic field geometries, when the 
black contours are the magnetic surfaces. The field is in units of 1014 G 
and r is in units of 1.48 km. 
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some proposed models, with caveats, to describe them. 
For example, numerical simulations of the merger of two 
sub-Chandrasekhar white dwarfs reproduce the low 
power of under-luminous SNeIa, however the simulated 
light-curves fade slower than that suggested by observa-
tions. 
 A major concern, however, is that a large array of 
models is required to explain apparently the same phe-
nomena, i.e. triggering of thermonuclear explosions in 
white dwarfs. Why nature would seek mutually uncorre-
lated scenarios to exhibit sub- and super-SNeIa? This is 
where the idea of modifying GR stepped in into the con-
text of white dwarfs, which unifies the sub-classes of 
SNeIa by a single underlying theory. 
 Let me consider, for the present purpose, the simplistic 
Starobinsky model9 defined as f (R) = R + αR2, when α is 
a constant. However, similar effects could also be ob-
tained in other, physically more sophisticated, theories, 
where α (or effective-α) is varying (e.g. with density). 
Now, on extremizing the action eq. (1) for Starobinsky’s  
 
 

 
 
Figure 2. The contour plot of density in logarithmic scale, when den-
sity is in units of 1010 gm/cc, for a differentially rotating white dwarf 
having poloidal magnetic fields with M = 1.95 M?, equatorial radius 
746 km, the ratio of polar to equatorial radii 0.564. 
 
 
Table 2. Differentially rotating configurations having purely toroidal 
magnetic field, with changing maximum magnetic field Bmax within 
white dwarfs, when central angular velocity Ωc = 30.42 sec–1 fixed.  
  re and rp are respectively, the equatorial and polar radii 

Bmax (1014 G)  M(M?)  re (km)  Ωeq(sec–1)  KE/GE ME/GE  rp/re 
 

0  1.769  1410  2.990  0.126  0  0.613 
2.299  1.959  1676  2.180  0.132  0.046  0.603 
2.996  2.318  2171  1.339  0.136  0.108  0.583 
3.584  3.159  3322  0.593  0.132  0.203  0.584 

model, one obtains the modified field equation of the 
form 
 
 Gμν + αXμν = (8πGTμν/c4), (6) 
 
where Tμν contains only the matter field (non-magnetic 
star) and Xμν is a function of gμν, Rμν and R (see ref. 51 
for details). 
 Here, I seek perturbative solutions of eq. (6) (see, e.g. 
ref. 10), such that αR ^ 1. Furthermore, I consider the 
hydrostatic equilibrium condition so that gνr∇μTμν = 0, 
with zero velocity and ∇μ the covariant derivative. 
Hence, I obtain the differential equations for mass Mα(r), 
pressure Pα(r) (or density ρα(r)) and gravitational poten-
tial φα(r), of spherically symmetric white dwarfs (which 
is basically the set of modified Tolman–Oppenheimer–
Volkoff (TOV) equations). For α = 0, these equations re-
duce to TOV equations in GR. 
 I supply EoS, obtained by Chandrasekhar52, as P0 =  
K 1 (1/ )

0 ,nρ +  where P and ρ of ref. 53 are replaced by P0 
and ρ0 respectively (α = 0: GR) in the spirit of perturbat-
ive approach. This form of EoS is valid for extremely low 
and high densities, where n is the polytropic index and K 
a dimensional constant. The boundary conditions are: 
Mα(0) = 0 and ρα(0) = ρc, where ρc is the central density 
of the white dwarf. Note that a particular ρc corresponds 
to a particular Mα and radius Rα of white dwarfs. Hence, 
by varying ρc from 2 × 105 gm/cc to 1011 gm/cc, I con-
struct the mass-radius relation. 
 Figure 3 a and b show that all three Mα – ρc curves for 
α < 0 overlap with the α = 0 curve in the low density  
region. However, with the increase of α, the region of 
overlap recedes to a lower ρc. Modified GR effects  
become important and visible at ρc á 108, 4 × 107 and 
2 × 106 gm/cc, for α = 2 × 1013 cm2, 8 × 1013 cm2 and 
1015 cm2 respectively. For a given α > 0, with the in-
crease of ρc, Mα first increases, reaches a maximum and 
then decreases, like the α = 0 (GR) case. With the in-
crease of α, maximum mass Mmax decreases and for 
α = 1015 cm2 it is highly sub-Chandrasekhar (0.81 M?). 
This reveals that modified GR has a tremendous impact 
on white dwarfs. In fact, Mmax for all the chosen α > 0 is 
sub-Chandrasekhar, ranging 1.31–0.81 M?. This is a re-
markable finding as it establishes that even if ρcs for 
these sub-Chandrasekhar white dwarfs are lower than the 
conventional value at which SNeIa are usually triggered, 
an attempt to increase the mass beyond Mmax with in-
creasing ρc will lead to a gravitational instability. This 
presumably will be followed by a runaway thermonuclear 
reaction, provided the core temperature increases suffi-
ciently due to collapse. Occurrence of such thermonu-
clear runway reactions, triggered at densities as low as 
106 gm/cc, has already been demonstrated53. Thus, once 
Mmax is approached, for α > 0 a SNIa is expected to trig-
ger just like in the α = 0 case, explaining the sub-
SNeIa43,44, like SN 1991bg mentioned above. 
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 For α < 0 cases, Figure 3 b shows that for 
ρc > 108 gm/cc, the Mα–ρc curves deviate from the GR 
curve due to modified GR effects. Note that Mmax for all 
the three cases corresponds to ρc = 1011 gm/cc, an upper-
limit chosen to avoid possible neutronization. Interest-
ingly, all values of Mmax are highly super-Chandrasekhar, 
ranging from 1.8 to 2.7 M?. Thus, while the GR effect is 
small, modified GR effect could lead to ~100% increase 
in the limiting mass of white dwarfs. The corresponding 
values of ρc are large enough to initiate thermonuclear re-
actions, e.g. they are larger than ρc corresponding to Mmax 
of α = 0 case, whereas the respective core temperatures 
are expected to be similar. This explains the entire range 
of the observed super-SNeIa mentioned above41,42,  
assuming the furthermore gain of mass above Mmax leads 
to SNeIa. 
 Tables 3 and 4 show the perturbative validity of the so-
lutions. Recall that I solve the modified TOV equations 
only up to O(α). As the product αR is first order in α, I 
replace R in it by the zero-th order Ricci scalar R(0) = 
8π(ρ(0) – 3P(0)), which is Ricci scalar obtained in GR 
(α = 0). For the perturbative validity of the entire  
 
 

 
 
Figure 3. Unification diagram for SNeIa: a, mass–radius relations, b, 
variation of ρc with Mα. The numbers adjacent to the various lines  
denote α /(1013 cm2). ρc, Mα and Rα are in units of 106 gm/cc, M? and 
1000 km respectively. 

solution, |αR(0)|max ^ 1 should hold true. Next, I consider 
(0) /tt ttg g  and (0) /rr rrg g  (ratios of gμν-s in GR and those in 

modified GR up to O(α)), which should be close to unity 
for the validity of perturbative method54. Hence, 

(0)
max|1 / |tt ttg g− ^ 1 and (0)

max|1 / |rr rrg g− ^ 1 should 
both hold true. Tables 3 and 4 show that all the three 
measures quantifying perturbative validity are at least  
2–3 orders of magnitude smaller than 1. 
 
Possible effect of density-dependent model parameter 
leading to chameleon-like theory. I now justify that the 
effects of modified GR based on a more sophisticated 
calculation, invoking an (effective) α that varies explic-
itly with density (and effectively becomes negative), are 
likely to converge to those described above with constant 
α. Note that even though α is assumed to be constant 
within individual white dwarfs here, there is indeed an 
implicit dependence of α on ρc, particularly of the liming 
mass white dwarfs presumably leading to SNeIa, as is 
evident from Figure 3 b. This indicates the existence of an 
underlying chameleon effect. This trend is expected to 
emerge self-consistently in a varying-α theory. 
 Let me consider a possible situation where α varies ex-
plicitly with density and try to relate it with the above re-
sults. Note that the super-SNeIa occur mostly in young 
stellar populations consisting of massive stars (see, e.g., 
ref. 41), while the sub-SNeIa occur in old stellar popula-
tions consisting of low mass stars (see, e.g. ref. 55). The 
massive stars with higher densities are likely to collapse 
to give rise to super-Chandrasekhar white dwarfs, which 
would subsequently explode to produce super-SNeIa. The 
low mass stars with lower densities would be expected to 
collapse to give rise to sub-Chandrasekhar white dwarfs, 
which would probably end in sub-SNeIa. Now, let me as-
sume a functional dependence of α on density such that 
there are two terms – one dominates at higher densities, 
while the other dominates at lower densities. Hence, 
when a massive, high density star collapses, it yields re-
sults similar to our α < 0 cases; while when a low mass, 
 
 
Table 3. Measure of validity of perturbative solutions for α > 0  
  corresponding to Mmax in Figure 3 

α /(1013 cm2)  |αR(0)|max  (0)
max|1 / |tt ttg g−   (0)

max|1 / |rr rrg g−  
 

2  7.4 × 10–5  6.8 × 10–5  2.0 × 10–4 
8  7.4 × 10–5 6.8 × 10–5 2.0 × 10–4 
100  7.4 × 10–5 6.9 × 10–5 2.0 × 10–4 

 
 
Table 4. Measure of validity of perturbative solutions for α < 0  
  corresponding to Mmax in Figure 3 

α /(1013 cm2)  |αR(0)|max  (0)
max|1 / |tt ttg g−   (0)

max|1 / |rr rrg g−  
 

–1  0.00184  0.0016  0.0052 
–2  0.00369  0.0031  0.0108 
–3.5  0.00646  0.0052  0.0199 
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low density star collapses, it leads to results like our 
α > 0 cases. Thus, the same functional form of α could 
lead to both super- and sub-Chandrasekhar limiting mass 
white dwarfs respectively. Note that the final mass of the 
white dwarf would depend on several factors, such as, ρc 
and the density gradient in the parent star, etc. Interest-
ingly, this description invoking a variation of α with den-
sity is essentially equivalent to invoking a so-called 
chameleon-f (R) theory, which can pass solar system tests 
of gravity (see, e.g. ref. 56). This is so because α is a 
function of density, which in turn is a function of R and, 
hence, introducing a density (and hence R) dependence 
into α is equivalent to choosing an appropriate (more 
complicated) f (R) model of gravity. Therefore, even 
when one invokes a more self-consistent variation of α 
with density, it does not invalidate the results of the  
constant-α cases, rather is expected to complement the 
picture. 
 On a related note, I would like to mention that the  
order of magnitude of α is different between that in typi-
cal white dwarfs (α ~ 1013 cm2, as used above) and in 
neutron stars (α ~ 109 cm2, e.g. refs 10, 11). This again 
basically stems from the fact that there is an underlying 
chameleon effect which causes α to be different in differ-
ent density regimes. Note that neutron stars are much 
denser than white dwarfs and, hence, have a higher value 
of curvature R. Now, the quantity αR would have a simi-
lar value in both neutron stars and white dwarfs in the 
perturbative regime. Hence, due to their higher curvature, 
neutron stars will harbour a smaller value of α compared 
to white dwarfs. Roughly, neutron stars are 104 times 
denser than white dwarfs and, hence, αneutron–star is 104 
times smaller than αwhite–dwarf. 

Summary 

In the last several decades, relativistic astrophysics has 
turned out to be a highly important branch in astrophys-
ics. In this branch, many major astrophysical discoveries 
are still taking place in the contexts of black holes, qua-
sars, neutron stars, white dwarfs, X-ray binaries, gamma-
ray bursts, particle acceleration, the cosmic background, 
dark matter, dark energy, etc., even 100 years after Ein-
stein’s discovery of GR, which is the basic building block 
for them. The present article has touched upon some of 
the underlying latest astrophysical problems and their 
possible resolutions. It has been revealed that while Ein-
stein’s gravity itself is indispensable to uncover modern 
high energy astrophysical problems, modified Einstein’s 
gravity also appears to be playing an important role  
behind certain phenomena and, in general, to explain  
astrophysical processes. 
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