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‘There is no doubt that quantum mechanics has seized 
hold of a beautiful element of truth and that it will be a 
touchstone for a future theoretical basis in that it must be 
deducible as a limiting case from that basis, just as elec-
trostatics is deducible from the Maxwell equations of the 
electromagnetic field or as thermodynamics is deducible 
from statistical mechanics. I do not believe that quantum 
mechanics will be the starting point in the search for this 
basis, just as one cannot arrive at the foundations of me-
chanics from thermodynamics or statistical mechanics.’ 
 

— Einstein (1936) 
 

We recall some of the obstacles which arise when one 
tries to reconcile the general theory of relativity with 
quantum theory. We consider the possibility that gra-
vitation theories which include torsion, and not only 
curvature, provide better insight into a quantum theory 
of gravity. We speculate on how the Dirac equation and 
Einstein gravity could be thought of as limiting cases of 
a gravitation theory which possesses torsion. 
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General relativity and quantum theory 

SHOULD one ‘quantize’ the General Theory of Relativity 
(GTR)? There are various reasons to believe that apply-
ing the standard rules of quantum theory to GTR may not 
be the right way to arrive at a quantum theory of gravity. 
Here, we list some of these reasons: 
 (i) Should the gravitational field be quantized at all, or 
is it sufficient to have a semiclassical theory of gravity, 
which couples quantum matter fields to classical gravity? 
The answer to this question is not known, and it can be 
decisively settled only by experiment1. If we decide that 
quantum matter in general does not produce classical 
gravity, and there indeed is a quantum theory of gravity, 
then further issues arise. 
 (ii) The rules of quantum theory are written down after 
assuming that a background spacetime manifold and clas-
sical metric is given. Applying these quantum rules to the 
very metric whose existence was pre-assumed for writing 
the rules does not seem like a logical thing to do. Such an 
application may or may not lead to the correct theory. 

 (iii) Quantum theory as we understand it is incomplete. 
It depends on an external classical time, which is part of a 
classical spacetime geometry, which in turn is produced 
by classical matter fields. Classical fields are a limiting 
case of quantum fields. In this way quantum theory de-
pends on its classical limit; this is unsatisfactory. There 
ought to exist an equivalent reformulation of quantum 
theory which does not refer to a classical time. Only such 
a reformulation can provide insights into a quantum the-
ory of gravity2. 
 (iv) Quantum theory suffers from the quantum meas-
urement problem. When a quantum system interacts with 
a classical measuring apparatus, there is an apparent 
breakdown of the Schrödinger equation and the principle 
of linear superposition. While the problem may be resolved 
by reformulating quantum theory as Bohmian mechanics; 
or by invoking environmental decoherence and the many 
worlds interpretation (provided the Born probability rule 
can be understood in this framework), a deeper issue re-
mains. When can the (vaguely defined) measuring appa-
ratus be called classical, and why should quantum theory 
have to appeal to its own classical limit, in order to ex-
plain the outcomes of measurements? A more complete 
description, such as Continuous Spontaneous Localiza-
tion, does away with the measuring apparatus, and in this 
new dynamics, linear superposition becomes an approxi-
mate principle, holding for astronomical times for micro-
scopic systems, but for very small durations, when it 
comes to macroscopic objects. It is also possible that, 
since gravity becomes important for macroscopic objects, 
and since these objects are the ones for which there is an 
apparent breakdown of linear superposition, collapse of 
the wave function is mediated by gravity. If this is the 
case, then we need to understand how gravity modifies 
quantum mechanics, before we can quantize gravity3. 
 A related aspect of quantum measurement is the appar-
ent instantaneous nature of the collapse, whereby the 
quantum state changes instantaneously all over space,  
including over regions which are space-like separated 
from each other. This is confirmed by experiments. Al-
though such effects cannot be used for signalling, they 
suggest some kind of acausal influence outside the light-
cone. Our understanding of the relation between quantum 
theory, special relativity, and space-time structure, may 
have to be modified to have a better understanding of 
such an influence. 
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 (v) The cosmological constant problem is a direct  
example of the conflict between general relativity and 
quantum field theory, and is a problem irrespective of 
whether or not cosmic acceleration is explained by a 
cosmological constant. The vacuum energy of quantum 
fields makes an enormous contribution to the cosmologi-
cal constant, many many orders larger than the observed 
value, and we do not know why its gravitational effect is 
not observed. We need an improved understanding of the 
relation between GTR and quantum field theory, to sort 
this out. 
 (vi) The symmetry group of quantum field theory on 
Minkowski space-time is the Poincaré group (including 
Lorentz boosts and space-time translations), not the  
Lorentz group. Elementary particles are represented by 
irreducible representations of the Poincaré group, labelled 
by mass and spin. On the other hand, in GTR, which de-
scribes a curved spacetime, the local symmetry group on 
tangent spaces is the Lorentz group, not the Poincaré 
group. This is another stark example of conflict between 
GTR and quantum theory. Since mass is the source of 
gravity, the origin of particle masses in quantum field 
theory presumably has something to do with quantum 
gravity. Now if one takes the classical limit of quantum 
gravity, why should the symmetry group change from 
Poincaré to Lorentz? The local gauge theory of the Poin-
caré group is a theory of gravity which naturally includes 
both curvature, and a property known as torsion. GTR is 
a special case of such a theory, in which torsion is set to 
zero by hand4–6. It seems reasonable that to arrive at 
quantum gravity, one should quantize, not GTR, but a 
gravitation theory with torsion. 
 On the other hand, as we have seen above, there are 
difficulties related to a straightforward quantization of a 
classical theory of gravitation. What is more plausible is 
that both quantum theory and GTR need to be modified, 
before they can be used to make a quantum gravity, and 
GTR and quantum theory are themselves suitable limiting 
cases of quantum gravity. In the present article, we 
speculate as to how torsion could be of assistance in pro-
gressing towards such a goal. Before we do so, we briefly 
review the vast body of known work on gravitation theo-
ries with torsion4–6. 

Gravitation theories with torsion 

If we use curvilinear coordinates on a spacetime mani-
fold, the parallel transport of a vector Ai along a given 
curve leads to a change in its components, given by 
 
 d d ,i i j k

jkA A x= −Γ  (1) 
 
where i

jkΓ  is known as the affine connection. There is no 
a priori reason for the affine connection to be symmetric 
in the index pair ( j, k), and its antisymmetric part 

 [ ]
1 ( )
2

i i i i
jk jk kj jkS ≡ Γ − Γ ≡ Γ  (2) 

 
is known as Cartan’s torsion tensor, and unlike the sym-
metric part, it transforms like a tensor. In GTR, the tor-
sion tensor is assumed to be zero, and the connection is 
assumed to be symmetric – of course there is no convinc-
ing fundamental motivation for this assumption. The best 
one can say is that setting torsion to zero is consistent 
with all experiments to date, and leads to simpler field 
equations. It has been suggested that effects of torsion 
become significant in the vicinity of extreme situations 
such as ultra-high densities and gravitational singulari-
ties. Of course it is well known that in GTR the symmet-
ric part of the affine connection, known as the Christoffel 
symbols, represents the gravitational force, and vanishes 
in a locally inertial frame. Gravitation is produced by 
mass-energy, and according to torsion theories, torsion is 
produced by spin angular momentum. It is intriguing that 
the affine connection encapsulates the effect of mass as 
well as spin, in its symmetric and antisymmetric parts  
respectively. 
 The metric tensor gij(x) is introduced so as to enable 
measurement of distances between points on the mani-
fold, and if the length of a vector has to remain un-
changed upon parallel transport, the covariant derivative 
of the metric must vanish. This relates the Christoffel 
symbols { }v

σ
μ  to the metric, and the connection is now 

given by 
 

 ;Kσ σ
μν μν

σ
μν
⎧ ⎫

Γ = −⎨ ⎬
⎩ ⎭

 

 

 ,K S S S Kσ σ σ σ σ
μν μν ν μ μν μν≡ − + − = −  (3) 

 
with the Christoffel symbols defined as 
 

 1 ( )
2

g g g gσλ
μ νλ ν μλ λ μν

σ
μν
⎧ ⎫

= ∂ + ∂ − ∂⎨ ⎬
⎩ ⎭

 (4) 

 
and Kσ

μν  known as the contortion tensor, depends on the 
metric and on torsion. The spacetime is known as  
Riemann–Cartan spacetime, and if torsion vanishes we  
recover the better known Riemann spacetime. 
 We can covariantly split the torsion tensor into a trace-
less part and a trace. The traceless part, known as the 
modified torsion tensor, and defined as 
 
 T S S Sσ σ μ λ σ λ

μν μν ν ν λ ν μλδ δ= + −  (5) 
 
plays a significant role in the field equations. 
 The commutator of two covariant derivatives of a  
vector introduces the Riemann tensor, but now the com-
mutator depends on torsion as well 
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 [ , ] 2 .A R A S Aρ ρ σ λ ρ
μ ν μνσ μν λ∇ ∇ = − ∇  (6) 

 
The Riemann tensor depends on torsion as well as on the 
symmetric part of the connection. These two parts can be 
separated out and it can be shown that 
 

 ,R R K K K K Kρ ρ ρ ρ λ ρ λ
μνσ μνσ ν μσ νσ μσμλ νλ= + ∇ + −  (7) 

 
where ∇  defines the covariant derivative without torsion, 
and Rρ

μνσ  is the Riemann tensor in Riemann space-time. 
The Riemann tensor is antisymmetric in the first two  
indices, and in the last two indices, but is no longer sym-
metric under the exchange of the first and second pairs; 
nor does it satisfy the cyclic identity. Thus it has 36 inde-
pendent components, instead of the 20 independent com-
ponents in Riemann spacetime. Of the 36 components, 16 
are in the Ricci tensor, which is no longer symmetric, and 
20 are in the Weyl tensor. 
 Torsion has geometric significance. If two infinitesimal 
vectors are parallely transported along each other, one 
does not get a closed parallelogram, with the non-closure 
being caused by torsion. Furthermore, there is an impor-
tant analogy of torsion with the theory of defects in  
solids: when we compare geometry with defects, curva-
ture is the analog of ‘disclinations’ and torsion is the ana-
log of ‘dislocations’7. 
 Next, one has to consider the field equations which  
determine curvature and torsion, thereby providing a gen-
eralization of GTR. The simplest extension of GTR is  
obtained by adhering to the same Lagrangian density and 
action function as in GTR, except to replace the symmet-
ric connection by the full connection which includes  
torsion. This minimal extension is known as the Einstein–
Cartan–Sciama–Kibble (ECSK) theory4. The action for 
the ECSK theory is given by 
 

 4d ( , , )
2
RW x g g
k

ψ ψ⎧ ⎫= − ∇ +⎨ ⎬
⎩ ⎭∫ L  (8) 

 
with k = 8πG/c4, R the Ricci scalar, and ψ represents mat-
ter fields. We note that the matter Lagrangian density 
contains torsion through the covariant derivative. The 
field equations are obtained by variation of the action 
with respect to ψ, gμν and S σ

μν  or K σ
μν  
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We can define the energy-momentum tensor σ μν in the 
usual way, and spin angular momentum τ σνμ through the 
torsion 
 

 
( ) ( )2 1; .

g g
g Kg g

μν σνμ

μν μνσ

δ δ
σ τ

δ δ
− −

= =
− −

L L
 (10) 

 
The field equations are then given by 
 

 ( )G T T T kμν μνλ νλμ λμν μν
λ σ− ∇ − + =

'
 (11) 

 
and 
 
 T σνμ = kτ σνμ, (12) 
 
where 2 .Sα α∇ ≡ ∇ +

'
 

 The first field equation can also be written as 
 
 Gμν = kΣμν, (13) 
 
where ( ).μν μν μνλ νλμ λμν

λσ τ τ τΣ = + ∇ − +
'

 μνΣ  can 
be shown to be identical to the canonical energy-
momentum tensor. Since the second equation connecting 
spin and torsion is algebraic, one can replace torsion by 
spin and effectively cast out torsion from the formalism. 
Then one can split the Einstein tensor Gμν into the Rie-
mannian part Gμν ({}) and its non-Riemannian part and 
replace the torsion terms in the non-Riemannian part in 
terms of spin, and arrive at the combined field equation 
given by 
 

 2({})G k kμν μνσ= + [ ]4 2μλ νρ μλρ ν
λρρ λτ τ τ τ

⎡
−⎢

⎢⎣
 

 

   ,[ ]
1 (4 ) .
2

gλρμ ν μν λ γρ γλρ
λμ γ ρ γλρλτ τ τ τ τ τ ⎤+ + + ⎥⎦

 (14) 

 
This equation generalizes Einstein equations to incorpo-
rate the effect of torsion. 
 The ECSK theory is an example of Poincaré gauge 
theories; the latter being theories which result from mak-
ing the Poincaré group local. Such gauge theories neces-
sarily include torsion, apart from curvature, and cover a 
wide class of theories (depending on the choice of  
action), and include ECSK and GTR as special cases. 
Given the fundamental significance of the Poincaré 
group, both in quantum theory and in classical mechan-
ics, it seems natural to believe that the correct classical 
theory of gravitation includes torsion also, and reduces to 
GTR under situations where the effect of torsion is too 
small to be observable. 
 On the other hand, if one takes the stance that funda-
mental spin is intrinsically a quantum feature, one might 
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be led to ask if torsion has any role to play in classical 
theories. And if not, then how does one still retain the signi-
ficance of the Poincaré group in classical theories of gravi-
tation? In the next section we speculate on how this might 
be possible, and how gauge theories with torsion might 
contain within themselves the seeds of quantum theory. 

General relativity, torsion and quantum theory 

One of the possible suggestions for resolution of the 
quantum measurement problem is that collapse of the 
wave-function is caused by gravity3,8. This idea has been 
studied by Karolyhazy, Diosi, Penrose, their collabora-
tors, and by others. Essentially, the idea is that if  
the space-time geometry has intrinsic uncertainty and  
fluctuations, these can cause decoherence of the wave-
function of a quantum object propagating on such a back-
ground. This partially addresses the measurement  
problem, although it only explains decoherence, and not 
actual collapse. Typically, it is seen that gravity induced 
decoherence is more significant for more massive and 
larger (macroscopic) objects, thus inducing classical be-
haviour. And it is insignificant for microscopic objects, 
so that quantum theory holds for them with great preci-
sion, as one would expect. An important result in this 
context is due to Karolyhazy9,10, which says that for a 
spherical object of radius R and mass m, the critical 
length ac over which its wave-function remains coherent 
is given by 
 

 
2/3 1/3

S

S

ca RL
R R R

⎛ ⎞ ⎛ ⎞
≈ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (15) 

 
where L is its Compton wavelength and RS its Schwarz-
schild radius. 
 The physics behind this equation can be briefly sum-
marized as follows. Karolyhazy shows that if one tries to 
measure a spacetime length s, then because of inherent 
quantum effects it possesses an uncertainty Δs given by 
(Δs)3 ~ L 2

p s. This is representative of intrinsic fluctua-
tions in the spacetime geometry, which are modelled by 
assuming that the metric is not that of classical Min-
kowski spacetime, but a stochastic metric whose mean is 
Minkowski, and variance such that it reproduces the 
length uncertainty Δs. When one considers the propaga-
tion of a quantum wave-function for an object according 
to the Schrödinger equation, in the aforesaid stochastic 
background, it can be shown that the wave-function  
decoheres beyond the critical length scale ac given by eq. 
(15). Thus it is the stochastic fluctuations are responsible 
for decoherence. 
 An important lesson is learnt from here if we restrict to 
the case of a Schwarzschild black hole and set R = RS in 
eq. (15), giving 

 
2/3

.c

S

a L
R R

⎛ ⎞
≈ ⎜ ⎟
⎝ ⎠

 (16) 

 
An object is characterized as macroscopic if the coher-
ence length is smaller than its size: ac  R, and the above 
formula then implies that for macroscopic objects L  RS, 
m  mpl, RS  lpl and L  lpl. On the other hand, an ob-
ject is quantum if the coherence length is larger than its 
size: ac  R, and the above formula implies that for mi-
croscopic objects L  RS, m  mpl, RS  lpl and L  lpl. 
The result suggests, as expected, that objects smaller than 
Planck mass cannot be thought of as classical black holes, 
and should instead be considered as particles which obey 
quantum theory. Thus one limit is classical GTR and 
classical mechanics, the other limit is quantum theory on 
flat spacetime, and for m ~ mpl we should have a new dy-
namics to which quantum theory and GTR are approxi-
mations. This expectation is further strengthened by 
noting that GTR by itself has no indicator that it holds 
only for m  mpl, nor does quantum theory has anything 
in it to suggest that it holds only for m  mpl. The divid-
ing scale mpl can only come from the underlying interme-
diate theory. We now present some ideas towards arriving 
at such an intermediate theory, by looking for GTR and 
the Dirac equation as its two limiting cases11,12. (It turns 
out to be conceptually simpler to deal with the Dirac 
equation rather than the Schrödinger equation, as both 
GTR and Dirac equations are linearly sourced by the 
mass.) It turns out that torsion plays an important role in 
the search for such an intermediate theory! 
 While Einstein equations and Dirac equations look 
very different from each other, they bear a striking struc-
tural similarity if expressed in the Newman–Penrose (NP) 
formalism, which uses the tetrad language to express the 
connection and the Riemann tensor in terms of the so-
called spin coefficients, via the Ricci identities13. In the 
NP formalism four null vectors are employed: l, n, m and 
m  where l and n are real, and m and m  are complex 
conjugates of each other, and they are regarded as direc-
tional derivatives 
 
 D = l, Δ = n, δ = m, δ* = m . (17) 
 
The metric can be constructed from these null vectors of 
the tetrad. Ricci rotation coefficients (also known as spin 
coefficients) are the analog of the affine connection (for 
now assumed symmetric) and arise in the definition of the 
covariant derivatives of the four null vectors, just as the 
Christoffel symbols are defined in terms of derivatives of 
the metric. 
 There are twelve complex spin coefficients, denoted by 
standard symbols 
 
 κ, σ, λ, ν, ρ, μ, τ, π, ε, γ, α, β. (18) 
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The ten independent components of the Weyl tensor are 
denoted by five complex Weyl scalars 
 
 Ψ0, Ψ1, Ψ2, Ψ3, Ψ4, (19) 
 
while the ten components of the Ricci tensor are denoted 
by four real scalars and three complex scalars 
 
 Φ00, Φ22, Φ02, Φ20, Φ11, Φ01, Φ10, Λ, Φ12, Φ21. (20) 
 
The Riemann tensor can be expressed in terms of Weyl 
scalars and Ricci scalars, and directional derivatives of 
the spin coefficients. This is done via 18 complex equa-
tions, known as Ricci identities, and a typical Ricci iden-
tity takes the form 
 
 Dρ – δ*κ = (ρ2 + σσ *) + ρ(ε + ε*) 
 
       – κ*τ – κ(3α + β* – π) + Φ00. (21) 
 
The Ricci tensor is determined from the Einstein equa-
tions, and the 18 complex Ricci identities obey 16 real 
constraints, known as eliminant conditions, because there 
are only 20 independent components of the Riemann  
tensor. 
 Consider next the four Dirac equations for the four spi-
nor components F1, F2, G1, G2: these can also be written 
in the NP formalism, and a typical Dirac equation has the 
form13 
 
 (D + ε – ρ)F1 + (δ * + π – α)F2 = iμ*G1 (22) 
 
where μ* = mc/ 2 .  Evidently the Dirac equations have a 
striking similarity with the Ricci identities, with both 
having a pair of derivatives of spin-coefficients/Dirac 
spinors. 
 Assuming that this similarity is not a coincidence, we 
can make contact between the Dirac equation and gravita-
tional physics and recover the four Dirac equations as 
special cases of the Ricci identities, provided we set eight 
of the spin coefficients to zero 
 
 ρ = μ = τ = π = ε = γ = α = β = 0 (23) 
 
and make the following novel identification between the 
four Dirac spinors and the remaining four non-zero spin-
coefficients11 
 

1 2 1 2
1 1, , *, *

p p p p

i iF F G G
l l l l

λ σ κ ν= = − = =  

 (24) 
 
The Dirac equations follow from the Ricci identities pro-
vided we assume relations between the Riemann tensor 
components and the Dirac mass11, a typical example of 
this kind being 

 Φ20 + Φ01 = (μ* + ν)κ*. (25) 
 
Unfortunately however, it turns out that the 16 constraints 
(the eliminant conditions) on the Ricci identities lead to 
undesirable constraints on the Dirac equation, and this 
particular idea for the Einstein–Dirac correspondence 
does not work. 
 But there is a way to get rid of the troublesome elimi-
nant conditions. We recall that there are 36 real (equiva-
lently 18 complex) Ricci identities. If we introduce 
torsion, there are 36 independent components to the Rie-
mann tensor, and as a result there are no eliminant condi-
tions imposed on the Ricci identities when torsion is 
present. Thus we assume, henceforth, that the affine con-
nection is no longer symmetric. The Ricci tensor now has 
six additional components, denoted by the three complex 
quantities (Φ0, Φ1 and Φ2). The Weyl tensor has ten addi-
tional components, denoted by the real quantities (Θ00, 
Θ11, Θ22, χ) and the complex quantities (Θ01, Θ02, Θ12). 
The spin coefficients now have an additional term due to 
torsion, and we use the following notation to represent 
the spin-coefficients14 
 
 κ = κ0 + κ1,  ρ = ρ0 + ρ1, (26) 
 
etc. with the part κ0 being the torsion-free part, and the 
part κ1 being due to torsion. 
 We next write down the 18 complex Ricci identities, 
now with torsion included in the spin-coefficients. A  
typical example of the modified identities is14 
 
 * ( *) * *Dρ δ κ ρ ρ ε ε σσ τκ− = + + + −  
 
  *

00 1 1 1(3 * ) ( )κ α β π ρ ρ ε ε− + − + Φ − − +  
 
  * * *

1 1 1 1 1 00( ) .iσσ τκ κ α β π− + + + − + Θ  (27) 
 
Two limits are of interest. In one limit, the torsion part of 
the spin-coefficients is set to zero. In this limit the Ricci 
identities reduce to the ones discussed above, and if the 
source for the Ricci tensor is taken as the matter energy-
momentum tensor, we recover GTR. In the opposite limit, 
the torsion free part of the spin-coefficients is set to zero, 
and only the torsion part is retained. We now assume that 
eight of these torsion dominated spin-coefficients are  
zero, precisely as in eq. (23) above, and the remaining 
four non-zero spin-coefficients are assumed proportional 
to the Dirac spinors, as in eq. (24). The Dirac equations 
then follow from the Ricci identities provided the  
Riemann tensor obeys the following conditions11 
 
 20 20 01 01 1 0 *i i *,μ κΦ + Θ + Φ + Θ − Ψ − Φ =  (28) 
 
 21 21 2 3 02 02 *i i *,μ νΦ + Θ + Φ + Ψ + Φ + Θ =  (29) 
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 * *
12 12 00 00 2 3 *i i  ,μ σΘ − Φ + Θ − Φ + Φ − Ψ = −  (30) 

 
 * *

10 10 0 1 22 22 *i i .μ λΘ − Φ − Φ − Ψ + Θ − Φ = −  (31) 
 
Thus on the one hand we have the torsion-dominated lim-
it, which are the Dirac equations, and on the other hand 
we have the gravity dominated limit, which are the Ein-
stein equations. In the former case, gravity is absent 
(Minkowski space-time) and matter behaviour is quan-
tum. In the latter case matter behaviour is classical, and 
gravity dominates over torsion. Thus we may conclude 
that there must be a more general underlying theory in 
which the torsion-free part and the torsion part of the 
spin-connection are both present, and to which GTR and 
quantum theory are both approximations. Possibly, GTR 
is the m  mpl approximation, and Dirac theory is the 
m  mpl approximation. Finding this underlying theory 
remains a major unsolved problem in this approach, at 
present. 
 Some insight into the structure and dynamics of the 
underlying theory may be obtained by writing down the 
following heuristic action, which is a sort of combination 
of the action for GTR and for the Dirac equation 
 

 
3

4 4d d ( )(i )cS x g R x g x
G

μ
μψ γ ψ= − + − ∂∫ ∫  

 

   4d .mc x gψψ− −∫  (32) 

 
If we would like to obtain Einstein equations for a point 
particle out of this action, in the classical limit  → 0, 
then in the last term we can replace ψψ  by a spatial 
three-delta function δ 3(x) representing localization of the 
mass at a point. 
 Let us try to estimate the relative magnitudes of the in-
tegrands in these three terms of the action, by introducing 
characteristic lengths, and ignoring the four volume ele-
ment and the metric which are common to all the three 
terms. We assume there is a characteristic length l associ-
ated with the system, and the curvature scalar maybe es-
timated as R ~ 1/l2 and the first term is hence T1 ~ c3/Gl2, 
while the second term is T2 ~ /l4 and the third term is 
T3 ~ mc/l3. If T1 dominates over T2, then because of the 
resulting field equations we expect T1 ~ T3 and therefore 
 

 
3

2 3 2
1 ~ ~ ~ .S

c mc Gml R
G l l c

⇒  (33) 

 
If T2 dominates over T1 and is order T3 then 
 

 4 3~ ~ ~ .mc l L
mcl l

⇒  (34) 

We observe that T1  T2 suggests RS  L (the scale im-
plied by T2 should be negligible) and T1  T2 suggests 
RS  L (the scale implied by T1 should be negligible). 
This suggests that when T1 ~ T2 and m ~ mpl a dynamical 
description arising out of a joint consideration of the  
Dirac action and the Einstein–Hilbert action for a particle 
of mass m might be possible. 
 To make progress, we have to express the Dirac spinor 
in the term T2 in terms of the torsion part of the connec-
tion, as done in eq. (24) above. At a more fundamental 
level, since the torsion is expressed by twelve spin-
coefficients, the Dirac quantum state which is expressed 
by four spinor components, will have to be replaced by a 
new object which has twelve complex components – in 
principle this new object can be the torsion part of  
the connection. The same would have to be done for the  
Dirac spinor in the third term T3 in the action above.  
The curvature scalar in the first term in the action is also 
to be expressed in terms of the spin coefficients and their 
derivatives, and one has to investigate if the first and sec-
ond terms of the action can be suitably combined into one 
term. A suitable variational principle has to be devised to 
arrive at the generalized field equations, to which GTR 
and the Dirac equation are approximations. Presumably 
this is a Poincaré gauge theory, because it has  
torsion as well as curvature. But it is not a classical the-
ory: since we work with the complex spin coefficients 
rather than a real affine connection, there seems a possi-
bility of making contact with quantum theory. Further 
studies in this direction are currently in progress. It is  
intriguing that the symmetric and antisymmetric part of 
the connection carry information about gravity and the 
matter field respectively. 
 It is worth pointing out an important similarity of these 
ideas with the boundary-bulk gauge/gravity duality dem-
onstrated in the context of the AdS/CFT correspondence. 
We have argued that classical GTR and flat space quan-
tum theory should be limiting cases of an underlying the-
ory, with both the limiting theories living in the same 
number of dimensions. In contrast, if we allow for differ-
ent dimensions, we learn from AdS/CFT that a flat space 
quantum theory living on the boundary is dual to a  
gravity theory in the bulk. In particular, if eq. (32) is  
rewritten assuming different dimensions for the gravity 
and Dirac sectors, it would appear to be the starting point 
of braneworld models: namely we have bulk gravity in 
d + 1 dimensions and quantum matter theory in d dimen-
sions. One could consider a decoupling limit of such a 
model which in principle could realize the premise of 
having GTR and quantum theory as limiting cases. This 
facet appears worthy of further study. 
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