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We give a brief survey of the attempts to understand 
the quantum dynamics of general relativity through 
the lens of quantum field theory, which has been suc-
cessfully applied to the other fundamental interac-
tions. This approach began by naively quantizing spin 
two massless particles but quickly ran into difficulties 
when considering quantum corrections to the interact-
ing theory. We will describe how the early incarna-
tions of string theory successfully addressed these 
problems. Then we go on to sketch how one has been 
able to go beyond this ‘perturbative’ picture by giving 
a tight microscopic description of black hole thermo-
dynamics. This in turn has led to the much more sub-
tle holographic description of the quantum dynamics 
of a large class of spacetimes which has been one of 
the primary engines of theoretical developments in the 
last couple of decades. 
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Introduction 

THE quantum mechanical framework of nature is incom-
plete without the inclusion of the gravitational interac-
tion. While we celebrate the centenary of Einstein’s 
successful description of classical gravity, it is humbling 
to remember that quantum mechanics, in the form that 
emerged a mere ten years afterwards, is yet to be fully re-
conciled with general relativity. This is not merely unsat-
isfactory in some abstract, intellectual sense. It means 
that we do not have a full description of the initial stages 
of the universe despite the success of general relativity in 
explaining its large scale evolution and structure. It also 
means that we are yet to completely penetrate the enig-
matic nature of black holes, which are now believed to be 
ubiquitous at stellar scales as well as on the much larger 
scales at the centre of galaxies. 
 In this article, we trace, from the early period to the 
present, the evolution of our view of gravity as a quantum 
interaction. We will first describe how gravity was sought 
to be quantized as a quantum field and some of the prob-
lems this approach ran into. We next outline how string 
theory in its early form addressed some of these issues 
which are to do with the perturbative interactions of gra-

vitons. Then we show how an improved understanding of 
what string theory is, led to a first principle explanation 
of some of the puzzling features of black holes – their 
thermodynamic nature. This, in turn, has led to a new  
insight into the nature of quantum gravity in general – 
that of being holographically described by a quantum 
field theory (QFT) after all! This, still evolving, subject 
of gauge-gravity duality will also be discussed. 

Quantum gravity as quantum field theory? 

Einstein’s equations have many similarities to Maxwell’s 
equations, seemingly only a more complicated, nonlinear 
(self-interacting) and tensorial version of the latter. In 
fact, the non-abelian generalization of Maxwell theories 
to Yang–Mills theories seems to be even closer in spirit 
to the Einstein theory in being nonlinear as well. All of 
them have the property that in a weak field limit the 
equations can be linearized and reduce to wave equations 
which have solutions propagating at the speed of light. 
Since the starting point of the quantization of Maxwell 
(and weakly coupled Yang–Mills theories) are these 
plane wave solutions, it was natural to mimic this proce-
dure in the case of gravity as well. 
 In a weak field limit, the metric gμν (x) which describes 
the classical gravitational field has the form 
 

 ( ) + ( ); | | 1,g x h x hμν μν μνη≈  (1) 
 

where ημν is the usual Minkowskian spacetime metric in 
the absence of gravity. After imposing an appropriate 
gauge choice – we need to fix the linearized diffeomor-
phism invariance 
 

 ( ) ( ) ( ) ( ),h x h x x xμν μν μ ν ν μξ ξ→ + ∂ + ∂  (2) 
 

the vacuum Einstein equations reduce to the wave equation 
 

 2 20 ( ),h ν
μν μ∂ = ∂ ≡ ∂ ∂  (3) 

 

which has plane wave solutions of the form εμνe(ik⋅x) with 
k2 = 0, where the (constant) polarization tensor εμν takes 
only two independent values (due to the gauge invariance). 
 As for electromagnetic waves, where the quantization 
leads to massless quanta, photons, here too one has mass-
less quanta, now called gravitons. A crucial difference is 
that unlike the vector nature of electromagnetic waves 
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which led to spin one photons, the tensorial nature of the 
polarization tensor εμν implies that gravitons have spin 
two. The two independent polarizations correspond to 
states with helicity ± 2. 
 This was for the free theory. The complications arise 
on considering interactions. First, the source of gravity 
(the metric) is the energy-momentum tensor. Continuing 
to work with the weak field but allowing for (weak) mat-
ter sources, the linearized equations get modified to 
 

 2
N

116 ,
2

h G T Tα
μν μν μν απ η⎛ ⎞∂ = − −⎜ ⎟

⎝ ⎠
 (4) 

 
where Tμν is the matter energy-momentum tensor. These 
equations also follow from the Fierz–Pauli Lagrangian 
which is the unique one that is quadratic in the spin two 
field hμν (x) and invariant under the linearized diffeomor-
phism invariance mentioned above, together with the  
linear matter current coupling hμν (x)T μν(x). 
 However, this is not a consistent theory in itself since 
the energy-momentum of the gravitational field itself has 
not been included in Tμν (x). The free field part of the  
Fierz–Pauli Lagrangian itself gives a contribution to 
Tμν (x) which is quadratic in hμν. This in turn implies, 
from the coupling hμν(x)T μν (x) that there is now a cubic 
term in hμν in the Lagrangian. This simply reflects the 
self-interaction of gravity. However, the process cannot 
truncate with this cubic interaction since this now gives 
an additional cubic contribution to the gravitational en-
ergy-momentum which leads to a quartic interaction and 
so on. One generates interaction terms with an arbitrary 
number of h’s. Remarkably, it has been argued that  
this process when iterated generates the Einstein–Hilbert  
Lagrangian for classical gravity. 
 What is significant, from our present point of view of 
QFT, is that we have succeeded in viewing gravity as an 
interacting theory of spin two quanta without reference to 
the equivalence principle, etc. Thus it would appear as if 
the geometric aspect of gravity was merely a nice add-on 
feature but not particularly crucial to the understanding of 
the theory at the quantum level. Indeed Weinberg was 
able to show that the coupling of a massless spin two 
field (thus, with linearized gauge invariance) to any other 
field is universal and proportional to the mass/energy as 
expected from the equivalence principle. This followed 
from a very general analysis of the low energy limits of 
scattering amplitudes involving massless gravitons. The 
equivalence principle, in this sense, is a consequence of 
the massless spin two nature of the graviton. 
 Emboldened by these successes, as well as those of 
quantum electrodynamics (QED), theorists applied the 
same techniques to understanding the quantum interac-
tions of gravity. The recipe of perturbative quantum field 
theory is succinctly captured by the Feynman diagram 
prescriptions. The building blocks of the diagrams are 
edges or propagators of the free graviton (and any other 

matter fields present), as well as vertices representing the 
interactions. Thus a cubic interaction corresponds to a 3-
valent vertex and so on. The weights associated to these 
propagators and vertices depend on the precise form of 
the Lagrangian. In the case at hand we saw that we have  
interactions in hμν of arbitrarily high order. This means 
there are an infinite number of vertices, of all valencies, to 
consider. Each of these vertices comes with an appropriate 
positive power of the gravitational coupling constant GN. 
 A naive treatment of quantum effects in QFT (captured 
by diagrams with internal loops) leads to ultra-violet or 
short distance divergences which do not make physical 
sense. These come from virtual particles of arbitrarily 
high energies which must, in principle, be present. Since 
physics at arbitrarily high energy is something we can  
only extrapolate to, one parametrises one’s ignorance in 
terms of some number of independent coupling constants 
or parameters which characterize the theory at energy 
scales of interest. The quantum corrections which are  
naively divergent are actually unobservable corrections to 
these parameters which are themselves to be fixed by ob-
servation. In terms of these parameters one then extracts 
other finite corrections which are also observable. This is 
the philosophy of effective field theory. 
 When this approach is applied to gravity, we encounter 
the problem tha6t the gravitational coupling constant GN 
has dimensions (in natural units where  = c = 1) of [M]–2 
(in four spacetime dimensions). At energies comparable 
to the Planck scale MP ∝ (1/GN)1/2 where quantum effects 
become significant, we have an infinite number of quan-
tum correction terms to the Einstein Lagrangian involving 
more and more derivatives (e.g. higher powers of the cur-
vature tensor) each of which would have an a priori in-
dependent coupling constant. Since we have parametrized 
our ignorance of the theory in these parameters, we can 
extract very few consequences of the quantum correc-
tions. This is unlike the case of QED, where the coupling 
constant is dimensionless and so that at low energies, 
quantum effects are computable in terms of a finite  
number of parameters. This is the so-called problem of 
non-renormalizability of gravity. Explicit calculations, 
starting with ones by ’tHooft and Veltman in the early 
70s, have confirmed the presence of additional higher  
derivative terms with undetermined coefficients. 
 In fact, the situation is reminiscent of the low energy 
description of pion interactions which can be captured  
effectively using quantum field theory with a coupling 
which has negative mass dimensions 1( ,fπ

−  where fπ is 
the pion decay constant). This is a good description at en-
ergies small compared to the QCD scale which is set by 
4π fπ , just as the Einstein description is a good one at en-
ergies small compared to MP. At energies of the order of 
the QCD scale, the pion Lagrangian contains arbitrarily 
many higher derivative terms with unknown coefficients 
and can make few robust predictions. In that case, one 
needs a more microscopic description like that of the 
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QCD Lagrangian which predicts an infinite number of 
other excitations (i.e. other mesons heavy compared  
to the pions) in the theory which need to be taken into  
account to make predictions at the QCD scale. 
 Thus the QFT approach appears to lead us to an  
impasse. We see that it predicts Einstein’s theory as an 
effective description for massless spin two particles at 
low energies but does not show the way to go beyond that 
in a predictive way at energies (or distances) where quan-
tum effects are important. 

String theory – infancy and early successes 

Though string theory originated in the late sixties as an 
attempt to understand the strong interactions, it was grad-
ually realized by mid-seventies that it actually had the  
potential to provide a consistent quantum theory of gra-
vity. In fact, at the very minimum it cured some of the 
problems just outlined, faced by the QFT approach to 
quantizing gravity. For a collection of articles on general 
aspects of string theory, see ref. 1. 
 String-like extended objects are common in nature. 
They arise in superconductors and also describe the flux 
tubes of QCD (the theory of the strong interactions). 
Quantizing such an object leads to a remarkable fact: 
there is an infinite tower of particles in the spectrum with 
one of the lowest excitations being a massless spin two 
particle. To be more precise, this particle arises from the 
quantization of closed strings (which like rubber bands 
have no endpoints, unlike open strings which are like a 
piece of thread and have two endpoints). 
 A fundamental string (i.e. without any thickness and 
thus truly one dimensional) is characterized by its tension 
T (or mass-energy per unit length). The dynamics of the 
relativistic string is defined by specifying the amplitude 
for the propagation of this string. Adopting the Feynman 
approach, this amplitude is given by 
 

 (i [ ( , )])[ ( , )]e .clS XAmpl X
μ σ τμ σ τ∝ ∫ D  (5) 

 

Here (σ, τ ) refer to the spacelike and timelike directions 
on the two dimensional worldsheet spanned by the time 
evolution of the one dimensional string. Xμ (σ, τ ) gives 
the spacetime location of each such point on the worldsheet 
in the spacetime in which it propagates. It is often referred 
to as the embedding or a map of the worldsheet in a target 
spacetime. Scl[Xμ(σ, τ)] is the classical action which is a 
functional of this embedding or trajectory of the string. 
The most natural action (largely fixed by requiring repara-
metrisation invariance of the functional on the arbitrary 
choice of (σ, τ )) is the Nambu–Goto area functional. Here 
 

 Scl ∝ T × area, (6) 
 

where the area is that swept out by the string worldsheet 
in spacetime. This generalizes the usual proper time func-
tional for the worldline propagation of a point particle. 

 The spectrum of excitations of this string is now quan-
tized. As mentioned above there is an infinite tower 
 

 2 ( 0,  1,  2, ...),nm nT n∝ =  (7) 
 

with exponentially increasing degeneracy at any given 
level n (see note 1). At n = 0, one can also show that the 
massless excitation of the closed string has spin two. For 
the open string, one has spin one quanta as the massless 
excitations. 
 It was the great insight of Yoneya, and independently, 
Scherk and Schwarz, to realize that the low energy classi-
cal interactions of these massless particles is exactly that 
given by Einstein gravity (for the closed string) and 
Yang–Mills gauge fields (for the open string). To be 
more precise, for energies much smaller than the string 
tension T, the other excitations of the string are too mas-
sive to play a significant role. The low energy spacetime 
Lagrangian is that of Einstein–Hilbert (plus some mass-
less scalars as well as Yang–Mills, when one has open 
strings). This essentially follows from the same argu-
ments given in the previous section once one has a mass-
less spin two particle with the linearized gauge invariance 
of (2). However, the massive excitations of the string do 
give well defined higher derivative corrections to the Ein-
stein–Hilbert theory which are suppressed by positive 
powers of (E2/T) even at the classical level. For instance, 
the two graviton to two graviton scattering amplitude has 
a finite classical correction coming from a term propor-
tional to R4, which is a short form for denoting a term in-
volving four powers of the Riemann curvature tensor. 
 The situation is analogous in many ways to the pion 
case mentioned in the previous section. When we go to 
energy scales comparable to the string tension scale ,T  
we can no longer ignore the other massive excitations. 
The low energy description breaks down and we need to 
use the full string amplitude. It must be emphasized that 
this is true even at the classical level, i.e. without includ-
ing the effect of virtual particles. The new effects are  
already present at the classical level due to the additional 
massive particles that will contribute to any amplitude. 
Note that the new physics enters at the scale T  which is 
not, in general, the same as MP. 
 What about the quantum corrections which brought 
quantum gravity to grief in the conventional perturbative 
approach? We now need to consider virtual processes in-
volving the propagation of strings. These string loops can 
be diagrammatically represented by surfaces (the two di-
mensional worldsheets) with holes in them (analogous to 
the Feynman graphs with loops). The simplest such dia-
gram involves one hole and mathematically this is what is 
known as a torus (like a bicycle tube). Higher order quan-
tum effects will have more holes and are known as sur-
faces of higher genus. Each additional hole is weighted 
by a factor of 2 ,sg  the string interaction parameter. Thus 

2
sg  gives the amplitude for a string to split into two and 

rejoin (see note 2). The perturbative expansion of string 
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theory in terms of surfaces of higher and higher genus is 
valid when 2 1.sg  The Newton constant GN is propor-
tional to 2

sg  times appropriate factors of T and any other 
parameters (e.g. compactification scales when there are 
additional small dimensions). Thus the Planck scale can 
differ from the string scale by factors of gs. 
 The fundamentally different nature of string interac-
tions (from that in a QFT) shows up when we consider 
these quantum corrections. Unlike the point-like vertices 
in Feynman graphs which implied that interactions were at 
arbitrarily short distances (and therefore involved virtual 
particles of arbitrarily high energies), in string theory, the 
interactions are smeared out. A worldsheet with holes is a 
smooth surface and there is no single point in spacetime 
which can be associated with a string splitting or join-
ing – it is spread over a size set by the string tension. 
 Mathematically, this is seen, from the fact that the re-
gion of integration over the different shapes of the sur-
faces does not have any degeneration which corresponds 
to short distances in spacetime. The only degenerations 
are those coming from the infra-red or long distances, 
corresponding to the more familiar divergences from the 
long range interactions of massless quanta. The net up-
shot is that the quantum corrections to the Einstein action 
are finite and we do not have the embarrassment of an  
infinite number of undetermined couplings. Thus, for  
instance, the R4 term mentioned earlier, that governs two 
to two scattering of gravitons, gets a finite calculable cor-
rection at one loop. 
 String theories therefore afforded the possibility, for 
the first time, to make computable corrections to Ein-
stein’s theory within a robust framework. It sidestepped 
some of the difficulties that QFT had by introducing a 
tower of additional particles interacting in a manner con-
strained by the geometry of strings. 
 So what was the downside? First, string theories come 
with a lot of additional baggage. There are, of course, all 
the stringy massive excitations that need to be postulated. 
Also, as alluded to earlier, one needs to consider super-
symmetric versions of string theory to avoid problems 
like a runaway vacuum and/or large cosmological con-
stant. These versions are consistent only in ten spacetime 
dimensions, necessitating the presence of additional 
curled up tiny dimensions. Both supersymmetry (even 
mildly broken) and additional spacetime dimensions are 
currently unobserved. But on the plus side these could be 
features rather than bugs. The Kaluza–Klein idea of addi-
tional dimensions as a way to put together gravity with 
other forces predates string theory and cannot be ruled 
out at this stage of experimental input. In fact, this may 
well be a feature rather than a bug since many string 
compactifications naturally realize popular models of 
grand unification with the bonus of gravity. Supersym-
metry (in mildly broken form) is theoretically attractive 
for solving problems involving going beyond the standard 
model of particle physics. We might be on the threshold 

of knowing if this is indeed the path nature takes as we 
explore more of the physics beyond the standard model, 
at the Large Hadron Collider (LHC). The best thing is to 
wait and see what the verdict is. 
 The second (and more serious) criticism that was lev-
elled against string theory at this stage of its development 
was that its approach to quantum gravity was much too tied 
up with the QFT one of understanding the interactions of 
gravitons in a perturbative expansion. One largely ignored 
the link to spacetime geometry. However, many of the co-
nundrums of quantum gravity have to do with the behaviour 
of black holes or cosmological singularities. These cannot 
be addressed by studying the interaction of gravitons – they 
are intrinsically nonperturbative in that they involve a  
macroscopically large number of excitations which cre-
ates qualitatively new effects in spacetime geometry such 
as horizons or singularities. An analogy is with the 
Schwinger effect in QED where the presence of a macro-
scopic electric field leads to the pair production of elec-
tron–positron pairs. In fact, there is a similar effect in 
gravity – the Hawking radiation from black holes. More-
over, an understanding of the scattering of gravitons does 
not tell us about how to make sense of spacetime at the 
quantum level. We have been assuming spacetime to be a 
fixed background with small graviton fluctuations. 

String theory – addressing the puzzles of black  
holes 

Beginning in the mid-nineties, thanks to the work of Sen, 
Seiberg, Witten, Polchinski, Stominger, Vafa and many 
others, one gained a better grip of string theory, beyond 
the perturbation expansion in terms of surfaces with more 
and more holes. This expansion is limited by the re-
quirement that the interaction strength 2 1.sg  The pic-
ture that was now pieced together was one where the 
different varieties of string theory were actually different 
perturbative corners of a single entity. An important  
ingredient in this understanding was the presence of so-
called D(irichlet)-branes. These are macroscopic defect-
like solutions of closed string theory. They are extended 
objects, ranging in extent from being point like to filling 
the entire spacetime. The unusual feature of these objects is 
that they can equally well be viewed as loci where open 
string endpoints can live (hence Dirichlet boundary condi-
tions). In either way of viewing these objects they are in-
trinsically non-perturbative in having a tension (now mass 
per unit worldvolume) which is proportional to 1/gs and 
thus invisible in an expansion in positive powers of 2.sg  In 
this sense they are the solitonic objects of string theory. 
 The understanding of these objects enabled string theo-
rists to try and address some of the most puzzling fea-
tures of black holes. Namely, the discovery of Hawking, 
Bekenstein and others about their behaviour as thermo-
dynamic objects in the mid-70s. This discovery arose 
from the study of quantum fields in the background of 
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black holes. The result of these studies was that black 
holes appeared to have a thermodynamic entropy and 
moreover, radiate quanta of the other fields at a fixed 
temperature. There is a universal formula for the entropy 
 

 H
BH

N
,

4
A

S
G

=  (8) 

 

where AH is the area of the horizon of the black hole. The 
accompanying Hawking temperature is (for a Schwarz-
schild black hole of mass M) 
 

 H
N

.
8

T
G Mπ

=  (9) 

 

More generally, it is proportional to the surface gravity of 
the black hole. Note the presence of  in these formulas 
showing it to be intrinsically quantum. It was also seen 
that black holes obey the first and second laws of ther-
modynamics with the above assignments. 
 To associate such an entropy to a black hole is deeply 
puzzling from the point of view of Einstein’s theory. 
Black holes solutions obey various uniqueness theorems. 
Thus it seems impossible to assign any microstructure to 
them – there is only one classical configuration character-
ized by a given total energy, charge and angular momen-
tum. This is unlike the situation with respect to gas 
molecules in a box in which there are a huge number of 
internal configurations corresponding to the same total 
energy, charge and angular momentum. Classically, one 
would thus assign zero entropy to a black hole. 
 But there is a further puzzle: even if one were to as-
sume that the entropy is non-zero due to some quantum 
microstructure, the fact that it is proportional to an area is 
difficult to understand. If the gravitational field were 
some kind of (approximately) local field like the electric 
or magnetic fields, then the entropy of the quanta would 
be extensive in the volume of the object – in this case, 
that enclosed by the horizon of the black hole. The fact 
that SBH is proportional to the area suggests that the  
underlying degrees of freedom of quantum gravity are far 
fewer than one might, at first sight, imagine. 
 Coming back to string theory, the dual perspectives on 
D-branes enabled Strominger and Vafa, for the first time, 
to undertake a precise counting of the microstates of 
black holes (a special class of them which are supersym-
metric). This exploited the above dual description of  
D-branes. On the one hand, they could be viewed as black 
hole (black brane) like solutions from a closed string point 
of view. On the other hand, they were seen to have open 
string excitations which could be counted microscopically. 
Thus in the original Strominger–Vafa case, when SBH in eq. 
(8) is expressed in terms of the charges, it takes the form 
 

 SV 1 52 ,LS Q Q Nπ=  (10) 
 

where Q1, Q5, NL refer to three different charges carried 
by the black hole. This is exactly reproduced from the 

statistical mechanical counting of the number of different 
excitations on an open string with these different charge 
species. In fact, this can be generalized away from  
the strictly supersymmetric limit by turning on an addi-
tional charge in which case we have the entropy 

SV 1 52 ( )L RS Q Q N Nπ′ = +  which is once again  
reproduced by a simple state counting. This was further 
generalized to a wide variety of cases immediately (carry-
ing multiple charges, angular momenta, in different  
dimensions, etc.). In each case the agreement was striking 
since the functional form of A can depend quite non-
trivially on the charges, etc. as we see from above. 
 Moreover, it was not just the entropy that was matched 
but also the detailed profile of Hawking radiation as well as 
the absorption cross section (gray body factor). Here there 
were seminal Indian contributions by Sumit Das, Samir 
Mathur, Avinash Dhar, Gautam Mandal and Spenta Wadia. 
 In the decade that followed, this striking microscopic 
agreement with the semi-classical answer was further 
deepened. The corrections to Einstein’s equations by 
higher derivative terms lead to corrections to SBH. The 
systematic way to compute these was formulated by Wald 
through an explicit entropy formula. As we saw, string 
theory leads to definite corrections (even at the classical 
level) to Einstein’s gravity. Considering the subleading 
(in the charges such as Q1, Q5, etc. in eq. (10)) contribu-
tions to the microscopic counting leads, in many case to a 
precise match of an infinite number of terms. Building on 
work by de Wit and collaborators, Atish Dabholkar, 
Ashoke Sen and collaborators, performed some of these 
striking checks. Ashoke Sen went on to also calculate 
some of the leading quantum corrections (one loop) to the 
entropy and matched terms which are logarithmic in the 
area with corresponding terms in the microscopic answer. 
These show how robust the matching of entropy in string 
theory is, to both classical and quantum corrections to 
Einstein’s equations. 

Quantum gravity as a quantum field theory! 

The remarkable successes in understanding black holes 
gave a great deal of confidence in the ability of string 
theory to give a consistent description of quantum gravity 
beyond the perturbative regime of graviton scattering. 
Examining deeper the underlying reasons for the agree-
ment between the microscopic and macroscopic computa-
tions of black hole entropy led to one of the most striking 
developments of contemporary theoretical physics. This 
was the so-called gauge–string duality or AdS/CFT corre-
spondence proposed by the Argentinian physicist, Juan 
Maldacena. For an introduction to Gauge-String Duality, 
see ref. 2. 
 This duality arose from the two different descriptions 
of D-branes which we have already mentioned. On the 
one hand, they can be viewed as black hole like gravita-
tional solutions – a closed string description involving 
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gravity. On the other hand, they can be viewed in terms 
of quantum gauge field theories – the open string descrip-
tion. This open-closed string duality is at the origin of 
this remarkable connection. By taking an appropriate  
limit, what one has is an exact quantum equivalence bet-
ween, for instance, a quantum Yang–Mills theory (with 
no gravity) and a closed string theory which describes 
quantum gravity. Moreover, the connection is ‘holo-
graphic’. The QFT can be viewed as being defined on the 
boundary of the space-time whose quantum behaviour we 
are capturing. In the simplest cases, this spacetime is an 
asymptotically anti de Sitter (AdS) space-time. AdS 
spacetimes are the analogue of hyperbolic spacetimes in 
Euclidean signature. They can be thought of as solid  
cylinders with the cylindrical axis being the time direc-
tion. The QFT is then on the boundary (or surface) of the 
solid cylinder and is an asymptotically conformal field 
theory – i.e. a fixed point of the renormalization group 
with relativistic conformal invariance. 
 This relation provides a deeper insight into the puzzles 
of black hole entropy. It first equates the entropy with 
that of the QFT at the same temperature as the Hawking 
temperature of the black hole (in AdS). So we have a 
physical picture of the degrees of freedom underlying the 
entropy. Secondly, the fact that the microscopic descrip-
tion is in terms of a field theory on the boundary means 
that it will be extensive in one lower dimension – which is 
exactly what the area law indicates. Thus the idea that 
quantum gravity has fewer degrees of freedom compared to 
a QFT (in the same number of dimensions) is very well 
borne out. Indeed quantum gravity appears to be described 
by a QFT but in a more novel way than one imagined. 
 This duality has had consequences both for the physics 
of gauge theories as well as gravity since the equivalence 
is a strong–weak coupling duality. The dictionary of  
parameters reads as 
 

 AdS Ads1 1 andαλ λ∝ ⇒ ↔  
 

 AdS1 1.λ ↔  (11) 
 

Here λ is the gauge coupling while AdS is the length 
scale of AdS and is inversely proportional to its curva-
ture. The exponent α > 0. Thus AdS  1 corresponds to a 
weakly curved spacetime where Einstein’s equations can 
be trusted. But this is exactly the regime where the field 
theory is strongly coupled (λ  1). Thus classical Ein-
stein equations are able to tell us about highly quantum 
nonperturbative correlators in a gauge theory! Con-
versely, the regime of weakly interacting theories (λ  1) 
which is accessible to perturbation theory describes high-
ly curved AdS spacetime which needs a full string theory 
completion. We gain complementary information from 
gauge theory and gravity about each other. 
 The two sides of the equivalence are two different pil-
lars of theoretical physics, namely, general relativity and 
quantum field theory. About a century after their discov-

ery we are unearthing new facets to them. This is what 
gives this particular duality a magical flavour. It is a 
demonstration of the theoretical robustness of string the-
ory that it is able to encompass both QFT and quantum 
gravity, while at the same time providing novel insights 
to both fields which predate its own existence. It is not 
difficult to falsify many of the statements that this con-
nection entails and yet, in a decade and a half, it has con-
tinually passed every nontrivial check. The original 
correspondence has been generalized to a number of situ-
ations: in diverse dimensions, away from the conformal 
limit, with less and even no supersymmetry. In fact, other 
theories of gravity like the Vasiliev theory of higher spin 
gauge fields (with a single tower of massless gauge fields 
of spin s ≥ 2) also appear to have holographic dual QFTs. 
Thus the connection is very wide-ranging and indicates a 
universal aspect of quantum gravity. It however remains a 
challenge to generalize this correspondence further to 
time-dependent geometries (such as de Sitter, which  
describes our accelerating universe). 

To conclude 

In this brief sketch we tried to give a bird’s eye view of 
an approach to quantum gravity that over the last 80–90 
years has steadily made progress towards explicating one 
of the most enduring enigmas of theoretical physics – on 
how to reconcile general relativity with quantum mechan-
ics. The step by step progress from gravitons to black 
holes has been a long and arduous one and has necessi-
tated the development of an unexpectedly rich frame-
work – that of string theory. The unfolding developments of 
gauge-gravity duality show us how surprises still lurk in 
gravity. The ongoing debate about firewalls at black hole 
horizons is another instance of our perhaps having to make 
radical adjustments in our thinking in order to fully grasp 
quantum gravity. The next century of general relativity 
will not lack for intellectually stimulating developments. 

Notes 

1. Strictly speaking this is the spectrum of the superstring which is a  
supersymmetric version of the string that contains fermionic excitations 
as well. The purely ‘bosonic’ string appears to be ill behaved in that its 
lowest state is tachyonic – a signature of instability of the vacuum. 

2. Strictly speaking, 2
sg  is not a parameter, rather it is the expectation 

value of a scalar field and is fixed dynamically. It measures the 
strength of quantum interactions and always arises in combination 
with . This is unlike the string tension T which is a genuine dimen-
sionful parameter of the theory which sets the scale of the size of 
the string. 
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