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The present article describes a beautiful contribution 
of Alan Turing to our understanding of how animal 
coat patterns form. The question that Turing posed 
was the following. A collection of identical cells (or 
processors for that matter), all running the exact same 
program, and all communicating with each other in 
the exact same way, should always be in the same 
state. Yet they produce nonhomogeneous periodic  
patterns, like those seen on animal coats. How does 
this happen? Turing gave an elegant explanation for 
this phenomenon, namely that differences between the 
cells due to small amounts of random noise can actu-
ally be amplified into structured periodic patterns. 
We attempt to describe his core conceptual contri-
bution below. 
 
Keywords: Activator and inhibitor, animal coat patterns, 
distributed systems, random noise. 

Introduction 

WE have all seen the spots of a giraffe and the stripes of a 
tiger (Figure 1). How do these patterns form? Presuma-
bly, there is some substance whose presence or absence at 
various places along the animal coat yields that pattern 
(there could be multiple such substances, but for simpli-
city let us think of just one; call this substance the activa-
tor). Presumably, the many cells that form the outer 
surface of the animal coat produce this activator. All 
these cells are largely identical so they should produce 
the same amount of the activator each. Then how does  
the coat pattern come about? This was the question that  
Turing asked and answered so elegantly in his seminal 
work1. 
 This is a fundamental question in the study of distri-
buted systems. How do a collection of distributed agents, 
all doing the exact same thing, produce a highly non-
uniform, and that too periodic pattern? Symmetry would 
dictate that if each cell does the exact same thing and 
each cell has the exact same state to begin with, then the 
states of all the cells will remain identical at all periods of 
time, i.e. each cell will continue to produce the exact 
same amount of the activator. The appearance of patterns 
therefore will need some symmetry breaking. 

Breaking symmetry 

A number of factors destroy symmetry in practice: the 
gravitational field, for example. These could make the 
cells non-identical. However, it is not obvious how these 
monotone symmetry breakers could contribute to the  
periodic pattern of spots or stripes observed in nature. 
 There is an additional symmetry breaker that is ubiqui-
tous, i.e. just random noise. The amount of the activator 
produced will differ from cell to cell by a small noise 
amount. Noise distributions found in nature are certainly 
not repetitive or periodic though (Figure 2); a far cry 
from the actual target coat pattern. 
 Could noise provide sufficient symmetry breaking for 
periodic patterns to emerge? Turing answered this as  
below. 

Communication 

Suppose there was no communication between the cells, 
i.e. the activator does not flow from one cell to another. 
Then the amount of the activator in each cell will be  
determined purely by its production in that cell; and the 
production amounts are largely the same from cell to cell, 
as we claimed above, modulo noise; and the distribution 
of noise across the cells does not form a periodic pattern. 
In other words, without flow of activator from cell to cell, 
the patterns we see in nature cannot be explained as  
resulting purely from symmetry breaking on account of 
noise. 
 So let us assume that the activator flows from cell to 
cell. It is natural for the activator to flow from a cell that 
has a slightly higher production (on account of noise) to a 
neighbouring cell that has a slightly lower production.  
Intuitively, this would seem to even out any cell-to-cell 
variations on account of noise, leading to a uniform  
distribution of the activator across cells, thus taking us 
further away from our goal of explaining how periodic 
animal coat patterns appear. Nevertheless, let us model 
the above mathematically, just so we can set the stage for 
making further tweaks. 

Modelling communication 

For simplicity, we will work in one dimension instead of 
the usual two dimensions associated with animal coats.
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Figure 1. Animal coat patterns. 
 
 

 
 

Figure 2. Noise distributions in nature. 
 
 
So imagine a one-dimensional chain of cells 0 ... n – 1 
(actually, a cycle to avoid special handling at the bounda-
ries, so cell n – 1 has cells 0 and n – 2 as neighbours). 
 Let fi

 (t) denote the amount of the activator in cell i at 
time t. Assume that there is initial production of the acti-
vator given by fi (0) = 1 + i, where i denotes a small 
noise term. Subsequently, at each time unit, the activator 
flows from a cell with higher amount to a neighbouring 
cell with lower amount, at a rate proportional to the dif-
ference in amounts. The proportionality constant  > 0 
reflects the viscosity properties of the activator. We can 
now write down the time evolution of fi (t) as follows. 
 
Activator dynamics 
 
  fi(t + 1)  fi(t) +  [fi − 1(t) – fi(t)] +  [fi + 1(t) – fi(t)], (1) 
 
   (1 – 2) fi(t) +  fi − 1(t) +  fi + 1(t). (2) 
 
How do we solve the above for fi (t) as t grows larger and 
larger? We need the following tool for this. 

A mathematical tool 

It would have been relatively easy to solve for fi (t) if it 
depended solely on fi(t − 1), and not on fi − 1(t – 1) and 
fi + 1(t – 1) as well. A common trick (the Fourier trans-
form2) is often used to remove the dependency of fi (t) on 
f 

(i – 1) (t – 1) and f(i + 1) (t – 1). This requires writing the fi (t)s 

in terms of a new set of variables ai(t)s, via multiplication 
by an invertible matrix, as below. 
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So instead of working with fi(t)s directly, we can work 
with the ak(t)s instead and transform these back to fi(t)s 
whenever desired. We will see how this is done next, but 
first a few interesting observations. Note i below is a 
small random noise amount. 
 
 0 1 1[ : ( ) 1] [ ( ) 1 and ( ) ( ) 0],i ni f t a t a t a t      (4) 
 
 0 1[ : ( ) 1 ] [ ( ) ( ) 0]i i ni f t a t a t       
  with high probability, (5) 
 

 ( ) ( ) 0 and ( ) 0, ,k n k ia t a t a t i k n k         
 

  2 .( ) cos , ,i
i kf t i

n
     

 (6) 

 
  fi(t) is then periodic in i with period n/k. 
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In particular, note the last property above; if all but ak(t), 
an – k (t) (which in turn are complex conjugates of each 
other) vanish over time, then the resulting fi (t) will be  
periodic in i with period n/k (note that k should divide n for 
true periodicity; if k does not divide n, then fi(t) will still 
be roughly periodic). 

Solving for fi (t) 

Substituting eq. (3) in eq. (2), we get: 
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Next, for each k, we get an expression for ak (t + 1) purely 
in terms of ak (t) and k below. 
 

Identifying coefficient of i ,k on both sides 
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As a consequence (recall  > 0, and a0(0)  0 by eq. (5)) 
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So if | – 4 sin2(k/n) + 1| < 1 holds for all k from 1 to n – 1, 
then a1(t)  an – 1(t)s die out with time, leaving only a0(t); 
then due to eq. (4), all fi (t)s become identical with time, 
as expected. Setting  < 1/2 suffices for the above. For 
  1/2, there is no convergence. 

Introducing an inhibitor 

Taking stock now, just flow of the activator from cell to 
cell is not sufficient to yield interesting periodic patterns; 
all one gets is a flat profile. Something more is needed. 
Let us now introduce another substance called the inhi-

bitor; the inhibitor is produced in response to increasing 
amounts of the activator and destroys the activator. In  
order for the activator to not disappear completely, some 
amount of it must be produced at an on-going basis as 
well; just the initial values do not suffice. Let gi (t) be the 
amount of the inhibitor in cell i at time t. We can now 
write the time-evolution rules for fi (t) and gi (t) as below. 
Note that we use simple linear dependency of fi (t + 1), 
gi (t + 1) on fi (t) and gi (t) here. The parameters of this 
linear dependency are , ,   ,  ; we will study how 
these can be constrained to yield the desired periodic be-
haviour later. Note also that the communication between 
cells reflected by flow of the activator and inhibitor is 
modelled as earlier, with parameters ,  . 
 
Activator dynamics: 
 

fi(t + 1)  fi(t) +  [fi − 1(t) − fi(t)] 
  +  [fi + 1(t) – fi(t)] +   fi(t) −  gi(t) 
   fi − 1(t) +  fi + 1(t) + (1 +  – 2) fi(t) 
 – gi(t). 

 
Inhibitor dynamics: 
 
gi(t + 1)  gi(t) +  [gi − 1(t) − gi(t)] 
  +  [gi + 1(t) − gi(t)] +   fi(t) –   gi(t) 
    gi − 1(t) +  gi + 1(t) +(1 –   − 2 )gi(t) 
 +   fi(t). 

 
Using eq. (3), we write 1 .
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Rewriting in matrix form: 
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Solving for ak(t), bk(t) 

To solve for ak (t), bk (t), as t grows, we need to consider 
what happens when we repeatedly multiply a matrix 
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(I − A) with an initial vector, where A is as given  
below. 
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Let e1, e2 be the eigenvalues of A (assume e1  e2 via 
slight perturbation of the parameters if necessary; this  
ensures that the corresponding eigenvectors are linearly 
independent). The eigenvalues of I − A are 1 – e1, 1 – e2. 
Recall from the definition of eigenvalues that repeated 
application of (I − A) to a non-zero vector (non-zero  
because of initial noise according to eq. (5)) converges to 
the 0 vector if |1 − e1|, |1 – e2| < 1, and diverges to in-
creasingly larger values if either |1 – e1| > 1 or |1 – e2| > 1. 
We capture sufficient (but not necessary) conditions for 
each consequence below. Note here that e1, e2 may be 
complex, in which case they are complex conjugates of 
each other, i.e. 1 .a b   
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The sufficiency of the first condition above can be seen 
as follows: if e1, e2 are not real, then e1e2 = a2 + b2 < 
e1 + e2 = 2a implies that |1 − e2|2 = |1 − e1|2 = (1 – a)2 + b2 = 
1 + a2 + b2 – 2a < 1. For the second condition above, note 
that this implies 0 < e1, e2 < 1 and therefore |1 − e2|,  
|1 – e1| < 1. For the last condition above, note that this 
implies min{e1, e2} < 0 and therefore max{|1 – e2|, 
|1 − e1|} > 1. 
 By eq. (6), periodic behaviour can be obtained by driv-
ing all but a handful of ak (t)s to 0. To this end, we set 
0 < e1 + e2 < 1 and e1e2 < e1 + e2, for all k; in addition, we 
set e1e2 > 0 for most k; for the exceptions, we set e1e2 < 0. 
Since e1 + e2 is the trace (sum of diagonal entries) of the 
matrix A, and e1e2 is the determinant, we can rewrite the 
above conditions as below. 
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Choosing ,  , ,  , ,   

We can now write sufficiency constraints on the various 
parameters to satisfy eqs (9)–(12). 
 
Equation 9. Since this holds for all k, the extremes 
k = 0 and k = n – 1 require us to choose parameters so 
 
 For k = 0, k = n – 1 respectively: 
 
 ,    (13) 
 

 [4( ) 1] [4( ) 1].               (14) 
 
Equations 11 and 12. The roots (treating sin2(k/n) as 
a variable) are as below and the only values of k violating 
eq. (11) are those for which sin2(k/n) is between these 
two roots; call this the exception range. 
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We want the exception range to be completely between 0 
and 1, and we want this range to be small; we can capture 
these constraints as below. 
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Figure 3. Initial values fi (0); noise perturbations around 1. 
 
 

 
 

Figure 4. fi (100,000), periodic with period ~  5 = 100/20. 
 
 
Equation 10. Since this holds for all k, we need to 
choose parameters so 
 
For k = 0 and k > 0 respectively 
 
 ,          (20) 

 4      (use eq. (16)). (21) 
 
To satisfy all the above constraints, we start with choos-
ing  ,  satisfying eqs (14) and (16); note eq. (21) is 
automatically satisfied. Next choose ,   to satisfy eqs 
(13), (14), (16) and (17); note that all these are simulta-
neously satisfiable by choosing small enough and mutu-
ally close ,  ; note also that the location of the 
exception range can be modulated to be anywhere in the 
0  1 range by an appropriate choice of ,  . Finally, we 
choose   very close to its upper limit indicated by eqs 
(18) and (20) to satisfy eqs (18)–(20) simultaneously; 
note that the width of the exception range can be modu-
lated by the closeness of   to its upper limit above. 
 With the above choice of parameters, only ak (t)s for 
which sin2(k/n) in the narrow exception range above 
survive with time; all other ak (t)s vanish. If the number 
of such ks is small, then by eq. (6), fi (t) shows roughly 
periodic behaviour as time progresses. And this is how  
Turing showed small random noise can be amplified to 
rough periodic behaviour. Equation (16) states that the 
inhibitor needs to flow faster than the activator for this to 
happen. 

Table 1. Example parameters 

Parameter Value 
 

n 100 
 1/32 
  1/8 
 1/8 
 1/10 
   1/7.5 
  2.5/10 

An example 

A concrete example can help illustrate this phenomenon 
more clearly. Consider the choice of parameters shown in 
Table 1. With this choice, the centre of the exception 
range is at 0.366666666667 and the width of the range on 
either side of the centre is 0.033333333. Then sin2(k/n) 
is in this exception range for k = 20, 21 and k = 79, 80. 
By eq. (6), we would then expect fi (t) to be periodic with 
period close to 5 = 100/20 for sufficiently large t. This 
matches well with simulation results shown in Figures 3 
and 4. 
 However, note two problems. First, the fi (t) profile 
across the cells i is centred around 0, alternating between 
negative and positive values. But activator amounts can-
not be negative in reality. Second, the amplitude of the 
profile grows with time, because the surviving ak (t)s keep 
growing in magnitude with time; this is also not possible 
in reality. While shifting the centre-line is possible  
by adding a fixed offset to the activator and inhibitor
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Figure 5. fi (100, 000), periodic with period ~  2. 
 
 

Table 2. Example parameters 

Parameter Value 
 

n 100 
 0.01 
  0.3 
 0.2 
 0.2 
 2.0 

 
dynamics, dampening the amplitudes requires introduc-
tion of nonlinear terms, as we see below. 

Dampening the amplitude 

A number of elegant, nonlinear models have been found 
to dampen the amplitude above, resulting in all positive 
values for the activator and the inhibitor. One such model 
was proposed by Schnakenberg3, and is described below. 
Note the 2 ( ) ( )i if t g t  nonlinear term below. 
 
Activator dynamics: 
 
 fi(t + 1)   fi − 1(t) +  fi + 1(t) 

   + (1 –  − 2) fi(t) +   f 2
i(t)gi(t) +  * . 

 

Inhibitor dynamics: 
 
 gi(t + 1)    gi − 1(t) +  gi + 1(t) 

   + (1 – 2 ) gi(t) –  f 2
i(t)gi(t) +  * . 

An example choice of parameters is shown in Table 2, 
and simulation results are shown in Figure 5. As can be 
seen below, the fi(t) profile is now in the 2.1–2.3 range. 

Conclusion 

A phenomenon that is all around us, a question waiting to 
be asked, a simple but striking problem formulation, and 
an elegant mathematical solution: all these ingredients 
make Turing’s contribution one of immense conceptual 
beauty. We have presented only the one-dimensional pic-
ture above. In two dimensions, an analogous argument 
and appropriate parameter settings can be used to derive a 
roughly periodic signal in just one of the dimensions (i.e. 
stripes) or on both dimensions (i.e. spots). Of course, the 
stripes need not be axis-parallel. For more information on 
this topic and a description of the state-of-the-art, see 
http://www.resnet.wm.edu/~jxshix/math490/lecture-chap5. 
pdf and https://ctbp.ucsd.edu/summer_school07/UCSD- 
Keshet2.pdf. 
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