
SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1693

*e-mail: manindra@iitk.ac.in

A brief history of polynomial identity testing

Manindra Agrawal*
Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India

Polynomial identity testing is the problem of deciding
if a given (multivariate) polynomial is identically zero.
Over the past decade, connections of this problem
with a fundamental issue of complexity theory have
been discovered and so the problem has attracted a lot
of attention. In this article, we provide a brief history
of the problem and its current status.

Keywords: Arithmetic circuits, black-box algorithm,
complexity theory, polynomial identity testing.

Introduction

POLYNOMIAL Identity Testing (PIT) is the problem of
checking if a polynomial of n variables over a field F is
identically zero, i.e. if all its terms cancel each other out.
The problem is simple to solve efficiently if the poly-
nomial is given in the usual sum-of-products form

 1 2

1 2
1 2

1 2 , ,..., 1 2
0 , , ...

(, , ...,) ... ,n
n

n

i i i
n i i i n

i i i d
P x x x c x x x

 

 

simply check whether all coefficients

1 2, ,..., ni i ic F are
zero. The problem becomes non-trivial when the polyno-
mial is given in an implicit form, e.g. as determinant of a
matrix with polynomial entries. One can compute the
determinant polynomial to express it in the above form.
However, the size of the polynomial can grow exponen-
tially in this process and so this algorithm is exponential
overtime. Finding an efficient algorithm for the problem
has over the years become one of the most important
challenges in complexity theory with fundamental impli-
cations.
 A general representation of polynomials is via arithme-
tic circuits: these define a sequence of addition and mul-
tiplication operations starting from variables and ending
in the desired polynomial. For example

P(u, v, x, y) = (ux + vy)2 + (vx – uy)2 – (u2 + v2)  (x2 + y2).

Figure 1 represents an arithmetic circuit computing poly-
nomial P on four variables u, v, x and y. The operations
are inside circles and take as input polynomials on arrows
coming into the circles and output the resulting polyno-
mial on arrows going out of the circles. If a constant c is

present on an arrow carrying polynomial Q into an addi-
tion operation, the polynomial is replaced by cQ, and if
the arrow is going into a multiplication operation, the
polynomial is replaced by Qc.
 Arithmetic circuits provide a natural and succinct way
of representing polynomials. Essentially, an arithmetic
circult represents a quick method to compute a polyno-
mial on any given point (by performing operations in
sequence). It is known that any polynomial that can be
expressed as determinant of a matrix, with entries being
constant or variables, can be represented by an arithmetic
circuit of size polynomial in the matrix size. Here, the
size of an arithmetic circuit is defined as the number of
operations in the circuit. So, for example, the size of the
above circuit is 16. Another important parameter associ-
ated with an arithmetic circuit is its depth. The depth of
an arithmetic circuit is the length of the longest chain of
arrows from an input variable to the output polynomial.
In the above example circuit, the depth is 4.
 There is an important restriction of the problem: low
degree PIT (LPIT). This is the problem when there exists
a polynomial bound r() such that the degree of the poly-
nomial represented by a given circuit is bounded by r(s),
where s is the size of the circuit. Most of the commonly
encountered instances of PIT are of this form.

History: 20th century

For the purpose of describing algorithms given below for
solving the problem, we assume that a polynomial P of n
variables over a field F is given in the form of an arith-
metic circuit C of size s and depth d. Further, P is non-
zero (if P is zero, all the tests below trivially work).

Figure 1. Example of an arithmetic circuit.

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1694

 The earliest work on this problem was reported in the
late 1970s in two independent papers by Schwartz1 and
Zippel2. Both of them showed a randomized polynomial
time algorithm for solving the problem. Their algorithms
were based on the following observation.

Lemma 1. Suppose the degree of each variable of P is
bounded by D. Then, for any set of values S  F, the frac-
tion of points in Sn on which P is zero is bounded by
D/|S|.

Therefore, by choosing S to be any set of 2D values
(which is bounded by exponential in the depth of the cir-
cuit), and randomly selecting a point in Sn, the probability
that P will be zero on this point is at most 1/2.
 The next significant development took place nearly 20
years after this. Chen and Kao3 designed a randomized
polynomial time algorithm for the LPIT problem over 
that used a very different idea: instead of picking a
random point from a set, they defined one irrational point
 such that () 0.P   Then they showed that P is non-
zero on most of a set of Dn rational points in the
neighbourhood of . Further, the number of points on
which P is non-zero increases with closeness of these
points to . Soon after, Lewin and Vadhan4 extended this
idea to work over finite fields, and Agrawal and Biswas5
generalized the idea using univariate polynomials to
obtain a similar test for the PIT problem.

Theorem 1. Let 1

, 0() []st i
t b iQ x x b i x


  with b being

a bit-vector of length s. Then for t  s, for at most 2s/t
bit-vectors ,b

2 (1)2 2 2
,(, , , ...,) 0 (mod 1)

s n ss r
t bP x x x x Q



  ,

for all r  s2t.

The above theorem suggests a test in which the error
probability can be decreased by increasing t without
increasing the amount of randomness required.

History: 21st century

Two results in 2002, within months of each other, cata-
pulted PIT to the centre stage of complexity theory.
Kabanets and Impagliazzo6 showed that a deterministic
polynomial-time algorithm for LPIT would yield a super-
polynomial lower bound on an explicit polynomial
family.

Theorem 2. If there is a deterministic polynomial-time
algorithm for LPIT, then there is an explicit family of
polynomials in NEXP (non-deterministic exponential
time) that requires superpolynomial size arithmetic
circuits.

An explicit family of polynomials is simply a polynomial
family that is computable within a certain time bound. For
example, the polynomial family {x1 + x2 +  + xn}n  1 is
explicit since, given n, the corresponding polynomial in
the family can be computed in time O(n). Finding an ex-
plicit family of polynomials that requires superpolynomial
size circuits to compute is the central problem of arithmetic
complexity theory. Although we know that most of the
polynomial families require superpolynomial size circuits
to compute (by a simple counting argument), we do not yet
have an example of an explicit family computable in expo-
nential time (EXP) that requires superpolynomial size. The
above theorem suggests a path to achieve this. Agrawal et
al.7 showed how to obtain such a deterministic algorithm
for a special class of polynomials5 that characterize prime
numbers.

Theorem 3. Number n is prime if Pn(x) = (1 + x)n –
xn – 1 = 0 (mod n). Further, for any composite n,
Pn(x)  0 (mod n, Qn(x)), where Qn(x) is an explicit poly-
nomial of degree O(log14n).

This resulted in the first deterministic polynomial time
algorithm for testing if a number is prime, and also pro-
vided reasons to believe that the approach suggested by
Kabanets and Impagliazzo6 is tractable. It led to more
attention to the PIT problem, and over the last decade
much progress has been made towards solving it.
 The next important advance was an observation by
Agrawal8 that deterministic polynomial-time black-box
algorithms for LPIT result in stronger lower bound. A
black-box algorithm for PIT is an algorithm that, given
circuit C computing polynomial P, produces several
points, whose values depend only on the size of C, such
that P is not zero on at least one of these points. The
name ‘black-box’ comes from the fact that such an algo-
rithm does not need to know the structure of the circuit C,
and so C can be hidden inside a ‘black-box’ and yet the
algorithm will work correctly. Black-box algorithms exist
for even PIT: all the randomized algorithms described
above are black-box algorithms for PIT or LPIT. The
observation of Agrawal8 was actually already made in
1980 by Heintz and Schnorr9.

Theorem 4. If there is a deterministic polynomial-time
black-box algorithm for LPIT, then there is an explicit
family of polynomials in EXP (deterministic exponential
time) that requires exponential size arithmetic circuits.

A partial converse of this theorem also holds6,8.

Theorem 5. If there is an explicit family of polynomials
in EXP that requires exponential size arithmetic circuits,
then there is a deterministic, sO(logs) time, black-box algo-
rithm for LPIT.

In parallel, researchers were studying the types of poly-
nomial families for which deterministic polynomial-time

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1695

algorithms can be designed. All such attempts (e.g. Kayal
and Saxena10) could only work for special families of
depth-three polynomials. On the other hand, it was
known11,12 that any LPIT circuit of size s can be con-
verted to a circuit of similar size and depth O(log s).
Hence there was seemingly a large gap between what we
could show and what we needed to. However, this gap
nearly vanished soon after13.

Theorem 6. If there is a deterministic polynomial-time
black-box algorithm for LPIT restricted to depth-four
circuits, then there is an explicit family of polynomials in
EXP that requires exponential size arithmetic circuits.

The above result showed that in order to derive exponen-
tial size lower bounds, it is enough to design a deterministic
polynomial-time black-box algorithm for depth-four cir-
cuit families. This gave further impetus to the investiga-
tions into LPIT for small depth circuit families. A number
of results followed, for special families of depth-three
and depth-four polynomials. The strongest of these show
as follows14,15.

Theorem 7. There exists a deterministic, sO(k) time,
black-box algorithm for LPIT restricted to depth-three
circuits whose top gate has at most k inputs.

Thus, to get lower bounds, one needs to extend the above
result first to arbitrary depth-three circuits and then to
depth-four circuits. Very recently, the second step has
been shown to be superfluous16.

Theorem 8. If there is a deterministic polynomial-time
black-box algorithm for LPIT restricted to depth-three
circuits and over fields of large characteristic, then there
is an explicit family of polynomials in EXP that requires
exponential size arithmetic circuits.

This brings the target tantalizingly close: one only
needs to get a time bound of (sk)O(1) instead of sO(k) in
Theorem 7.

1. Schwartz, J. T., Fast probabilistic algorithms for verification of
polynomial identities. J. ACM, 1980, 27(4), 701–717.

2. Zippel, R. E., Probabilistic algorithms for sparse polynomials. In
EUROSCAM’79, Springer LNCS 72, 1979, pp. 216–226.

3. Zhi-Zhong Chen and Ming-Yang Kao, Reducing randomness via
irrational numbers. In Proceedings of Annual ACM Symposium
on the Theory of Computing, 1997, pp. 200–209.

4. Lewin, D. and Vadhan, S., Checking polynomial identities over
any field: towards a derandomization? In Proceedings of Annual
ACM Symposium on the Theory of Computing, 1998, pp. 428–437.

5. Agrawal, M. and Biswas, S., Primality and identity testing via
chinese remaindering. J. ACM, 2003, 50(4), 429–443.

6. Kabanets, V. and Impagliazzo, R., Derandomizing polyonmial
identity tests means proving circuit lower bounds. Comput. Com-
plexity, 2004, 13, 1–46.

7. Agrawal, M., Kayal, N. and Saxena, N., PRIMES is in P. Ann.
Math., 2004, 160(2), 781–793.

8. Agrawal, M., Proving lower bounds via pesudo-random genera-
tors. In Proceedings of the FST&TCS, 2005, pp. 96–105.

9. Heintz, J. and Schnorr, C. P., Testing polynomials which are easy
to compute. In Proceedings of Annual ACM Symposium on the
Theory of Computing, 1980, pp. 262–268.

10. Kayal, N. and Saxena, N., Polynomial identity testing for depth 3
circuits. Comput. Complexity, 2007, 16(2), 115–138.

11. Valiant, L., Skyum, S., Berkowitz, S. and Rackoff, C., Fast paral-
lel computation of polynomials using few processors. SIAM
J. Comput., 1983, 12, 641–644.

12. Allender, E., Jiao, J., Mahajan, M. and Vinay, V., Non-
commutative arithmetic circuits: depth reduction and size lower
bounds. Theor. Comput. Sci., 1998, 209, 47–86.

13. Agrawal, M. and Vinay, V., Arithmetic circuits: a chasm at depth
four. In Proceedings of Annual IEEE Symposium on Foundations
of Computer Science, 2008, pp. 67–75.

14. Saxena, N. and Seshadri, C., From Sylvester–Gallai configurations
to rank bounds: improved black-box identity test for depth 3 cir-
cuits. J. ACM, 2013, 60(5).

15. Agrawal, M., Saha, C., Saptharishi, R. and Saxena, N., Jacobian
hits circuits: hitting sets, lower bounds for depth-d occur-k formu-
las and depth-3 transcendence degree k circuits. In Proceedings of
Annual ACM Symposium on the Theory of Computing, 2012, pp.
599–614.

16. Gupta, A., Kamath, P., Kayal, N. and Saptharishi, R., Arithmetic
circuits: a chasm at depth three. In Proceedings of Annual IEEE
Symposium on Foundations of Computer Science, 2013, pp. 578–
587.

ACKNOWLEDGEMENT. This research was supported by the J. C.
Bose Fellowship FLW/DST/CS/20060225.

