
SPECIAL SECTION: THEORY OF COMPUTATION 
 

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1693 

*e-mail: manindra@iitk.ac.in 

A brief history of polynomial identity testing 
 
Manindra Agrawal* 
Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India 
 

Polynomial identity testing is the problem of deciding 
if a given (multivariate) polynomial is identically zero. 
Over the past decade, connections of this problem 
with a fundamental issue of complexity theory have 
been discovered and so the problem has attracted a lot 
of attention. In this article, we provide a brief history 
of the problem and its current status. 
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Introduction 

POLYNOMIAL Identity Testing (PIT) is the problem of 
checking if a polynomial of n variables over a field F is 
identically zero, i.e. if all its terms cancel each other out. 
The problem is simple to solve efficiently if the poly-
nomial is given in the usual sum-of-products form 
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simply check whether all coefficients 

1 2, ,..., ni i ic F  are 
zero. The problem becomes non-trivial when the polyno-
mial is given in an implicit form, e.g. as determinant of a 
matrix with polynomial entries. One can compute the  
determinant polynomial to express it in the above form. 
However, the size of the polynomial can grow exponen-
tially in this process and so this algorithm is exponential 
overtime. Finding an efficient algorithm for the problem 
has over the years become one of the most important 
challenges in complexity theory with fundamental impli-
cations. 
 A general representation of polynomials is via arithme-
tic circuits: these define a sequence of addition and mul-
tiplication operations starting from variables and ending 
in the desired polynomial. For example 
 
P(u, v, x, y) = (ux + vy)2 + (vx – uy)2 – (u2 + v2)  (x2 + y2). 
 
Figure 1 represents an arithmetic circuit computing poly-
nomial P on four variables u, v, x and y. The operations 
are inside circles and take as input polynomials on arrows 
coming into the circles and output the resulting polyno-
mial on arrows going out of the circles. If a constant c is 

present on an arrow carrying polynomial Q into an addi-
tion operation, the polynomial is replaced by cQ, and if 
the arrow is going into a multiplication operation, the 
polynomial is replaced by Qc. 
 Arithmetic circuits provide a natural and succinct way 
of representing polynomials. Essentially, an arithmetic 
circult represents a quick method to compute a polyno-
mial on any given point (by performing operations in  
sequence). It is known that any polynomial that can be 
expressed as determinant of a matrix, with entries being 
constant or variables, can be represented by an arithmetic 
circuit of size polynomial in the matrix size. Here, the 
size of an arithmetic circuit is defined as the number of 
operations in the circuit. So, for example, the size of the 
above circuit is 16. Another important parameter associ-
ated with an arithmetic circuit is its depth. The depth of 
an arithmetic circuit is the length of the longest chain of 
arrows from an input variable to the output polynomial. 
In the above example circuit, the depth is 4. 
 There is an important restriction of the problem: low 
degree PIT (LPIT). This is the problem when there exists 
a polynomial bound r() such that the degree of the poly-
nomial represented by a given circuit is bounded by r(s), 
where s is the size of the circuit. Most of the commonly 
encountered instances of PIT are of this form. 

History: 20th century 

For the purpose of describing algorithms given below for 
solving the problem, we assume that a polynomial P of n 
variables over a field F is given in the form of an arith-
metic circuit C of size s and depth d. Further, P is non-
zero (if P is zero, all the tests below trivially work). 
 

 
 

Figure 1. Example of an arithmetic circuit. 
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 The earliest work on this problem was reported in the 
late 1970s in two independent papers by Schwartz1 and 
Zippel2. Both of them showed a randomized polynomial 
time algorithm for solving the problem. Their algorithms 
were based on the following observation. 
 
Lemma 1. Suppose the degree of each variable of P is 
bounded by D. Then, for any set of values S  F, the frac-
tion of points in Sn on which P is zero is bounded by 
D/|S|. 
 
Therefore, by choosing S to be any set of 2D values 
(which is bounded by exponential in the depth of the cir-
cuit), and randomly selecting a point in Sn, the probability 
that P will be zero on this point is at most 1/2. 
 The next significant development took place nearly 20 
years after this. Chen and Kao3 designed a randomized 
polynomial time algorithm for the LPIT problem over  
that used a very different idea: instead of picking a  
random point from a set, they defined one irrational point 
  such that ( ) 0.P    Then they showed that P is non-
zero on most of a set of Dn rational points in the 
neighbourhood of . Further, the number of points on 
which P is non-zero increases with closeness of these 
points to . Soon after, Lewin and Vadhan4 extended this 
idea to work over finite fields, and Agrawal and Biswas5 
generalized the idea using univariate polynomials to  
obtain a similar test for the PIT problem. 
 
Theorem 1. Let 1
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for all r  s2t. 
 
The above theorem suggests a test in which the error 
probability can be decreased by increasing t without  
increasing the amount of randomness required. 

History: 21st century 

Two results in 2002, within months of each other, cata-
pulted PIT to the centre stage of complexity theory.  
Kabanets and Impagliazzo6 showed that a deterministic 
polynomial-time algorithm for LPIT would yield a super-
polynomial lower bound on an explicit polynomial  
family. 
 
Theorem 2. If there is a deterministic polynomial-time 
algorithm for LPIT, then there is an explicit family of 
polynomials in NEXP (non-deterministic exponential 
time) that requires superpolynomial size arithmetic  
circuits. 

An explicit family of polynomials is simply a polynomial 
family that is computable within a certain time bound. For 
example, the polynomial family {x1 + x2 +  + xn}n  1 is 
explicit since, given n, the corresponding polynomial in 
the family can be computed in time O(n). Finding an ex-
plicit family of polynomials that requires superpolynomial 
size circuits to compute is the central problem of arithmetic 
complexity theory. Although we know that most of the 
polynomial families require superpolynomial size circuits 
to compute (by a simple counting argument), we do not yet 
have an example of an explicit family computable in expo-
nential time (EXP) that requires superpolynomial size. The 
above theorem suggests a path to achieve this. Agrawal et 
al.7 showed how to obtain such a deterministic algorithm 
for a special class of polynomials5 that characterize prime 
numbers. 
 
Theorem 3. Number n is prime if Pn(x) = (1 + x)n – 
xn – 1 = 0 (mod n). Further, for any composite n, 
Pn(x)  0 (mod n, Qn(x)), where Qn(x) is an explicit poly-
nomial of degree O(log14n). 
 

This resulted in the first deterministic polynomial time 
algorithm for testing if a number is prime, and also pro-
vided reasons to believe that the approach suggested by 
Kabanets and Impagliazzo6 is tractable. It led to more  
attention to the PIT problem, and over the last decade 
much progress has been made towards solving it. 
 The next important advance was an observation by 
Agrawal8 that deterministic polynomial-time black-box 
algorithms for LPIT result in stronger lower bound. A 
black-box algorithm for PIT is an algorithm that, given 
circuit C computing polynomial P, produces several 
points, whose values depend only on the size of C, such 
that P is not zero on at least one of these points. The 
name ‘black-box’ comes from the fact that such an algo-
rithm does not need to know the structure of the circuit C, 
and so C can be hidden inside a ‘black-box’ and yet the 
algorithm will work correctly. Black-box algorithms exist 
for even PIT: all the randomized algorithms described 
above are black-box algorithms for PIT or LPIT. The  
observation of Agrawal8 was actually already made in 
1980 by Heintz and Schnorr9. 
 
Theorem 4. If there is a deterministic polynomial-time 
black-box algorithm for LPIT, then there is an explicit 
family of polynomials in EXP (deterministic exponential 
time) that requires exponential size arithmetic circuits. 
 

A partial converse of this theorem also holds6,8. 
 

Theorem 5. If there is an explicit family of polynomials 
in EXP that requires exponential size arithmetic circuits, 
then there is a deterministic, sO(logs) time, black-box algo-
rithm for LPIT. 
 
In parallel, researchers were studying the types of poly-
nomial families for which deterministic polynomial-time 
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algorithms can be designed. All such attempts (e.g. Kayal 
and Saxena10) could only work for special families of 
depth-three polynomials. On the other hand, it was 
known11,12 that any LPIT circuit of size s can be con-
verted to a circuit of similar size and depth O(log s). 
Hence there was seemingly a large gap between what we 
could show and what we needed to. However, this gap 
nearly vanished soon after13. 
 
Theorem 6. If there is a deterministic polynomial-time 
black-box algorithm for LPIT restricted to depth-four 
circuits, then there is an explicit family of polynomials in 
EXP that requires exponential size arithmetic circuits. 
 
The above result showed that in order to derive exponen-
tial size lower bounds, it is enough to design a deterministic 
polynomial-time black-box algorithm for depth-four cir-
cuit families. This gave further impetus to the investiga-
tions into LPIT for small depth circuit families. A number 
of results followed, for special families of depth-three 
and depth-four polynomials. The strongest of these show 
as follows14,15. 
 
Theorem 7. There exists a deterministic, sO(k) time, 
black-box algorithm for LPIT restricted to depth-three 
circuits whose top gate has at most k inputs. 
 
Thus, to get lower bounds, one needs to extend the above 
result first to arbitrary depth-three circuits and then to 
depth-four circuits. Very recently, the second step has 
been shown to be superfluous16. 
 
Theorem 8. If there is a deterministic polynomial-time 
black-box algorithm for LPIT restricted to depth-three 
circuits and over fields of large characteristic, then there 
is an explicit family of polynomials in EXP that requires 
exponential size arithmetic circuits. 
 
This brings the target tantalizingly close: one only  
needs to get a time bound of (sk)O(1) instead of sO(k) in 
Theorem 7. 
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