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Hyperspectral data pose challenges to image interpre-
tation, because of the need for calibration, redun-
dancy in information, and high data volume due  
to large dimensionality of the feature space. In this  
article, a general framework is presented for working 
with hyperspectral imagery, including removal of at-
mospheric effects, imaging spectroscopy, dimensionality 
reduction and classification of imagery. The pheno-
menon of mixture modelling is briefly discussed, fol-
lowed by a recent development in mapping the classes 
at sub-pixel level based on the principle of super-
resolution. 
 
Keywords: Atmospheric correction, classification, fea-
ture selection, hyperspectral image. 

Introduction 

MULTISPECTRAL image analysis methods largely depend 
on the spatial aspects of the objects of interest such as their 
shape, texture and spectral properties in the few wave-
length bands in which the images are acquired. It is diffi-
cult with such data to discriminate between vegetation 
categories, eutrophication of lakes, identify presence or 
absence of specific elements or compounds in a soil or 
rock, and so on. For this purpose, a highly detailed spec-
tral characterization of the target is required and the field 
of hyperspectral remote sensing has evolved to address 
this need. 
 Compared to conventional remote sensing, hyperspec-
tral sensors acquire data in narrow wavelength bands of 
width of the order of 10 nm. The ‘hyper’ in hyperspectral 
refers to the large number of wavelength bands, and the 
distinguishing factor for hyperspectral sensors is that the 
applicable wavelength range is covered by detector  
elements operating in narrow and contiguous wavelength 
bands. Hyperspectral images are spectrally over-deter-
mined (that is, there is high correlation between adjacent 
bands), and they provide adequate spectral detail to iden-
tify and distinguish between spatially similar-looking  
objects having moderate spectral differences. A simple and 
easy introduction to this subject is provided by Shippert1. 
One of the popular hypserspectral sensors is the airborne 
visual infrared imaging spectrometer (AVIRIS) on air-
craft platform. Among spaceborne systems, NASA’s 
EOS-1 satellite platform with Hyperion sensor having 

10 nm bandwidth in each wavelength band and covering 
a range of 400–2500 nm provided extremely useful data. 

Framework for hyperspectral image analysis 

A generic framework for hyperspectral image analysis 
(Figure 1) comprises mandatory initial image corrections 
followed by two different approaches for extracting  
information from the images. 
 The first one is based on the imaging spectroscopy  
approach wherein the presence of specific target materi-
als in the image is detected by matching the corrected 
pixel spectra with reference spectra from a spectral  
library. Techniques like spectral angle mapper are used for 
matching the pixel spectra with the reference spectra. Fur-
ther, the reference spectra can also be used to define  
target classes of interest and determine the relative pro-
portion of pure classes within mixed pixels. Mixed pixels 
are characterized by being different from all known spec-
tra in the spectral library and being comparable in dis-
tance to more than one reference spectrum. 
 The image analysis approach to working with hyper-
spectral images starts with correcting the image for  
atmospheric distortions. At this point there will be a  
major departure from the imaging spectroscopy approach, 
and the dimensionality of the hyperspectral image is  
reduced to cope with the computational cost as well as 
demands on ground truth for supervized classification 
purposes. The reduced dimensionality data are subjected 
to image classification based on standard machine learn-
ing algorithms like support vector machine (SVM) and 
neural network2. A second approach that is similar to the 
imaging spectroscopy approach is the extraction of refer-
ence spectra from the image itself corresponding to differ-
ent target classes and then identifying the mixture 
proportions of different target classes within the pixels in 
the image. While the mixture models provide estimates of 
the relative areas of the classes within a mixed pixel, the 
actual layout of such classes within a pixel is not avail-
able. Sub-pixel classification is an emerging area in  
hyperspectral image analysis to address this issue and this 
is discussed in detail in a later section. 

Atmospheric corrections 

The approaches to atmospheric corrections of hyperspec-
tral data range from simple image-based empirical line 
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and flat-field techniques to more advance radiative trans-
fer modelling techniques. Some of the main algorithms 
are discussed in the following sections, and are drawn 
from various sources3. 

Empirical atmospheric correction approaches 

Several image-based empirical approaches to atmospheric 
corrections have been developed for deriving relative  
surface reflectance of ground pixels. The most widely 
used techniques for atmospheric correction of land sur-
face images include the flat-field correction4, the internal 
average reflectance approach5 and the empirical line  
approach6. Although an absolute radiometric calibration 
of hyperspectral imagers is not required when using  
the empirical approaches for the estimation of  
relative surface reflectance, the hyperspectral imaging  
system must remain stable over the duration of data  
acquisition. 
 The flat-field correction approach is based on the  
assumption that the image contains an area that is com-
prised exclusively of spectrally featureless material, i.e. it 
has similar reflectance in all wavelengths. The spectral 
features in the composite spectrum of such an area are 
considered to be entirely due to atmospheric gases and 
aerosols. Further, assuming a homogenous atmosphere 
over the entire image area, this composite spectrum is 
used to normalize the spectral reflectance curves of all 
pixels in the image. 
 The internal average reflectance approach involves  
calculating the average spectrum of the entire image. The 
spectra of all pixels in the image are then normalized by 
dividing with the average reflectance spectrum. This  
approach is generally used in arid areas devoid of signifi-
cant vegetation cover. 
 The above approaches do not require field measure-
ments of spectral reflectance of ground material and  
derive all input parameters from the image itself. How- 
 
 

 
 

Figure 1. Framework for hyperspectral image analysis. 

ever, the output relative reflectance spectra often have  
artefacts that are not present in the laboratory or field  
reflectance spectra of comparable materials3,7. This could 
be because of the fact that the flat-field spectra may con-
tain some absorption features due to surface materials in 
addition to those due to atmospheric absorption features, 
since it is difficult to find a naturally occurring material 
that is spectrally 100% flat. As pointed out3, the use of 
such spectrum in the derivation of relative reflectance 
spectra of other pixels can introduce broad absorption 
bands in the resulting spectra. 
 The empirical line approach requires field measure-
ments of reflectance spectra for at least one bright target 
and one dark target. The hyperspectral data over the  
surface targets are linearly regressed against the field  
reflectance spectra to derive the linear equation relating 
hyperspectral data to the ground reflectance. The linear 
equation is then applied to the whole image for the deri-
vation of surface reflectance for the entire scene. This 
method produces spectra that are comparable to reflec-
tance spectra measured in the field or in the laboratory8. 
However, if changes occur in the atmospheric properties 
outside the area used for the empirical line approach, 
which is often the case, the spectral reflectance data will 
contain atmospheric features3. 

Radiative transfer modelling approaches 

The radiative transfer modelling approaches are based on 
explicit simulation of the absorption and scattering effects 
of atmospheric gases and aerosols. However, the molecu-
lar absorptions due to a majority of the thirty-odd gases 
present in the Earth’s atmosphere in the visible-near  
infrared–short-wave infrared region (VNIR–SWIR;  
0.4 to 2.5 m) is negligible at the typical spectral  
resolutions of the hyperspectral sensors (1–20 nm3). Only 
eight gases, namely, water vapour (H2O), carbon  
dioxide (CO2), ozone (O3), nitrous oxide (N2O), carbon 
monoxide (CO), methane (CH4), oxygen (O2) and nitro-
gen dioxide (NO2) produce observable absorption fea-
tures (Figure 2). 
 In Figure 2, the short wavelength region between 0.4 
and 0.7 m is strongly affected by molecular scattering 
(Rayleigh scattering). The Rayleigh scattering decreases 
rapidly with increasing wavelength at the rate of –4. The 
aerosol scattering also decreases with increasing wave-
length, but at a slower rate of –2 to –1. 
 Hyperspectral data are generally distributed in the form 
of radiometrically corrected datasets containing regis-
tered radiance at the spaceborne or airborne hyperspectral 
sensor. At-the-sensor radiance is composed of two com-
ponents: (i) upwelling atmospheric path radiance (due to 
Rayleigh and aerosol scattering), and (ii) transmitted 
components of the surface-reflected solar radiances  
that were not absorbed by the atmospheric gases and 
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aerosols. These radiances are often converted to apparent 
reflectance9,10. The apparent reflectance is given by 
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where 0 is the solar zenith angle,  

0 the solar azimuth 
angle,  the sensor zenith angle,  the sensor azimuth an-
gle,  the wavelength, Lobs the radiance measured at the 
satellite, F0 the solar flux at the top of the atmosphere 
when the solar zenith angle is equal to zero, and 0 is the 
cosine of solar zenith angle. Apparent reflectance is a 
measure of the reflectivity for the atmosphere and surface 
system. When the surface is assumed to be Lambertian 
and the adjacency effect is neglected10, obs(, , , 0, 
0) can be expressed approximately3 
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where atm is the path reflectance, td the downward scat-
tering transmittance, tu the upward scattering transmit-
tance, s the spherical albedo of the atmosphere,   
the surface reflectance, and Tg the total gaseous transmit-
tance in the Sun-surface-sensor path. The first term in the 
bracket, atm, is the contribution from atmospheric 
 
 

 
 

Figure 2. Simulated transmittance spectra of atmospheric water va-
pour, carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, 
oxygen and nitrogen dioxide. The path is specified for a solar zenith 
angle of 50, nadir-viewing, a sea-level surface and a sensor at the top 
of the atmosphere. Typical amounts of each gas are used. The legends 
of each plot indicate the gas in each one. The horizontal scales of each 
plot are identical; the vertical scales are different. The spectra are simu-
lated at a sampling interval of 1 nm and with a spectral resolution of 
5 nm (source: Gao et al.3). 

scattering to the measured apparent reflectance (the noise 
part). The second term in the bracket (tdtu/(1 – s)) is the 
radiance reflected by the ground pixel (the signal). The 
term ts contains absorption bands of all atmospheric gases 
(Figure 1). The atmospheric scattering and gaseous absorp-
tion are treated as two independent processes. The cou-
pling effects between the two are neglected. In the real 
atmosphere, the scattering and absorption processes occur 
simultaneously. The coupling effects are small in regions 
where the atmospheric gaseous absorptions are weak and 
also in regions where the scattering effects are small. 
 Solving eq. (2) for the reflectance  of the ground pixel 
and simplifying the notations for relevant quantities 
yields3 
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By simulating the atmospheric quantities Tg, atm, td, tu, 
and s with radiative transfer models, the reflectance for a 
Lambertian ground pixel () can be retrieved from the 
measured radiance, Lobs, using the above eqs (1)–(3). The 
simulations are performed using computer codes that 
model the atmospheric propagation of electromagnetic 
radiations at different wavelengths. The most widely used 
code is MODTRAN (MODerate resolution atmospheric 
TRANsmission) developed by Spectral Sciences Inc. and 
the US Air Force. This code models the atmospheric 
propagation of electromagnetic radiations in the 100–
50,000 cm–1 (0.2–100 m) spectral range11. Another 
popular code is 6S (second simulation of a satellite signal 
in the solar spectrum), an advanced radiative transfer 
code designed to simulate the reflection of solar radiation 
by a coupled atmosphere–surface system for a wide range 
of atmospheric, spectral and geometrical conditions12. 
DISORT (Discrete Ordinates Radiative Transfer pro-
gramme for a multi-layered plane-parallel medium) is a 
general and versatile plane-parallel radiative transfer  
programme for modelling the propagation of the electro-
magnetic radiation in the ultraviolet to the radar regions13. 
A large number of commercial atmospheric correction al-
gorithms such as ATREM, HATCH, ACORN, FLAASH, 
ISAD, etc. have now been developed and integrated with 
popular commercial satellite image processing software 
such as ENVI, ERDAS, PCI Geomatica, etc. 
 Most of the commercial atmospheric correction algo-
rithms use the above radiative transfer codes for simulating 
the atmospheric parameters. However, they use different 
techniques for estimating the input parameters for simula-
tion. As mentioned above, only six gases cause signifi-
cant absorption in the VNIR–SWIR regions. Among 
them, only water vapour concentration can have significant 
spatial variation from pixel to pixel. These algorithms 
generally use channel ratio technique9 for estimating the 
water vapour column over every pixel. The water vapour 
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transmittance spectrum in the VNIR–SWIR region is then 
simulated using a radiative transfer code. The transmis-
sion spectra of carbon dioxide, ozone, nitrous oxide, car-
bon monoxide, methane and oxygen in the VNIR–SWIR 
region are simulated based only on the solar and observa-
tional geometry because their concentrations do not vary 
significantly at the pixel-scale. The scattering effect due 
to atmospheric molecules and aerosols is modelled using 
radiative transfer codes. The input aerosol concentrations 
are estimated based on the user-selected standard aerosol 
model and visibility range. The output of commercial  
atmospheric correction algorithms is the ground reflec-
tance data cube. 

Imaging spectroscopy 

Hyperspectral remote sensing or imaging spectroscopy 
involves acquiring images in a large number of narrow 
contiguous spectral bands (typically >100). Conse-
quently, hyperspectral images are better described as im-
age cubes with two spatial dimensions and the third 
spectral dimension. It is used in a variety of domains,  
including planetary and terrestrial geology, agriculture, 
forestry, coastal and inland water studies, atmospheric 
studies, environment hazards assessment and urban studies. 
 Because of the quantization of various types of nuclear, 
electronic and molecular energy levels, different materi-
als absorb energy of specific wavelengths and, as a result, 
reflectance varies with wavelength. Reflectance imaging 
spectroscopy involves measuring spectral reflectance, 
that is, the ratio of reflected energy to incident energy as 
a function of wavelength. The plots of spectral reflec-
tance are called spectral reflectance curves or reflectance 
spectra. Each material has a unique chemical composition 
and physical structure, and therefore unique nuclear, elec-
tronic and molecular energy levels; as a result each material 
has a unique spectral reflectance curve (Figures 3 and 4). 
 The spectra in Figures 3 and 4 show distinct absorption 
features at different wavelengths. The vegetation spec-
trum (Figure 3) shows strong absorption in the visible  
region, but has relatively lower absorption of green wave-
length compared to red and blue wavelength. The absorp-
tion in the near infrared region is very low, except small 
absorption features at 0.9, 1.2 and 1.4 m, which is be-
cause of molecular vibrations of H2O. The mineral spec-
tra too show distinct features. Hydroxyl-bearing minerals 
(kaolinite and montmorillonite) show hydroxyl absorp-
tion features at 1.4, 1.9 and 2.1–2.2 m. Hematite shows 
a broad Fe absorption feature around 0.9 m, while cal-
cite shows features related to CO2 absorption in 1.9–
2.4 m region. Orthoclase has a flat spectrum in the  
entire region, implying that it is not possible to identify 
this mineral in the visible – shortwave infrared region. 
This mineral shows spectral features in the thermal infra-
red region. 

 Materials are identified from hyperspectral remote 
sensing images by comparing their spectra to a set of  
reference spectra. Several libraries of reflectance spectra 
of natural and man-made materials are available for pub-
lic use. The ASTER spectral library has been made avail-
able by NASA as part of the advanced spaceborne 
thermal emission and reflection radiometer (ASTER)  
imaging instrument programme. It includes spectral com-
pilations from NASA’s Jet Propulsion Laboratory, Johns 
Hopkins University, and the United States Geological 
Survey. The ASTER spectral library currently contains 
nearly 2000 spectra, including minerals, rocks, soils, 
man-made materials, water and snow, covering the entire 
wavelength region from 0.4 to 14 m (ref. 14). The library 
is accessible interactively via the worldwide web at 
http://speclib.jpl.nasa.gov. Most of the commercial image 
processing software have built-in spectral libraries. 
 Several spectral matching techniques are available for 
obtaining surface compositional information on a pixel-
by-pixel basis from hyperspectral images15. Techniques 
that specifically use absorption band position and depth 
include the relative absorption band-depth (RBD) appro-
ach16, the spectral feature fitting (SFF) technique17,  
the TRICORDER18 and TETRACORDER19 algorithms 
 
 

 
 

Figure 3. Reflectance spectra for several common Earth surface ma-
terials over the visible light to reflected infrared spectral range14. 

 

 

 
 

Figure 4. Reflectance spectra for important minerals over the visible 
light to reflected infrared spectral range14. 
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developed at the USGS spectral laboratory and spectral 
angle mapper (SAM) algorithm20. These techniques work 
on continuum-removed reflectance spectra, based on the 
assumption that reflectance spectra have two compo-
nents: a continuum or the broad shape of the spectra and 
individual absorption features (Figure 5). 
 The RBD images provide a local continuum correction 
removing any small channel-to-channel radiometric off-
sets, as well as variable atmospheric absorption and solar 
irradiance drop-off for each pixel in the dataset. To pro-
duce a RBD image, several data channels from both  
absorption band shoulders are summed and then divided 
by the sum of several channels from the absorption band 
minimum. The resulting absorption band-depth image 
gives the depth of an absorption feature relative to the  
local continuum, which can be used to identify pixels 
having stronger absorption bands, indicating that these 
may represent a certain mineral. 
 The SFF technique uses continuum removed pixel 
spectra, which are compared to continuum reference 
spectra of known mineralogy. A least-squares fit is calcu-
lated band-by-band between each reference end-member 
and the unknown (continuum removed) pixel spectra. A 
‘scale’ image is produced for each end-member selected 
for analysis by first subtracting the continuum-removed 
spectra from one, thus inverting them and making the 
continuum zero. A large scale-factor is equivalent to a 
deep spectral feature, while a small scaling factor indi-
cates a weak spectral feature. A least-squares-fit is then 
calculated band-by-band between each reference end-
member and the unknown spectrum. The total root-mean-
square (RMS) error is used to form an RMS error image 
for each end-member. The ratio of the scale image and 
the RMS image provides a ‘fit’ image that is a measure of 
how well the unknown spectrum matches the reference 
spectrum on a pixel-by-pixel basis. 
 The Tricorder and its successor Tetracorder use a  
two-step algorithm. First, the local spectral slope (the 
‘continuum’) is estimated and removed both from 
 
 

 
 

Figure 5. Continuum removal from reflectance spectrum. 

reference and observed spectra. Next, the identification of 
materials from their spectra is constrained by: (a) the 
goodness of fit of a spectral feature to a reference, (b) re-
flectance level, (c) continuum slope and (d) presence or 
absence of key ancillary spectral features. The Tetra-
corder uses these reference continuum-removed spectral 
features to compute a weighted fit between unknown 
spectra and known library spectra. The surface composi-
tional information is derived and results are validated us-
ing an expert system approach. 
 The SAM technique involves the calculation of spectral 
similarity between the pixel spectrum and a reflectance 
spectrum assuming that the data are correctly calibrated 
to apparent reflectance with dark current and atmospheric 
effects have been removed (see next section). The spectral 
similarity between the pixel spectrum, t, and the reference 
(or laboratory) spectrum, r, is expressed in terms of the 
average angle between the two spectra in an n-dimensional 
spectral space as follows 
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In this approach, the spectra are treated as vectors in a 
spectral feature space with dimensionality equal to the 
number of bands, n. The outcome of the spectra angle 
mapping for each pixel is an angular difference measured 
in radians ranging from zero to  /2, which gives a quali-
tative estimate of the presence of absorption features 
which can be related to composition. 
 However, the fundamental requirement for successful 
implementation of spectral matching algorithm is the re-
trieval of ground pixel reflectance from the at-the-sensor 
radiance. The procedure used to estimate spectral reflec-
tance from at-the-sensor radiance is called ‘atmospheric 
correction’ and involves accurate estimation and compen-
sation of the scattering and absorption due to atmospheric 
gases. 

Dimensionality reduction 

In some applications such as land-use/land-cover map-
ping, the objective is supervized or unsupervized classifi-
cation of the hyperspectral image; in such cases it is not 
necessary that the classification is implemented in the 
spectral space. As a matter of fact, it is preferable to  
implement image classification in a low-dimensional fea-
ture space in order to minimize the problem of limited 
ground truth. Statistical techniques such as principal 
components rotation, minimum noise fraction transforma-
tion or independent components rotation can be used for 
this purpose. However, in other applications such as  
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geological mapping, soil characterization, agriculture 
crop monitoring, etc. the retrieval of surface properties is 
the main objective. In such cases the processing and 
analyses has to be carried out in the spectral space only 
and is entirely based on pixel reflectance spectra. 
 The minimum noise fraction (MNF) transformation is 
used to reduce the dimensionality of the hyperspectral 
data by segregating the noise in the data. The MNF trans-
form is a linear transformation which is essentially two 
cascaded principal components analysis (PCA) transfor-
mations. The first transformation, based on an estimated 
noise covariance matrix decorrelates and rescales the 
noise in the data. This results in transformed data in 
which the noise has unit variance and no band-to-band 
correlations. The second transformation is a standard 
PCA of the noise-whitened data21. MNF transformation 
computes the normalized linear combinations of the 
original bands which maximize the ratio of the signal to 
noise. The approach was developed specifically for 
analysis of multiple band remotely sensed data which 
would produce orthogonal bands ordered by their infor-
mation content. It can also be used for reducing noise 
through application of filters matched to the noise charac-
teristics of the transformed bands and inverting the data. 
 As the transform is based on a signal-to-noise ratio, it 
is also invariant with respect to scale changes in bands. 
Additionally, the signal and noise of the transformed 
bands are also orthogonal. The approach requires that the 
covariance of the noise be known, which is not generally 
the case for remotely sensed data. A reasonable estimate 
of the noise in each band can be obtained when the signal 
is highly correlated across bands through adaptation of a 
procedure called the maximum autocorrelation factor, 
which exploits the correlation of signals in spatial 
neighbourhoods22. Among other transform-based tech-
niques, the independent component analysis (ICA) is 
popularly used in analysing hyperspectral images and a 
good source for the same will be Varshney and Arora23. 
 An alternative to reducing dimensionality by trans-
forming the input image dataset to a new feature space is 
to choose a subset of the original bands such that they re-
tain enough capability to separate the data into distinct 
classes with least amount of error or with the highest 
amount of accuracy possible. Due to high dimensionality 
of the original data space, brute force choosing a subset 
(for example selecting, 25 from 160 bands) involves evalu-
ating too many combinations and therefore efficient search 
techniques are required. Genetic algorithms (GAs) are good 
choice due to the fact that they can utilize all the domain 
knowledge while coming up with an optimum solution. 
 Simple genetic algorithms are quite well known even 
in remote sensing applications and hence they are not 
elaborated here. Interested readers can consult Goldberg24 
for a basic introduction to the subject. Genetic algorithms 
have been the preprocessor to generate initial weights for 
a multilayer perceptron neural network25. 

 In this article, a modified version of the conventional 
genetic algorithm, known as the multipopulation genetic 
algorithm (MGA) is presented (Figure 6) that has promise 
to overcome the problem of premature convergence occur-
ring in simple GAs and can produce better results in a short 
execution time. Previous research has shown that MGAs 
have been used in a variety of problems, including feature 
selection, but a very little is known of them being used for 
dimensionality reduction for the hyperspectral images26. 
 MGA parameters that control the migration process are 
summarized as: (i) Topology – two parallel evolving sub-
populations; (ii) Migration policy – best–worst exchange; 
(iii) Migration rate – half of the candidates migrate and 
(iv) Migration interval – 10 generations. 
 The above parameters were chosen as the best combi-
nation after several runs of the experiment. The results of 
MGA approach to dimensionality reduction were compared 
with the results of ICA, MNF and simple genetic algo-
rithm approaches and it was found that, in general, MGA 
was producing results that were as good as or better than 
a best of the results produced by the other methods. The 
overall workflow is given in Figure 7 for analysing the 
hyperspectral images through atmospheric correction, 
dimensionality reduction and comparison of results. 
 The best performance with genetic algorithms was  
observed with the MGA topology. It was found that the 
classification error with the test samples was least as a 
function of genetic iteration for MGA compared to  
simple GA (SGA) topology. In Figure 8, the y-axis indi-
cates the classification error, and hence best fitness value 
corresponds to the least error. As is evident from the 
well-known Hughes phenomenon, the classification error 
generally increases with the dimensionality beyond a 
point, if it is not matched by a corresponding increase in 
the number of training data, in Tables 1 and 2, the classi-
fication accuracies computed for full 155 bands dataset 
and a reduced (30 bands) dataset illustrate the same trend. 
 
 

 
 

Figure 6. Flowchart for the multipopulation genetic algorithm 
(MGA) used in this study. 
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Table 1. Confusion matrix for classified image using all 155 bands for imageSubset1 

Class Vegetation Water Built-up areas Open land Total 
 

Vegetation 2055   0    6    3 2064 
Water    0 563    0    0  563 
Built-up    1   0 1072    4 1077 
Open land  112   1  269 1330 1712 

Total 2168 564 1347 1337 5416 
         Overall accuracy = 92.6883%  Kappa coefficient = 0.8969 

 
Table 2. Confusion matrix for classified image using MGA selected 30 bands for imageSubset1 

Class Vegetation Water Built-up areas Open land Total 
 

Vegetation 2107   0    0    8 2115 
Water    0 552    1    1 554 
Built-up    0   2 1165   23 1190 
Open land   61  10  181 1305 1557 

Total 2168 564 1347 1337 5416 
       Overall accuracy = 94.7009%  Kappa coefficient = 0.9251 

 

 
 

Figure 7. Workflow of the MGA methodology. 

Classification 

Two hyperspectral subset images from Mumbai 2008 
Hyperion image were classified and the results for full 
155 bands and 30-band reduced set are shown in Tables 3 
and 4. The results indicate the advantage of reducing a 
highly correlated dataset to a reduced dataset. The nearest 
neighbour classifier was used due to its simplicity and its 
similarity to the spectral angle mapper in spirit. It is evi-
dent that the reduced dataset has performed better than 
the full 155-band dataset because any noise in some of 
the bands would be eliminated in the reduced set. The 
kappa coefficient and class-wise accuracy are also shown 
for two images. 

 
 

Figure 8. Classification error versus genetic iterations (generations). 
Note that the plots actually denote classification error and hence best 
fitness value corresponds to least classification error. 
 

Super-resolution 

The above classification process treated each pixel as  
belonging to a single class, while in hyperspectral remote 
sensing, due to coarse spatial resolution, it is inevitable 
that majority of the pixels would be a mixture of more 
than one class. While standard mixture models allow us 
to estimate the relative proportions of different classes 
within a pixel, the spatial arrangement of the classes 
within the pixel is not known. Sub-pixel classification is 
still evolving, and in principle these approaches attempt 
to analyse the pixels at a higher resolution than what was 
acquired at. These approaches are also termed super-
resolution techniques for this reason. 
 Hopfield neural networks are known in neural network 
literature for their ability to be used as content-addressable 
memory, wherein the access is not by address of the 
memory cell but by part of the content stored in that cell. 
It is also used in image restoration where the distortion-
free image is estimated from its degraded version. Hop-
field neural networks were employed in super-resolution
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Figure 9. Example of super-resolution: a, Classification of original 30 m resolution Hyperion image. b, Classification 
output by super-resolution to 10 m resolution. c, Pan-sharpened Landsat 8 image at 10 m resolution for reference (all 
processing performed on the Hyperion image only). 

 
 
Table 3. Accuracy and kappa coefficient for all datasets used for  
 classification for imageSubset1 

 Overall Kappa  
Dataset used for classification  accuracy (%) coefficient 
 

Classification with all 155 bands 92.6883 0.8969 
MGA reduced 30 bands 94.7009 0.9251 
PCA transformed 30 components 94.1654 0.9176 
MNF transformed 30 components 93.8146 0.9127 
ICA transformed 30 components 94.6455 0.9244 

 
 

Table 4. Accuracy and kappa coefficient for all datasets used for  
 classification for imageSubset2 

 Overall Kappa  
Dataset used for classification accuracy (%) coefficient 
 

Classification with all 155 bands 93.4378 0.9104 
MGA reduced 30 bands 96.0134 0.9442 
PCA transformed 30 components 94.7816 0.9271 
MNF transformed 30 components 94.7144 0.9262 
ICA transformed 30 components 94.7816 0.9271 

 
 
estimation of sub-pixel layout of the classes in hyperspec-
tral remote sensing based on the coarse resolution pixel as 
input27. The approach here is to use classes assigned to 
adjacent pixels and use continuity from the current pixel 
to the neighbouring pixel as a constraint28. 
 A simple approach to super-resolution is reported here 
wherein the mixture proportions of different classes are 
approximated by the fuzzy C-mean algorithm given 
memberships at each pixel into different classes. Using 
these membership as well as the continuity with neigh-
bouring pixels condition29, the sub-pixel classes are esti-
mated. The results are provided in Figure 9 which show 

the zoomed version of the full pixel classification and the 
corresponding sub-pixel classification. The results are 
promising and it is planned to combine the sub-pixel 
classification with proper linear mixture model with non-
negativity and unit-sum abundance proportion conditions. 

Summary 

In this article an introduction is given to hyperspectral 
image analysis, including issues of atmospheric correc-
tions and imaging spectrometry. Under image analysis, a 
new approach to dimensionality reduction based on MGA 
is described and a brief description of super-resolution 
based on an adaptation of Hopfield neural network is 
provided. The field of hyperspectral remote sensing and 
image analysis is expanding quite rapidly and more  
developments in terms of spatial resolution and spectral 
resolution using sensors mounted on aircraft and un-
manned aerial vehicles will be a reality in near future. 
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