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With the inclusion of a hyperspectral imager (HySI) 
sensor on the Indian Mini Satellite (IMS-1) Earth  
observation mission and subsequently near identical 
hyperspectral sensor on the Chandrayaan-1 lunar mis-
sion, 64-band hyperspectral data from both these  
missions have provided the user community rich  
information to explore new algorithms to exploit sensor-
specific parameters and to interpret and/or classify 
the features in multi-resolution frame. In this article, 
methods to improve spectral uniqueness present in the 
HySI by analysing adjacent bands’ spectral overlaps, 
by implementing spectral deconvolution and recon-
struction techniques are presented. Similarly, the  
use of multi-resolution approach for fast searching of 
standard spectral library end-members for better dis-
crimination of hyperspectral pixel data are also dis-
cussed along with applications in Earth and lunar 
surface hyperspectral image interpretation. These spec-
tral analyses techniques are useful in discriminating 
subtle differences in spectral signatures that help 
study the origin of secondary craters and gullies/ 
landslides on the lunar surface. 
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Introduction 

SPECTRAL signatures inferred from numerous contiguous 
spectral channels in the visible-to-near infrared (VNIR) 
regions of the electromagnetic spectrum typical of hyper-
spectral imaging sensors are capable of providing subtle 
spectral variations in surface materials, which in turn help 
to discriminate these from one another. Exploration of new 
techniques and algorithms for processing of hyperspectral 
images (HySI) is useful in application areas that include 
surface mineralogy, military surveillance, water quality, 
soil type and erosion, vegetation type, plant stress, leaf 
water content and canopy chemistry, crop type and condi-
tion as well as planetary surface evolution. 
 From image-processing point of view, the HySI  
pixel can be viewed as a column vector (also known as

hypercube) formed by pixels of each band to form  
spatial–spectral dimensions. Finding appropriate tools 
and approaches for visualizing and analysing the essential  
information in a hyperspectral scene remains an area of 
active research. 
 The HySI in material classification is compounded 
with a coarse-ground pixel size of the sensor for want of  
adequate sensor signal-to-noise ratio (SNR) as the signal 
strength through a fine spectral passband (defined as 
spectral response function (SRF) with bandwidth ~10–
15 nm). To achieve narrow contiguous spectral profiles, 
the HySI sensor is typically designed to have overlapping 
bandwidths of the spectral bands to maximize the input 
light energy in each band range in order to ensure the re-
quired SNR. Swayze et al.1 have shown that spectral 
bandwidth (BW) and sampling interval (SI) significantly 
influence the spectral identification of the surface mate-
rials. Here, BW refers to full-width at half maximum 
(FWHM) of the SRF of the hyperspectral sensor, and SI 
is the spectral distance between the centres of the adjacent 
bands. The BP and SI combination determines the spectral 
resolution which in turn dictates the material discrimina-
tion with instrument spectra in question. The hyperspec-
tral instrument is said to be at Nyquist sampling (NS) 
when the ratio BP/(2SI) is 1, or at critical sampling (CS) 
when (BP/SI) is 1. Under other conditions such as 
BP > 2 SI or BP < SI, the HySI is said to be either spec-
trally oversampled or under sampled respectively. When 
oversampling occurs, spectral details of the ground signal 
would get convolved with neighbouring channels, thus 
making bands less unique in spectral information content. 
On the other hand, under sampling is primarily limited by 
the detector array design, especially when there are gaps 
between adjacent detector elements, thus letting available 
light on the detector plane go unutilized. In most cases, 
the hyperspectral bands are, by design, oversampled. 
 This leads to development of sensor-specific correction 
algorithms using SRFs to obtain genuine spectral signa-
ture of a surface feature. The proposed approach, namely 
spectral deconvolution tries to artificially reduce effective 
bandwidth of each band, thereby attempting to resolve 
individual band spectrum as discrete as possible2. Kumar 
et al.3 have recently shown that the spectral deconvolu-
tion could be effectively used to reduce the band  
overlap in the Indian Mini Satellite (IMS-1) HySI sensor 
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data, and have further suggested to limit to non-
overlapping 17 bands from overlapped 64 bands. The  
description of method is further elaborated in the next 
section. 
 Similar to spectroscopic techniques in laboratory prac-
tice, surface material absorption features from spaceborne 
HySI data can be matched using a set of derived values, 
including depth and width at half-depth, or using the 
complete shape of the feature. Clark et al.4 developed an 
expert system to organize these procedures at the USGS 
Spectroscopy Lab. Since the HySI bands are highly likely 
correlated, rational feature selection from the varieties of 
channels is important for effective analysis and informa-
tion extraction of hyperspectral data for recognizing  
objects effectively and accurately5. Dealing with HySI, a 
huge number of channels generate high data redundancy6. 
The HySI data processing is best attempted from a high 
dimensional signal processing paradigm by virtue of its 
spectral bands into hundreds7,8. This is often referred to 
as the ‘curse of dimensionality’, and many new schemes 
have been proposed in recent years to tackle this for  
applications in classification9–11. Another limiting factor 
of the HySI data analysis is its moderately poor spatial 
resolution – again for want of the sensor SNR. This  
invariably makes multiple ground features jointly occu-
pying into a single pixel, leading to spectrally mixed pix-
els. The interpretation of the mixed pixels is a key factor 
in the analysis of hyperspectral images12. 
 Spectral mixture analysis involves the separation of a 
pixel spectrum into its end-member spectra and estimates 
the abundance value of each end-member in the pixel. 
Methods that exist till date can be classified into either 
linear or nonlinear13. Many of these approaches are based 
on spectral transformation of the hyperspectral image into 
its respective new domains. Besides the fact that these are 
computationally intensive, intermediate monitoring is not 
permissible, which may hinder expert’s intervention in 
order to follow the performance and adapt any new  
approaches to meet the final objectives. Kumar et al.14 
proposed a multi-resolution analysis-based method, a fast 
search scheme known as variable interval spectral aver-
age (VISA). This method estimates local signature varia-
tions at multi-resolution scales to classify hyperspectral 
pixel from a set of centre wavelength peaks and their line 
profiles at each resolution. They further proposed a  
hybrid algorithm by combining VISA and spectral curve 
matching15 to take advantage of both the methods to 
achieve higher classification accuracy16. The application 
of this method was first tested on a simulated image, and 
then on Chandrayaan-1 (referred to Ch-1 henceforth) 
HySI to analyse the geo-morphological features of the  
lunar surface17. 
 Many impact craters are present on the lunar surface18. 
To understand the evolution process of planetary sur-
faces, it is important to study the geological activities of 
the primary craters and ejecta blankets around the pri-

mary crater19–21. The origin and the spectral characteristics 
of secondary craters were analysed using Ch-1 Terrain 
Mapping Camera (TMC) and HySI. The findings have 
provided evidence for the secondary crater formation 
from low-velocity impact of clustered fragments17,22. We 
discuss these aspects in more detail later in the text.  
Gullies and landslides are observed on the interior wall of 
a crater in the Schrödinger basin on the far side of the 
moon. The spectral profiles from HySI, Moon Minera-
logical Mapper (M3) images and morphological struc-
tures from high spatial resolution TMC images suggest 
that gullies and landslides are characterized by youthful 
dry granular flows23,24. This is further elaborated later in 
the text. 

Sharpening HySI bands by spectral  
deconvolution 

HySI was ISRO’s first spaceborne hyperspectral sensor 
on-board IMS-1 launched on 28 April 2004 with spatial 
resolution of 505 m and spectral resolution of about 
15 nm to cover the swath of 128 km for mapping the sur-
face in 64 spectral bands in the visible and near infrared 
region (0.4–0.95 m)25. This sensor was intended as  
an experimental payload to assess the performance prior 
to the one flown in Ch-1, the first Indian lunar mission26. 
The HySI sensor was one among the five Indian  
payloads that were flown in the Ch-1 mission launched  
in October 2008. The HySI instrument collected the  
reflected light from the lunar surface through a telecentric 
refractive optics and focused onto active pixel sensor area 
detector. The size of the area detector was 512  512  
pixels. Spectral dispersion was done using varying  
coating thickness of wedge filter. The hyperspectral 
imager would actually acquire the data in 512 spectral 
bands in scan line direction, which would then be  
binned (integrated) by eight scan lines to realize the 64 
spectral bands, and hence the signal was amplified by 
nearly 2.8 times (square root of 8). The output was 12-bit 
quantized data. The SNR of the HySI was greater than 
100. 
 The individual channels of the HySI sensor, by design, 
are allowed to convolve or overlap with adjacent chan-
nels in order to achieve a continuous coverage of the 
spectrum. To extract the unique spectral content of these 
channels, however, it is necessary to apply techniques 
that may help band sharpening or reduction through the 
spectral deconvolution technique2. It is also preferred to 
recombine the resultant deconvolved channels to obtain a 
highly resolved spectrum. It has been shown that spectral 
overlapping has been reduced considerably to preserve 
the near-true spectra that can be achieved with the IMS-1 
HySI data3. The overlapped region of the SRF can be 
compensated first by estimating the weighting factors of 
each neighbouring band and subtracting the weighted 
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neighbours from the original spectral data as given by in 
the equation2 
 
 Lk,dec = (Lc,k – Lc,k+1Wk+a – Lc,k–1Wk–1) 
 
     {Rk/(Rk – Wk–1 – Wk+1)}, (1) 
 
where Lk,dec is the deconvolved spectral radiance of the 
kth spectral band, Lc,k the convolved radiance of the kth 
band, Lc,k–1 and Lc,k+1 are the convolved radiance values 
of neighbouring bands, Wk+1 and Wk–1 are weights for 
neighbouring bands and Rk is the integral response given 
by integration of SRF, i.e. Rk = Sk()d. The weighting 
factors between two adjacent channels are computed from 
the overlapping spectral bands as 
 
 1 1min( , ) / .k k k kW S S S     
 
After the channel data are deconvolved, these are again 
recombined to form high-resolution spectral data. The  
individual overlapping channels are combined to a highly 
resolved spectrum by linear superposition of these chan-
nel radiances multiplied with their weight factors as 
 
 Lk,recon = Lk,dec + Lk+1,decWk+1 + Lk–1,decWk–1, (2) 
 
where Lk,recon is the reconstructed spectra, and Wk+1 and 
Wk–1 are the weighting factors corresponding to the nearest 
adjacent channels. 
 After applying the spectral deconvolution method, 20% 
overlap between neighbouring bands was reduced to 5% 
as shown in Figure 1, and required bands were further 
brought down to 17 non-overlapping bands. Spectral  
deconvolution and reconstruction algorithms described in 
 
 

 
 

Figure 1. Effect of spectral deconvolution in reducing the effective 
bandwidth. The bold lines show the original SRFs of the bands, while 
the dotted lines show results after deconvolution. The overlap between 
adjacent bands can be seen to have reduced from nearly 20% to 5%  
after SD3. 

eqs (1) and (2) were applied to HySI. Some noise in the 
top of atmospheric (TOA) reflectance of ground targets 
was observed. This may be due to various factors, viz. 
sensor view angle, atmospheric noise, spectral deconvolu-
tion errors, etc. affecting the estimated TOA reflectance. 
To minimize this, spectral normalization was carried out. 
The spectral profile of the soil was chosen as reference, 
since no significant variation is present in the entire sen-
sor spectral range. Spectral matching techniques such as 
spectral angle mapper (SAM) and spectral curve match-
ing (SCM) were estimated between reference and image 
spectrum. The spectral curve for the vegetation is shown 
in Figure 2. 

Hyperspectral data analysis using VISA  
technique 

The VISA method, basically used to compute significant 
variations, if any, present in the signal by estimating  
‘local’ or ‘short-interval’ variances. The short-interval 
variance is defined by 
 

 2 2ˆ ˆ( ) ( ) [ ( )] .f f f     (3) 
 
Here ˆ( )f   is the average energy of the spectrum within 
the interval , estimated from integral 
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   window:  > 0. (4) 

 
Application of the above equation results in a number of 
local maxima, say, M. The significant maxima are treated 
as signatures by setting a threshold  to suppress unwanted 
background from entering into analysis. The VISA output 
can be written as 
 

 visa
ˆ( ) { : ( ) }.D M f       (5) 

 
 

 
 

Figure 2. Effect of normalization on image-derived spectral profile. 



SPECIAL SECTION: HYPERSPECTRAL REMOTE SENSING 
 

CURRENT SCIENCE, VOL. 108, NO. 5, 10 MARCH 2015 845 

 
 

Figure 3. Multi-resolution analysis of the hyperspectral curve. a, A sample spectral profile of the  
kaolinite mineral. b–d, The normalized VISA output plots for spectral window sizes of (b) 5 (= 0.05 m), 
(c) 9 (= 0.09 m) and (d) 15 (= 0.15 m). 

 
The VISA scheme is thus capable of detecting both the 
local variations of the signal as well as the broad  
background variation in a way much similar to multi-
resolution analysis by wavelets27. Since there is no  
sub-sampling of the signal at different scales involved in 
VISA, it is easier to relate the features at different com-
pared to wavelet-based methods. For spectral analysis, we 
need to compare the image spectra at a pixel with that of 
targetted materials spectra. We can use short spectral  
covariance of two functions, defined as 
 

 ˆ ˆ ˆ( ) ( ) ( ) ( ).fgV fg f g      (6) 
 
The peak detection in this case is from a bivariate set by a 
simple extension of the univariate approach. Appropriate 
threshold () is to be estimated; it was found sufficient to 
estimate the background signal outside the absorption 
band for the hyperspectral data. Figure 3 shows the  
example of hyperspectral curve decomposition into three 
different resolutions using the VISA method. 
 Parameters to distinguish are sum square difference of 
peak and/or sum square difference of FWHM to be the 
least between any two spectra and the pixel is assigned to 
a class label independently for which each of these values 
is at its minimum. The pixel is declared as ‘unclassified’, 
thus giving both these parameters equal bias in judging 
the final decision6. The shape of the spectrum for a mixed 
pixel of two materials will vary when the mixing propor-
tions change. The mixed class is best considered as a 
separate class from homogeneous classes15. The results 
are promising, especially when applied to a simulated 
dataset of different minerals with selected regions of  
interest (roi) as shown in Figure 4. Classification accura-
cies are shown in Figure 5. As can be seen, the hybrid 

method shows higher classification accuracies for mixed 
classes while retaining similar accuracies for the primary 
or homogeneous classes. The average percentage accura-
cies are estimated to be 77.17, 66.42 and 94.46 respec-
tively, for the proposed VISA, SCM and the hybrid 
methods. 

Spectral methods for lunar morphological  
analysis 

As mentioned earlier, the use of hyperspectral imager 
data of Ch-1 mission for spectral characterization of some 
geological features has been significant. Detailed discus-
sion is beyond the scope of this article; for details, the 
reader is referred to Kumar et al.17,24. 

Spectral characterization of secondary craters 

Secondary craters are largely smaller in size, and hence 
this study demands image data with high spatial, spectral 
and radiometric resolution. The study area is located in 
the mare region and approximately 475 km northeast of 
Copernicus crater and 100 km southeast of timocharis 
crater. The study area depicts a dense cluster of impact 
craters, consisting of two populations: fresh craters and 
buried craters. The fresh craters are bright with sharp rim 
and crater interiors, while the buried craters are shallow, 
degraded and have diffuse boundaries. To understand 
whether the secondary craters in the study area were 
formed by the impact of the Copernicus rays or from the 
more closer Timocharis ejecta, the Ch-1 HySI was used. 
Spectral signatures of all the relevant features were  
normalized to the Apollo 16 soil albedo measured in the 
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laboratory28 before subjecting to the SAM, SCM and 
VISA spectral matching methods. 
 The NIR range (720–950 nm) was selected for further 
analysis due to high correlation in the visible range band 
data. The spectral angles between the study area (average 
of the four central mounds) and the Copernicus distal ray, 
Timocharis distal ejecta and mare, in the 720–950 nm 
spectral window are 3.32, 4.36 and 5.05 respectively. 
The smallest angle indicates the strongest spectral simi-
larity between the spectra of the sample and the Coperni-
cus ray. Similar results obtained from the spectral 
correlation and VISA confirm the origin of the secondary 
craters primarily from the Copernicus rays17. 
 Another approach to assign the observed surface fea-
tures is to compare their optimal maturity or time at 
which they were likely to have been formed. Space 
weathering processes on the Moon such as micrometeor-
ite bombardment and solar-wind ion bombardment affect 
the optical properties of an exposed lunar soil. Fisher and 
Pieters29 developed an approach to determine the maturity 
of lunar soil from Clementine spectral data. This method is 
 

 
 

Figure 4. Synthesized hyperspectral image with 19 spectral channels 
in spectral range 2.0–2.325 m and different regions chosen for pri-
mary and mixed samples spectra15. 
 

 
 

Figure 5. Classification accuracy for the VISA, SCM and hybrid 
methods. 

based on the relationship between the values of 750 nm/ 
950 nm of reflectance of lunar soils and their measured 
Is/FeO values. The optical maturity (OMAT) index pro-
vides significant insights into composition and presence 
of immature debris at the above sites. OMAT values are 
calculated using the HySI reflectance spectra, following 
Lucey et al.30 as given in eq. (7), and compared with the 
corresponding values from the Clementine UV–Vis data. 
 

 2 2
40 63 40OMAT [( 0.03) ( / ) 1.16) .x       (7) 

 
The OMAT values of the Ch-1 HySI data were found to 
be 0.3475, 0.3771, 0.1596 and 0.1581 respectively, for the 
study area, Copernicus ray, mare and the Thimocharis ray. 
These observations are consistent with a genetic relation-
ship between the study area and the Copernicus rays17. 

Spectral interpretation of lunar gullies and  
landslides 

Landslide and gully formation on the interior wall of a 
7 km diameter simple crater emplaced in the Schrödinger 
basin centred at 75S and 135E and located ~450 km 
from the South Pole on the farside of the Moon were  
recently observed by Kumar et al.24. These features occur 
on the steep upper crater wall, where the slope is ~35. 
The gullies show a typical alcove-channel-fan morphol-
ogy similar to Martian gullies, but with less conspicuous 
channels. The Ch-1 HySI data help characterize the spec-
tral properties of the gullies and landslides in the interior 
wall of the crater. The spectral profiles are compared with 
the outside crater ejecta (OCE) blanket of the host crater. 
The spectral matching methods such as spectral correla-
tion similarity, SAM and VISA were employed for spec-
tral association of these features with surface materials of 
other permanent features (ridges and floor). 
 When the spectra of the wall and floor materials are 
compared, the HySI spectra of the floor, ridge and floor 
materials show considerable similarity with that of the 
crater wall. Even though these materials are covered by 
the shadow, spectral profiles are still significant due to 
high radiometric sensitivity of the HySI sensor. The 
OMAT values were also calculated using the HySI reflec-
tance spectra as given in eq. (7). The analysis showed that 
the OMAT values of the gullies and landslides (0.34–
0.51) were much higher than those of the ejecta blanket 
(0.14), indicating that the gullies and landslides were 
characterized by youthful debris flows that were com-
posed of sediments with high optical immaturity. 

Conclusions 

Spectral deconvolution and reconstruction techniques are 
shown to be useful to obtain the genuine spectral signa-
tures from the hyperspectral imaging sensor of the ground 
target, which was considerably overlapped with neighbour-
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ing spectral channel data. New methods like variable in-
terval spectral average and its combination with spectral 
feature fitting method find potential for improved mixed 
pixel classification performance. The images from Ch-1 
HySI sensor are shown to be useful in identifying the  
lunar secondary craters, and help in the relative age estima-
tion of planetary surfaces. The preliminary HySI analysis 
reveals that the interior wall of the crater is optically 
more immature compared to the surface of the ejecta  
deposit of the crater, implying that the gullies and land-
slides are youthful geomorphic features. The analysis of 
spectral profiles from HySI indicates that the spectral 
properties of landslides in the interior walls of the impact 
crater and the crater ejecta blanket of the host crater are 
spectrally distinguishable. The above study supports that 
the HySI spectra with new spectral matching techniques 
are useful tool for the identification of craters with gully 
and landslide morphology. 
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