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The levels of heavy metals are measured at different 
dumpsites with different distances and directions un-
der the jurisdiction of Greater Municipal Corporation 
of Hyderabad for ascertaining the soil and ground-
water quality and forecasting as a part of integrated 
municipal solid waste (MSW) management study. The 
datasets indicate a steady decrease in the concentra-
tions of ions and heavy metals in groundwater with 
distance from the MSW dumpsites. Similar trends are 
observed for the levels of heavy metals in soil at dump 
sites around the MSW dumpsite. In this study, we 

have used both linear and quadratic regression to 
predict water and soil constituents. As the datasets on 
the components of solid waste and groundwater are 
limited, the desired level of forecasting accuracy could 
not be achieved. However, for some components the 
results are promising. This study suggests that  
improvement can be achieved by removing the out-
liers from the dataset. If the errors are large for a 
component, it would mean that we need a better way 
of separation of this component from the waste.  
 
Keywords: Groundwater, heavy metals, municipal 
solid waste, soil. 
 
POLLUTION is one of the major public health concerns in 
many large cities worldwide. However, in many cases 
only little attention has been given to this issue, particu-
larly in developing countries. Example is the case of Hy-
derabad, where municipal solid waste (MSW) dumpsites 
are not scientifically maintained. One of the main activi-
ties leading to this problem includes unorganized dump-
ing and burning of MSW which contains high levels of 
heavy metals. Such activities tend to increase the elemen-
tal background levels in the surrounding soil and 
groundwater, driving to adverse temporal variations of 
heavy metal levels in soils. Anthropogenically derived 
chemicals are an important source of environmental  
pollution1,2. They contribute to the load of pollutants in  
urban run-off/leachate. In some areas close to MSW 
dumpsites, concentration of pollutants has reached levels 
which are toxic to humans and other living organisms3–5. 
Therefore, the measurements of the fluxes of pollutants 
from the atmosphere in urban environments can aid in the 
assessment of soil and groundwater quality and can be 
used to determine temporal and seasonal variability of 
pollution sources.  
 Soil constitutes part of vital environmental, ecological 
and agricultural resources that have to be protected from 
further degradation as an adequate supply of healthy food 
needed for the world’s increasing population. Heavy  
metals can affect both the yield of crops and their compo-
sition6. Thus the elemental status of a cultivated land has 
to be determined to identify yield-limiting deficiencies of 
essential micronutrients of plants grown on polluted soils.  
 Some heavy metals are essential in trace amounts, 
namely Zn, Cu and Mn for plants and in addition, Co and 
Ni for animals7. Not much information is available on the 
toxicity of several metals, including Cd on either plants 
or animals. On the other hand, high concentrations of 
metals become toxic to plants and possibly are dangerous 
to human health. The three metals, Pb, Hg and Cd and the 
metalloid arsenic have all caused major human health 
problems in various parts of the world8. A number of 
cases of health problems related to environmental Cd  
poisoning have been reported. Some of the metals are 
phytotoxic and some are toxic to both plants and animals 
through their entry into the food chain8,9. Recent studies 
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indicate that the platinum group of elements (Pt, Pd and 
Rh) is currently posing new environmental pollution 
problems. At present there is insufficient information 
about the toxicity of these elements, although some stu-
dies have revealed that platinum, in particular, would  
affect human health if platinum-contained dust is inhaled 
or contacted directly or indirectly through the food 
chain10,11. 
 Baseline data for the occurrence of heavy metals as 
contaminants are needed as one of the criteria for assess-
ment of critical heavy metal levels in agricultural soils12. 
Over the last two decades, the study of the sources, fluxes 
and pathways of heavy metals has attracted attention of 
both national and international research communities. 
Environmental pollution data tend to vary extensively and 
are subjected to various types of uncertainties due to  
several factors such as distance from pollution sources 
and pathways, natural background variation and pollution 
build-up or degradation over time. Several heavy metals 
such as Ni, Cr and Mn are contained as trace elements in 
some rock types of volcanic and metamorphic origin13. 
During weathering processes, the primary crystalline 
structures of these rock-forming minerals are completely 
broken down and relevant chemical elements are thus  
either adsorbed in the topsoil or transported towards sur-
face water or groundwater targets. Thus, environmental 
variability affects the exact variant in pollution levels  
between population units.  
 The urban and suburban population in and around  
Hyderabad city, India, greatly depends on groundwater 
for various purposes other than drinking14. Presence of 
any component in excess concentration compared to  
values prescribed by the World Health Organization15 
will result in water unsuitable for irrigation, domestic or  
industrial uses16. The dissolved physico-chemical para-
meters in groundwater play a significant role in classify-
ing and assessing water quality. Residual sodium 
carbonate (RSC) can be used as a decisive factor for find-
ing the suitability of irrigation water17–20. It was observed 
that the criteria used in the classification of water for a 
particular purpose may not satisfy the suitability stan-
dards for other purposes, but better results can be obtai-
ned only by considering the combined chemistry of all 
the ions rather than individual or paired ionic characters. 
Chemical categorization also throws light on the concen-
tration of various predominant cations, anions and their 
interrelationships. Physico-chemical properties of soils 
depend on natural and anthropogenic factors, together 
acting on different spatial and temporal scales. Natural 
rock weathering and organic matter decomposition are  
related to parent material, geomorphology of the area, 
presence of vegetation, wind, the climatic conditions and 
other interactions with the environment. The effects of 
these processes are strictly time-dependent and exposed 
in a complex structure of soils. In contrast, soil manage-
ment practices significantly affect pedological properties 

by changing soil structure mechanically due to agricul-
tural and urban activities, and by changing chemical 
composition through pollution load. The presence of any 
element in a fatal concentration in the soil could be due to 
both natural and anthropogenic factors21. Therefore, it is 
often difficult to discriminate among the different causes. 
The parent material largely influences heavy metal con-
tent in many soil types, with concentration sometimes  
exceeding the critical values. The present study was taken 
up to establish the levels of potentially toxic elements in 
soil environment around waste disposal site and to esta-
blish the levels of dissolved major ions and metal content 
to classify the groundwater and examine the water quality 
for drinking and irrigation purposes. In this case, various 
methods have been used to study critically the geochemi-
cal characteristics of groundwater in Hyderabad city. The 
major objectives of this study are: (i) to assess the levels 
of heavy metals in soil and groundwater distributed in the 
surrounding environment of MSW dumpsites of Greater 
Hyderabad Municipal Corporation (GHMC); (ii) to com-
pare these levels at different MSW dumpsites, and (iii) to 
forecast the distribution of heavy metals in soil and 
groundwater near MSW dumpsites using linear regres-
sion. 
 The dumpsites are located in the north (Jawahar  
Nagar), southeast (Autonagar) and northwestern (Dundi-
gal) parts of Hyderabad city (Figure 1). The extension of 
three dumpsites varies from over 200 to 400 acres of area 
and receives on an average 200–300 tonnes of municipal 
and industrial solid waste per day (~50,000 tonnes/annum 
according to GHMC records). The soil cover is a well-
developed residue of weathered granite and consists of 
clay loam, red loam and sandy loam. The area is in the 
semi-arid zone with subtropical climatic conditions. The 
temperature varies between 25C and 45C. It receives 
more than 80% precipitation from SW monsoon with an 
average rainfall of 812 mm. Groundwater occurs in the 
weathered and fractured zones under water-table semi-
confined conditions. The depth of weathering and frac-
tured zones dominantly control the occurrence and 
movement of groundwater in these rocks. The rocks pos-
sess negligible primary porosity, but secondary porosity 
and permeability have occurred as a result of deep frac-
turing and weathering giving rise to potential aquifers. 
The general pattern of groundwater flow in the area is 
from southwest to northeast. The transmissivity of granite 
aquifer ranges from 30 to 200 m2/day (ref. 22). Major 
part of the study area is covered with pedi-plain having 
shallow weathering.  
 Ninety-four soil samples were collected during a sys-
tematic soil sampling programme. To avoid influence 
from various arbitrary surface conditions like waste and 
humus and to get assured natural in-place soil, the selected 
depth of sampling was from 10 to 25 cm depth. Normally, 
anthropogenic pollutants contaminate the upper layer of 
the soil. In case of natural pollutants, the entire soil at all 
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depths shows high level of metal enrichment. The sam-
ples were taken from geographically distributed (north, 
south, east and west) sites at grid intervals of 300–500 m. 
Only plastic equipment was used during sampling instead 
of metal tools to avoid any cross-contamination. The 
sampling period was two months between 2009 and 2011. 
The samples were collected in self-locking polythene 
bags and sealed to avoid leakage. The soil samples were 
air-dried and kept in an oven for 48 h at 60C. The dried 
samples were then disaggregated with mortar and pestle 
and then finely powdered to – 250 mesh size (US stan-
dard) using a swing grinding mill to make them homo-
geneous. The pH of soil suspension was measured using 
1 : 1 soil to water mixture as recommended in the Soil 
Survey Manual23. Weighing of sample was accomplished 
using analytical balance with precision of 0.0001 g. 
 Groundwater samples were collected from 60 bore 
wells in use (depth 150–250; diameter 8–10) located 
around dumpsites at the target interval of 200–400 m in a 
network formation. The samples were collected during 
April and May (summer) when the water levels are low 
and the mineral contents in water are likely to reach a 
maximum. Samples were collected in pre-cleaned high-
density polyethylene bottles from representative bore 
wells distributed throughout the area. The collected sam-
ples were filtered using Whatman No. 42 filter paper, and 
acidified with nitric acid (AR-grade) to pH < 2 (0.2% 
v/v). The number of samples varies from one site to the 
other depending upon the availability of bore wells or 
pumps within a particular watershed. On-site observa-
tions like location, source and depth of the bore wells 
were recorded. Water pH, total dissolved solids and tem-
perature were measured instantly with corresponding 
pH/EC/TDS/C portable meter. Total alkalinity was deter-
mined in non-acidified samples by titration against 0.1 M 
hydrochloric acid using methyl orange and phenolphtha-
lein as indicators17. Anions (nitrate, fluoride, chloride) 
were analysed by double junction electrode at 25C. Sul-
phate ion was determined by turbidimetric method. 
 Elemental composition in soil samples was determined 
using an X-ray fluorescence spectrometer (XRF; type 
Philips MagiX PRO model PW 2440 XRF) with a rho-
dium (Rh) anode 4 kW tube. Its high-level performance 
enables a sensitive and accurate determination of trace 
and major elements (As, Cr, Cu, Ni, Pb and Zn). With the 
PW 2440 XRF, it is possible to scan the elements of  
interest from boron to uranium. The MagiX PRO is a  
sequential instrument with a single goniometer-based 
measuring channel covering the complete elemental  
array. Suitable software ‘super Q’ was used to take care 
of dead time correction and inter-element matrix effects. 
International soil reference materials (SO-1, SO-2, SO-3, 
SO-4) obtained from CCRMP, CANMET Mining and 
Mineral Sciences Laboratories, Ontario, Canada were 
used to prepare the calibration curves for major and trace 
elements and to check the accuracy of the analytical 

data24. Pressed pellets for XRF analysis were prepared  
using collapsible aluminium cups, with a backing of boric 
acid. They were then pressed into pellets at 25 tonnes/inch 
under a hydraulic press. A PerkinElmer® Model ELAN® 
DRC™ II ICP mass spectrometer (PerkinElmer, Inc, 
Shelton, CT, USA) was used for trace element analysis 
utilizing the methodologies described in the litera-
ture25,26). The sample introduction consisted of a standard 
Meinhard® nebulizer with a cyclonic spray chamber. All 
quantitative measurements were performed using the  
instrument software (ELAN v. 3.1). This software uses 
knowledge-driven routines in combination with numeri-
cal calculations (quantitative analysis) to perform an 
automated interpretation of the spectrum of interest.  
Several well-known isobaric interferences are pro-
grammed and the corrections are automatically applied. 
 The type of water that predominated in the study area 
was assessed based on hydrochemical facies, whereas the 
suitability of groundwater for irrigation was evaluated 
based on sodium adsorption ratio, percentage of sodium, 
residual sodium carbonate and the US salinity diagram. 
High concentrations of major ions (Ca++, Mg++ and F–)  
observed in bore wells were attributed to differential 
weathering of minerals such as pyroxenes, plagioclase, 
feldspars and apatite together with dissolution/precipi-
tation reactions along fractures and joints in the granites. 
The high NO–

3 level (>50 mg/l) in groundwater is ascribed 
to the oxidation of ammonia and similar sources from 
leachates emanating from municipal waste. Although  
water is not suitable for domestic purposes, it is however, 
found to be suitable for irrigation purposes with little risk 
in the development of detrimental levels of exchangeable 
sodium. 
 The extent of municipal/hazardous/industrial waste 
dumped as landfill in the city outskirts, abundantly con-
taminates soil resources. The heavy metals (As, Cr, Cu, 
Ni, Pb, Zn) in soil samples were quantified and natural 
background values were used to delineate their derivation 
as geogenic or anthropogenic. The average concentrations 
of As, Cr, Pb were found to exceed the threshold and 
natural background values, whereas the maximum con-
centration of Cu, Ni and Zn exceeded the prescribed 
threshold limit. Soil pH varies from 5.7 to 8.9 and is 
acidic to near neutral and alkaline in nature. Soil pH sig-
nificantly affects the solubility and mobility of these metals, 
as most of them are soluble in acid soils than in neutral or 
slightly basic soils. The methodology used has proved to 
be a useful tool to separate geological and anthropogenic 
causes of variation in soil heavy metal content and to 
identify common pollution sources. 
 Various forecasting and prediction techniques are 
available in the literature. Selection of the technique(s) 
normally depends on the availability of data, the quality 
of available models and some assumptions. Each method 
is different in terms of accuracy, scope, time and cost. To 
facilitate an adequate level of forecasting accuracy, the 
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developer has to be responsive to the characteristics of 
different methods, and determine if a particular method is 
appropriate for the situation on hand before embarking on 
its usage in real applications. As a result, the choice of a 
forecasting model is one of the important factors that will 
influence the forecasting accuracy. 
 Scientific data were collected from various dumpsites 
around Greater Hyderabad. Here we will use the data for 
past periods and forecast the values. 
 In statistics, linear regression is an approach adopted 
for modelling the relationship between a scalar variable y 
and one or more explanatory variables denoted as X (ref. 
27). The case of one explanatory variable is called simple 
regression. More than one explanatory variable is multi-
ple regressions28. 
 In linear regression, scientifically collected data are 
modelled using linear functions, and unknown model  
parameters are estimated from the data. Such models are 
called linear models. Most commonly, linear regression 
refers to a model in which the conditional mean of y 
given the value of X is an affine function of X. Less 
commonly, linear regression could refer to a model in 
which the median, or some other quantile of the condi-
tional distribution of y given X is expressed as a linear 
function of X. Like all forms of regression analysis, linear 
regression focuses on the conditional probability distribu-
tion of y given X, rather than on the joint probability dis-
tribution of y and X, which is the domain of multivariate 
analysis. 
 Linear regression is the first type of regression analysis 
used extensively in practical applications. This is because 
models which depend linearly on their unknown parameters 
are easier to fit than those which are nonlinearly related 
to their parameters and because the statistical properties 
of the resulting estimators are easier to determine. 
 Linear regression has many practical uses. Most appli-
cations of linear regression fall into one of the following 
two broad categories: If the goal is prediction, or fore-
casting, linear regression can be used to fit a predictive 
model to an observed dataset of y and X values. After de-
veloping such a model, if an additional value of X is then 
given without its accompanying value of y, the fitted 
model can be used to make a prediction of the value of y. 
 Given a variable y and a number of variables X1, ..., Xp 
that may be related to y, linear regression analysis can be 
applied to quantify the strength of the relationship bet-
ween y and the Xj, to assess which Xj may have no rela-
tionship with y at all, and also which subsets of Xj contain 
redundant information about y. 
 Linear regression models are often fitted using the least 
squares approach, but they may also be fitted in other 
ways, such as by minimizing the ‘lack of fit’ in some 
other norm (as with least absolute deviation regression), 
or by minimizing a penalized version of the least squares 
loss function as in ridge regression. Conversely, the least 
squares approach can be used to fit models that are not 

linear models. Thus, while the terms ‘least squares’ and 
‘linear model’ are closely linked, they are not synony-
mous29. 
 A brief description of the linear and quadratic regres-
sion models and the estimation of their coefficients using 
the least squares estimation techniques are given in  
Appendix A.  
 Following the economic benefits of forecasting30, we 
embark on predicting waste materials from dump sites. In 
this study, three dump sites: Autonagar, Dundigal and 
Jawahar Nagar have been selected for the forecasting of 
components whether of solid waste or polluted ground-
water. Three analyses are done on the solid and liquid 
wastages at each site. These comprise: ICP-MS analysis 
of metals in groundwater, major ion concentration in the 
groundwater and XRF analysis of the soil. The data are 
divided into two sets: training set and test set which is 
used to check the forecasting accuracy. The sample size 
varies from site to site and one analysis to another. ICP-
MS analysis (Autonagar – training: 16, test: 5; Dundigal 
and Jawahar Nagar – training: 17, test: 5), major ion con-
centration (Autonagar – training: 16, test 5; Dundigal – 
training: 17, test: 5; Jawahar Nagar – training: 17, test: 5) 
and XRF analysis (Autonagar – training: 17, test: 10; 
Dundigal – training: 35, test: 10; Jawahar Nagar – 
training: 17, test: 5). We have applied two types of re-
gression: linear regression and quadratic regression on 
each component of the solid and groundwater wastes to 
build the models based on the training dataset. Then the 
learned models have been used for the forecast; the error 
of forecasts is determined using the test dataset.  
 We present the coefficients of linear and quadratic  
regression using equations (A1) and (A2) respectively 
(see Appendix A). As an example, we consider Cr and 
Mn for modelling using the regression. 
 
 Linear regression model (A1) for Cr:  
 
    yi = 0 + 1xi + i, i = 1, ..., n. 
 

 The coefficients are 0 = 47.4362; 1 = 0.4380. 
 
 Quadratic regression model (A2) for Mn:  
 
    yi = 0 + 1xi + 2x2

i  + i, i = 1, ..., n.  
 
 The coefficients are:  
 

  0 = 1695.81465738939;  
  1 = –1.63921843163745;  
  2 = 0.000857889295506935. 
 
Tables 1–3 (Autonagar), 4–6 (Dundigal) and 7–9 (Jawa-
har Nagar) display two types of error measures: per unit 
error and sum of squared error. Maximum errors are wit-
nessed at the Dundigal site and minimum at the Jawahar 
Nagar site. For certain components like Cd and Sb the 
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Table 1. ICP-MS analysis of metals in groundwater (Autonagar) 

Method   Error Li Be B Al Si V Cr Mn Se Rb Pb 
 

Linear Per unit error 4.7586  1.7665 2.1182 2.418 1.4007 3.319 0.7457 1.828  6.673 1.4497  4.9667 
 regression Sum of squared error 6.7531  0.8803 1.1809  1.6305 0.7164  3.2268 0.2006  1.0608 11.978 0.4506  6.5448 
Quadratic Per unit error 4.7586  3.2758 2.8426  2.4174 1.3255  2.4096 0.7475  1.0314   7.7437 1.3614  5.7128 
 regression Sum of squared error 6.7531 3.403 2.2728  1.6314 0.6464  1.9673 0.2014  0.6199 18.546 0.4937 11.288 
 

  Fe Ni Co Cu Zn As Sr Mo Ag Cd Sb Ba 
 

Linear Per unit error  5.4073 7.24  5.5469   6.4223  1.8781  9.0636 12.279 5.2428  0.7146  9.0492  8.7093  2.7583 
 regression Sum of squared error  7.3285 14.595 10.84       9.8567  1.1489 22.961   37.533 5.5037  0.1724 18.994 20.392 3.397 
Quadratic Per unit error 5.048    7.1549  5.2884   6.8771  2.6581  8.3625 11.291 4.1491  0.7363  8.963   7.3622  2.4669 
 regression Sum of squared error 6.615 14.29  9.9573 11.017 2.245 19.861   32.169 3.5085 0.158 18.601 14.254  2.9935 

 
 

Table 2. Major ion concentration in groundwater (Autonagar) 

Method   Error HCO–
3 CO–

3 F– Cl– NO–
3 SO2

4
– Na+ Mg++ K+ Ca++ 

 

Linear Per unit error 4.0266 1.5978 1.3499 5.809  7.9874  5.9307 1.7928  8.1651 4.8252  4.1863 
 regression Sum of squared error 6.3846 0.8119 0.4422 10.7803 24.3111 11.4156 1.1998 20.4011 4.7884  6.7174 
Quadratic Per unit error 3.8815 1.4465 1.2157  5.4374  8.0838  6.4253 1.7841  9.0359 1.2848 4.432 
 regression Sum of squared error 6.2628 0.8072 0.3955 8.196 22.0077 12.6279 1.2142 24.5548 0.4857  7.4466 

 
 

Table 3. XRF analysis of soil (Autonagar) 

Method   Error Ba Co Cr Cu Mo Ni Pb V Zn 
 

Linear Per unit error 1.5779 3.4592 3.9538 2.5135 3.6186 4.0466 2.5436   2.2346 2.3266 
 regression Sum of squared error 0.3949 1.3879 2.831 0.873 2.2089 3.0664 1.2604   0.7132 0.6782 
Quadratic Per unit error 1.3658 6.0739 4.0426 2.5989 4.0603 3.8321 2.7268 3.09 2.1737 
 regression Sum of squared error 0.2778 4.7082 3.0099 0.9452 2.7718 2.7811 1.3878   2.1636 0.6158 

 
 

Table 4. ICP-MS analysis of metal in groundwater (Dundigal) 

Method   Error Li Be B Al Si V Cr Mn Se Rb Pb 
 

Linear Per unit error   1.527   4.308 4.591 8.579  0.564 8.251 10.61 4.228  17.88  13.9 1.589 
 regression Sum of squared error   0.569   5.278 5.762 25.35 0.11 18.37 35.63 13.03 76.8  60.18 0.734 
Quadratic Per unit error  1.85   6.595 3.166 13.31  0.609 9.147 9.193 4.156   7.29 12.2 1.211 
 regression Sum of squared error 0.9 14.67 3.163 69.92  0.116 22.05 27.03 13.63  15.96  41.29 0.382 
 

  Fe Ni Co Cu Zn As Sr Mo Ag Cd Sb Ba 
 

Linear Per unit error 1.388   6.201 2.893 6.989 3.973   23.61    8.425 2.781 16.27 25.08 25.72 4.596 
 regression Sum of squared error 0.829 11.58 3.357 21.57 4.074 149.7 17.7 2.038 66.64 205.3 217.3 8.723 
Quadratic Per unit error 1.152 15.62 2.889 8.708 4.042   16.34    7.072 3.247 15.48 24.05  19.4 4.517 
 regression Sum of squared error 0.454 73.84 3.349 29.84 4.137   74.65   11.68 2.831 60.02 188.9 117.8 8.504 

 
 

Table 5. Major ion concentration in groundwater (Dundigal) 

Method   Error HCO–
3 CO–

3 F– Cl– NO–
3 SO2

4
– Na+ Mg++ K+ Ca++ 

 

Linear Per unit error 1.721 4.3345 1.5006 3.408 6.6924 1.0163 1.4748 6.2773 1.8324 4.0632 
 regression Sum of squared error 1.0864 9.0901 0.7243 3.5957 10.1255 0.3327 0.7051 19.1765 0.9745 5.5598 
Quadratic Per unit error 1.5095 4.9834 1.3428 3.1763 3.5689 1.0944 1.4333 5.1024 2.1974 5.0072 
 regression Sum of squared error 1.0638 11.5651 0.4474 3.3502 3.6558 0.361 0.6949 15.5166 1.2114 8.8 

 
 
errors are very large indicating that there might be out-
liers due to unscrupulous data collection. But we have  
refrained from correcting the outliers, as it requires large 

datasets. Figures 2 (Autonagar), 3 (Dundigal) and 4 
(Jawahar Nagar) depict the errors of forecasting of three 
components in each dump site. These figures correspond 
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Table 6. XRF analysis of soil (Dundigal) 

Method   Error As Ba Co Cr Cu Mo Ni Pb Rb V Y Zn Zr 
 

Linear Per unit error 10.03 3.625 16.95 7.934 4.122 2.919 5.257 4.525 4.87 2.516 2.822 5.342 6.445 
 regression Sum of squared error 17.81 1.59 85.46 9.942 2.441 1.386 3.837 3.543 5.05 0.913 1.087 3.326 7.507 
Quadratic Per unit error 9.936 3.705 16.04 8.666 4.511 2.915 5.717 7.099 5.023 2.549 2.873 9.352 6.794 
 regression Sum of squared error 17.55 1.987 61.73 12.84 2.96 1.383 5.39 9.768 5.327 0.955 1.128 10.39 8.398 

 
 

Table 7. ICP-MS analysis of metal in groundwater (Jawahar Nagar) 

Method   Error B Al Si V Cr Mn Fe Ni 
 

Linear Per unit error 0.9181 2.0738 1.9873 0.9857 1.8014 4.1276 2.4021 4.0344 
 regression Sum of squared error 0.266 1.1826 1.0215 0.2629 0.6607 5.6841 1.1792 4.183 
Quadratic Per unit error 1.7285 2.1201 3.8005 0.9857 1.5621 3.7966 2.7786 4.0381 
 regression Sum of squared error 0.8654 1.1774 4.8696 0.2907 0.5017 4.4671 1.5616 4.3604 
 

  Co Cu Zn As Se Mo Ag Cd Ba Pb 
 

Linear Per unit error 1.9643 1.3105 7.5815 2.1226 9.1435 1.8259 0.4628 0.1631 1.8869 1.1979 
 regression Sum of squared error 0.9388 0.5163 14.8336 1.7514 34.9149 1.0847 0.0528 0.0097 1.4218 0.3658 
Quadratic Per unit error 4.586 3.5929 5.2114 2.883 9.0632 3.2792 0.3423 0.1628 1.875 1.0679 
 regression Sum of squared error 10.194 3.4327 12.4131 3.4798 29.7724 2.966 0.0339 0.0104 1.3932 0.3025 

 
 

 
 

Figure 1. Watershed map of the study area. 
 
 
to linear regression. Three forecasting results of HSO3, 
Sb and Mn using quadratic regression are shown in  
Figure 5. Inclusion of all figures of quadratic regression 
would require additional spacing but with not much use-
fulness as the errors are almost similar for most of the 
components. 

 The results of forecasts of the materials (solid waste 
and liquid waste) at three dumpsites are presented using 
both linear regression and quadratic regression. Owing to 
the limited data, the forecasting errors are found to be 
large at dump sites like Dundigal. The main problem is 
that the components (constituents) from solid and 
groundwater are separated manually and automation 
needs to be introduced.  
 An analysis of the results shows that in some cases  
linear regression is better than quadratic regression and 
vice versa in other cases. We cannot choose one as supe-
rior to the other. If we have additional information about 
the exogenous variables like population density, literacy 
and waste management facilities, we can improve the re-
sults of forecasting. However, this preliminary study has 
opened new vistas for improvement in the waste man-
agement. 
 Future work will be aimed at finding the outliers in the 
datasets and trying out fuzzy models. 

Appendix A 

Linear regression 

In linear regression, the model specification is that the 
dependent variable, yi is a linear combination of the para-
meters (but need not be linear in the independent vari-
ables). For example, in simple linear regression for 
modelling n data points, there is one independent variable 
xi, and two parameters 0 and 1 
 
 Linear: yi = 0 + 1xi + i, i = 1, ..., n. (A1) 
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Table 8. Major ion concentration in groundwater (Jawahar Nagar) 

Method   Error F– Cl– NO–
3 SO2

4
– HCO–

3 CO–
3 Na+ Mg++ K+ Ca++ 

 

Linear Per unit error 1.6096 3.1866 2.6413 2.7136 3.1872  1.7132 2.0708  8.1398   1.4243 2.0428 
 regression Sum of squared error 1.1995 3.0855 2.9664 1.9076 4.2184 0.612 1.7821 16.3024  0.502 1.4178 
Quadratic Per unit error 1.6714 2.7533 3.2144 2.4059 3.1372  1.7002 1.7665 11.2655 2.17 2.0513 
 regression Sum of squared error 1.1856 2.2825 4.9804 1.7956 4.0503  0.6344 0.8526 28.2237   1.0676 1.2696 

 
 

Table 9. XRF analysis of soil (Jawahar Nagar) 

Method   Error As Ba Co Cr Cu Ni Pb Rb V Zn Zr 
 

Linear Per unit error  3.4102 1.3918 4.74 6.7019 1.9789 1.5272 1.0348 1.3186 0.8177  1.3044 3.8571 
 regression Sum of squared error  3.9728 0.4676   7.3139 11.7734 2.0305 0.4803 0.4229 0.5881 0.1682  0.4098 5.8088 
Quadratic Per unit error  3.3806 1.2202   4.6574 6.6091 1.8393 1.4875 1.0209 0.8268 1.4322  1.4994 4.7934 
 regression Sum of squared error 4.248 0.3842   7.2385 17.7509 1.707 0.4587 0.4261 0.2338 0.6078 0.589 9.7972 

 
 

 
 
Figure 2. a, ICP-MS analysis of Cr metal; b, F– ion concentration; c, 
Mg++ ion concentration in groundwater (Autonagar). 
 

 
 
Figure 3. a, ICP-MS analysis of Si metal; b, SO2

4
– ion concentration; 

c, XRF analysis of V metal in groundwater (Dundigal). 
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(In multiple linear regressions, there are several inde-
pendent variables or functions of independent variables.) 
Adding a term in x2

i  to the preceding regression gives 
 
 Quadratic: yi = 0 + 1xi + 2x2

i  + i, i = 1, ..., n. (A2) 
 
This is still linear regression; although the expression on 
the right hand side is quadratic in the independent vari-
able xi, it is linear in the parameters 0, 1 and 2. 
 In both cases, i is an error term and the subscript i  
indexes a particular observation. Given a random sample 
from the population, we estimate the population para-
meters and obtain the sample linear regression model 
 

 0 1
ˆ ˆˆ .i iy x    (A3) 

 

 
 
Figure 4. a, ICP-MS analysis of Se metal; b, CO–

3 ion concentration; 
c, XRF analysis of Rb metal in groundwater (Jawahar Nagar). 

The residual 1 ˆ ,i ie y y   is the difference between the 
value of the dependent variable predicted by the model, 
ˆiy  and the true value of the dependent variable yi. One 

method of estimation is ordinary least squares. This 
method obtains parameter estimates that minimize the  
 

 
 
Figure 5. Results of forecasting using quadratic regression on (a) 
HCO–

3; (b) Sb; (c) Mn. 
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sum of squared residuals, SSE, also sometimes denoted 
as RSS 
 

 SSE = 2

1

1 .
N

ie
N   (A4) 

 
Minimization of this function results in a set of normal 
equations, a set of simultaneous linear equations in the 
parameters, which are solved to yield the parameter esti-
mators, 0̂  and 1̂.  
 In the case of simple regression, the formulas for the 
least squares estimates are 
 

 1 2

( )( )ˆ
( )

x x y y
x x


 







 and 0 1
ˆ ˆ ,y x    (A5) 

 
where x  is the mean (average) of the x values and y  is 
the mean of the y values.  
 Given a dataset 1 1 1{ , ,..., }n

i ip iy x x   of n statistical units, a 
linear regression model assumes that the relationship bet-
ween the dependent variable yi and the p-vector of regres-
sors xi is linear. This relationship is modelled through a 
disturbance term or error variable εi – an unobserved ran-
dom variable that adds noise to the linear relationship  
between the dependent variable and regressors. Thus the 
model takes the form 
 

1 1 ,i i p ip i i iy x x x           i = 1, ..., n, (A6) 

 
where (A6) takes the form itx   is the inner product be-
tween vectors xi and . 
 Often these n equations are stacked together and writ-
ten in vector form as 
 
 y = X + , (A7) 
 
where 
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Some remarks on terminology and general use yi are 
called the regress and exogenous variable, response vari-
able, measured variable or dependent variable. The deci-

sion as to which variable in a dataset is modelled as the 
dependent variable and which are modelled as the inde-
pendent variables may be based on a presumption that the 
value of one of the variables is caused by, or directly  
influenced by the other variables. Alternatively, there may 
be an operational reason to model one of the variables in 
terms of the others, in which case there need be no pre-
sumption of causality. 
 xi are called regressors, endogenous variables, explana-
tory variables, covariates, input variables, predictor  
variables or independent variables. The matrix X is some-
times called the design matrix. 
 (a) Usually a constant is included as one of the regres-
sors. For example, we can take xi1 = 1 for i = 1, ..., n. The 
corresponding element of  is called the intercept. Many 
statistical inference procedures for linear models require 
an intercept to be present. So it is often included even if 
theoretical considerations suggest that its value should be 
zero. 
 (b) Sometimes one of the regressors can be a nonlinear 
function of another regressor or of the data, as in poly-
nomial regression and segmented regression. The model 
remains linear as long as it is linear in the parameter vec-
tor . 
 (c) The regressors xij may be viewed either as random 
variables, which we simply observe, or they can be consi-
dered as predetermined fixed values which we can 
choose. Both interpretations may be appropriate in differ-
ent cases, and they generally lead to the same estimation 
procedures; however, different approaches to asymptotic 
analysis are used in these two situations. 
  is a p-dimensional parameter vector. Its elements are 
also called effects, or regression coefficients. Statistical 
estimation and inference in linear regression focuses on 
. 
 i is called the error term, disturbance term or noise. 
This variable captures all other factors which influence 
the dependent variable yi other than the regressors xi.  
 The relationship between the error term and the regres-
sors, for example whether they are correlated, is a crucial 
step in formulating a linear regression model, as it will 
determine the method to be used for estimation. 
 A fitted linear regression model can be used to identify 
the relationship between a single predictor variable xj and 
the response variable y when all the other predictor vari-
ables in the model are ‘held fixed’. Specifically, the  
interpretation of j is the expected change in y for a one-
unit change in xj when the other covariates are held fixed. 
This is sometimes called the unique effect of xj on y. In 
contrast, the marginal effect of xj on y can be assessed  
using a correlation coefficient or simple linear regression 
model relating xj to y. 
 Care must be taken when interpreting regression re-
sults, as some of the regressors may not allow for mar-
ginal changes (such as dummy variables, or the intercept 
term), while others cannot be held fixed (recall the example 
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from the introduction: it would be impossible to ‘hold ti 
fixed’ and at the same time change the value of t2

i ). 
 It is possible that the unique effect can be nearly zero 
even when the marginal effect is large. This may imply 
that some other covariate captures all the information in 
xj, so that once that variable is in the model, there is no 
contribution of xj to the variation in y. Conversely, the 
unique effect of xj can be large while its marginal effect 
is nearly zero.  
 The meaning of the expression ‘held fixed’ may  
depend on how the values of the predictor variables arise. 
If the experimenter directly sets the values of the predic-
tor variables according to a study design, the comparisons 
of interest may literally correspond to comparisons 
among units whose predictor variables have been ‘held 
fixed’ by the experimenter. Alternatively, the expression 
‘held fixed’ can refer to a selection that takes place in the 
context of data analysis. In this case, we ‘hold a variable 
fixed’ by restricting our attention to the subsets of the 
data that happen to have a common value for the given 
predictor variable. This is the only interpretation of ‘held 
fixed’ that can be used in an observational study. 
 The notion of a ‘unique effect’ is appealing when 
studying a complex system where multiple interrelated 
components influence the response variable. In some 
cases, it can be literally interpreted as the causal effect of 
an intervention that is linked to the value of a predictor 
variable. However, it has been argued that in many cases 
multiple regression analysis fails to clarify the relation-
ships between the predictor variables and the response 
variable when the predictors are correlated with each 
other and are not assigned following a study design. 

Least squares estimation techniques 

Errors-in-variables models (or ‘measurement error mod-
els’) extend the traditional linear regression model to  
allow the predictor variables X to be observed with error. 
This error causes standard estimators of  to become  
biased. Generally, the form of bias is attenuation, mean-
ing that the effects are biased toward zero. 

Ordinary least squares 

Ordinary least squares (OLS) is the simplest and thus 
most common estimator. It is conceptually simple and 
computationally straightforward. OLS estimates are 
commonly used to analyse both experimental and obser-
vational data. The OLS method minimizes the sum of 
squared residuals and leads to a closed-form expression 
for the estimated value of the unknown parameter  
 

 
1

1 1 1ˆ ( ) .i i i iX X X y x x x y
n n




           
   
   (A8) 

The estimator is unbiased and consistent if the errors 
have finite variance and are uncorrelated with the regres-
sors 
 
 E[xii] = 0. (A9) 
 
It is also efficient under the assumption that the errors 
have finite variance and are homoscedastic, meaning that 
E[2

i |xi] does not depend on i. The condition that the  
errors are uncorrelated with the regressors will be gener-
ally satisfied in an experiment, but in the case of observa-
tional data, it is difficult to exclude the possibility of an 
omitted covariate z that is related to both the observed 
covariates and the response variable. The existence of 
such a covariate will generally lead to a correlation be-
tween the regressors and the response variable, and hence 
to an inconsistent estimator of . The condition of homo-
scedasticity can fail with either experimental or observa-
tional data. If the goal is either inference or predictive 
modelling, the performance of OLS estimates can be poor 
if multicollinearity is present, unless the sample size is 
large. 
 In simple linear regression, where there is only one re-
gressor (with a constant), the OLS coefficient estimates 
have a simple form that is closely related to the correla-
tion coefficient between the covariate and the response. 

Generalized least squares 

Generalized least squares (GLS) is an extension of the 
OLS method that allows efficient estimation of  when 
either heteroscedasticity or correlations, or both are pre-
sent among the error terms of the model, as long as the 
form of heteroscedasticity and correlation is known inde-
pendently of the data. 
 To handle heteroscedasticity when the error terms are 
uncorrelated with each other, GLS minimizes a weighted 
analogue to the sum of squared residuals from OLS re-
gression, where the weight for the ith case is inversely 
proportional to var(i). This special case of GLS is called 
‘weighted least squares’. The GLS solution to estimation 
problem is  
 
 1 1 1ˆ ( ) ,X X X y        (A10) 
 
where  is the covariance matrix of the errors. GLS can 
be viewed as applying a linear transformation to the data 
so that the assumptions of OLS are met for the trans-
formed data. For GLS to be applied, the covariance struc-
ture of the errors must be known up to a multiplicative 
constant. 
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Hydrogen generation by gamma  
radiolysis of aqueous suspension of  
nano zirconia 
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Aqueous suspension of nano zirconia with methanol 
was irradiated with gamma ( ) rays. Hydrogen (H2) 
generated in this process was studied as a function of 
pH and -dose. In the presence of 1 M methanol and at 
pH 3.0, low gamma dose irradiation showed optimum 
H2 generation. This is explained on the basis zeta  
potential and surface charge on zirconia particles. 
Positive surface charge at low pH could be the reason 
for enhanced H2 generation. Maximum H2 yield G(H2) 
of 3.7 was observed. This is 400 times more compared 
to nano pure water. The method can be utilized for 
building a medium-scale H2 generation plant. 


