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The notion of uncertainty in the description of a 
physical system has assumed prodigious importance in 
the development of quantum theory. Overcoming the 
early misunderstanding and confusion, the concept 
grew continuously and still remains an active and fer-
tile research field. Curious new insights and correla-
tions are gained and developed in the process with the 
introduction of new ‘measures’ of uncertainty or inde-
terminacy and the development of quantum mea-
surement theory. In this article we intend to reach a 
fairly uptodate status report of this yet unfurling  
concept and its interrelation with some distinctive 
quantum features like nonlocality, steering and entan-
glement/inseparability. Some recent controversies are 
discussed and the grey areas are mentioned. 
 
Keywords: Complementarity, entanglement, harmonic 
analysis, uncertainty relations, wave–particle duality. 
 
IN March 1927, following a heuristic approach and apply-
ing some plausible measure for what he called inaccuracy 
or indeterminacy in the measurement of a physical quan-
tity, Heisenberg1 arrived at his celebrated uncertainty  
relations (note 1). The famous thought experiment in 
which Heisenberg imagined measuring the position of an 
electron using a gamma-ray microscope, finally leads to 
the concept of a minimum uncertainty product (of the po-
sition and momentum uncertainties of the electron under 
observation) of the order of the Planck’s constant. He 
also pointed out that the position–momentum uncertainty 
relation ‘is a precise expression for the facts which one 
earlier sought to describe the division of phase space into 
cells of magnitude h’ and summarized the import of the 
relation as ‘Too much precision in q0 (initial position  
coordinate) produces great uncertainty in p0 (initial  
momentum)’. 
 Though Heisenberg asserted that, ‘this relation is a 
straight forward mathematical consequence of the quan-
tum mechanical commutation rule for the position and the 
corresponding momentum operators pq – qp = –i’, he 
actually derived the relation using a semi-quantitative 
definition of imprecision/indeterminacy in the position 
coordinate q and the corresponding momentum p in terms 
of ‘spreading’ of the Gaussian ‘probability–amplitude 

packet’ of a microparticle (like electron) and dubbed it  
‘a slight generalization’ of the Dirac–Jordan formulation. 
He then proceeded to discuss ‘a few special idealized ex-
periments’ for simultaneous measurement of position and 
the conjugate momentum and also of time and energy  
using specially the Stern–Gerlach experiment and an  
example of the energy and phase of the state of an atom. 
However, it should be noted that Heisenberg’s view on 
time was both ambiguous and contradictory2. In the pass-
ing we also note that, although the time–energy uncer-
tainty is one of the most important relations apart from 
the position–momentum uncertainty and its heuristic 
meaning (note 2; ref. 3) was readily appreciated by the 
early founders of quantum mechanics (QM), both its for-
mulation and interpretation are different from that of the  
position–momentum uncertainty and require special con-
sideration. The problem is that the time is not usually 
recognized as a dynamical variable/an operator in stan-
dard quantum mechanics (note 3). We shall revert to  
discuss aspects of the time–energy uncertainty and its 
formulation in the following.  
 As the title of Heisenberg’s paper (translated in Eng-
lish as: On the physical/intuitive content of the quantum 
theoretic kinematics and mechanics) suggests, the pur-
pose of the formulation was to bring out explicitly some 
important features of QM not quite obvious from the 
formalism itself. Also, he did not give a general defini-
tion for the ‘uncertainties’ and quantifies them only on a 
case-to-case basis with the remark that they could be 
taken as ‘something like the mean error’. Apparently, 
when Heisenberg refers to the uncertainty or indetermi-
nacy of a quantity, he means that the value of this quan-
tity cannot be given beforehand. 
 According to Heisenberg1, the uncertainty relations 
created ‘room’ (1927, p. 180) or ‘freedom’ (1931, p. 43) 
for the introduction of some non-classical mode of de-
scription of experimental data. Although Bohr accepted 
the conclusions of the paper, he disagreed with Heisen-
berg’s conception of indeterminacy as a limitation of the 
applicability of classical notions. In fact, Heisenberg’s 
paper contained an ‘Addition in proof’ mentioning criti-
cal comments by Bohr, who pointed out that in the -ray 
microscope experiment it is not the change of momentum 
of the electron due to a position measurement that is  
important, but the circumstance that this change cannot 
be precisely determined in the same experiment. 
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 For Bohr, the central idea was wave–particle duality 
and in spite of the fact that the views on QM of the two 
founding fathers, Heisenberg and Bohr, are often clubbed 
as the ‘Copenhagen interpretation’, there is considerable 
difference between their views on uncertainty relation, 
wave–particle duality and Bohr’s complementarity prin-
ciple (BCP, to be discussed later). Bohr has criticized 
Heisenberg for his suggestion that these relations were 
due to discontinuous changes occurring during the process 
of measurement and pointed out that the uncertainties in 
the experiment did not exclusively arise from the discon-
tinuities (existence of quantum of action), but also from 
the fact that the position and the momentum of the elec-
tron cannot be simultaneously defined in the microscope 
experiment (‘Addition in proof’ in Heisenberg1) and  
we need to consider both the particle theory and the wave 
theory. On the other hand, Bohr has always defended  
the uncertainty relations against the objections raised by  
Einstein in his famous thought experiments christened as 
Einstein’s slit and Einstein’s box3. In fact, they spent 
many years intensely debating the ‘picture of reality’ as 
described by the quantum mechanical description. 
 Although Heisenberg’s thought experiments are con-
sidered in most textbooks on QM as the ‘experimental’ or 
‘logical’ foundations, they were open to criticisms that 
they tacitly assume the classical ontology which they  
explicitly purport to deny (Jammer4, p. 73). It is also im-
portant to note that though the description of standard 
QM (the negation of a phase-space description at the out-
set) is consistent with this basic contention of Heisen-
berg’s gedanken experiment on -ray microscope, 
Margenau5 from a critical analysis has pointed out that 
the non-statistical notion of Heisenberg’s uncertainty re-
lation in a simultaneous measurement of canonically con-
jugate dynamical variables, pertaining to a single particle, 
is not amenable to any meaningful interpretation within 
the framework of standard QM. There is no doubt that 
Heisenberg’s notion of uncertainty played an important 
role in the initial stages of the development of QM and 
even now it offers in many cases a quick glimpse of some 
peculiar quantum results. The use of a mixture of classi-
cal and quantum concepts is its real strength, because one 
can get some picture of what may be happening to the  
individual ‘particles’ and in most cases it offers a semi-
classical explanation for some quantum phenomena. As 
such the so called ‘Heisenberg’s uncertainty principle 
(HUP)’ is a part of the semi-classical ‘old quantum the-
ory’. Home and Sengupta6 have discussed a reformulation 
of the -ray microscope thought experiment congruous 
with the statistical interpretation of uncertainty relation. 
 The quantum mechanical uncertainty relation in the 
form of an inequality relating the respective standard de-
viations (note 4) of position and momentum observables 
for arbitrary statefunctions was first derived by Kennard7 
in Heisenberg’s immediate succession, using the posi-
tion–momentum commutation relation and invoking the 

Cauchy–Schwartz inequality (for inner products), also in 
1927. Taking a cue from Born’s probabilistic interpreta-
tion of quantum mechanical statefunction , Weyl8 in 
1928 showed independently that the non-commutativity 
of position and momentum operators is actually a  
statement about the variances leading to the inequality  
relation. 
 

 2 2 2; where ,
2q p q q q        
  etc.  (1) 

 
In the general formulation of QM, any pair of non-
commuting operators is subject to similar lower bounds 
for the uncertainty products and Kennard’s inequality was 
generalized in 1929 by Robertson9 for all observables 
(represented by self-adjoint operators Â  and ˆ)B  in the 
form 
 

 2 2 2
ˆ ˆ| [ , ] | ˆ ˆ, where ,
2A B A

A B A A   
        etc.  (2) 

 
Schrödinger10 soon realized an important modification to 
Robertson’s inequality by adding a new term for quantum 
states for which the covariance of the two operators is 
non-zero (note 5) and derived a more general inequality 
in the form 
 

 
2 2

2 2
ˆ ˆ ˆˆ ˆ ˆ[ , ] ( [ , ] ) ,

4A B
A B A B A B

          
  (3) 

 
where ˆ ˆ ˆˆ ˆ ˆ[ , ]A B AB BA    is the anticommutator of Â  and 
B̂ . 
 This result is usually referred to as Robertson–
Schrödinger inequality. For quantum states with zero  
covariance of Â  and B̂ , this relation reduces to Robert-
son’s inequality. In this sense it is more general and can 
be applied to any two observables of a large class of 
states of quantum systems. Quantum states with non-zero 
covariance include coherent and squeezed states. 
 Apart from the most common position and linear mo-
mentum relation (given by the Kennard’s inequality), the 
relation between (i) any two orthogonal components of 
the total angular momentum operator of a system and (ii) 
the number of electrons in a superconductor and the 
phase of its Ginzburg–Landau order parameter11 can be 
deduced. The Robertson–Schrödinger uncertainty relation 
may be generalized12 in a straightforward way to describe 
mixed states as 
 

2 2
2 2

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ(tr [ , ]) (tr [ , ] tr( )tr( )) ,
4A B

A B A B A B   
   

  (4) 

 
where ̂  is the density operator representing the mixed 
state. 
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 From a proposed estimation of purity/mixedness of a 
system using quantum networks13, Mal et al.14 have  
recently claimed to establish a connection between the 
generalized Robertson–Schrödinger uncertainty relation 
and the mixedness of quantum states. 
 In his seminal paper of 1927, Heisenberg apparently 
gave intuitive formulation of three manifestations of  
uncertainty relations: (i) the uncertainty relations for the 
widths/spreads representing the intrinsic fluctuations of 
the distributions of two conjugate dynamical variables in 
a quantum state; (ii) for the inaccuracy of a measurement 
of one of the quantities and the ensuing disturbance in the 
distribution of the other and (iii) for the inaccuracies of 
any joint measurements of these quantities, representing 
the general invasiveness of measurements in quantum 
systems. However, it was only the relation for state 
preparations (type (i)) that was made precise soon after-
wards. For example, the Kennard’s/Robertson’s inequal-
ity states that the quantum fluctuations of both position 
and momentum cannot be suppressed simultaneously  
below a certain limit. The inequality expressing the quan-
tum mechanical uncertainty relation actually represents 
the intrinsic fluctuations in quantum states and follows 
directly from the formalism of QM. 
 The uncertainty relations of the first form (i) actually 
reveal a fundamental property of quantum systems, and is 
not a statement about the observation produced effect. 
According to Mermin15, the uncertainty relations as de-
duced from within the framework of QM, prohibit the 
possibility of preparing an ensemble of systems in which 
all the members have sharply defined values for the canoni-
cally conjugate variables. This minimal interpretation 
states that it is not possible to prepare pure ensembles in 
which all systems have the same values for these quanti-
ties, or ensembles in which the spreads are smaller than 
allowed by quantum theory (note 6). In the following 
sub-sections, we discuss subsequent developments of this 
form of uncertainty relations in terms of other measures 
of ‘uncertainty’ and the formulation of the time–energy 
uncertainty – its special character and interpretation. 
 The minimal interpretation does not address the ques-
tion whether one can make simultaneous/joint measure-
ments of position and momentum. As a matter of fact, 
one can show that the standard formalism of QM does not 
allow a description of joint measurements16. In his intui-
tive formulations, Heisenberg presented types (ii) and 
(iii) of the uncertainty relations ‘as a statement of empiri-
cal fact’ of the inevitable and uncontrollable disturbance 
of a quantum system by the measuring apparatus and ‘it 
took several decades until the conceptual tools required 
for a rigorous formulation of the two measurement-
related uncertainty relations had become available’17. We 
shall discuss these developments leading to the formula-
tion of ‘universally valid uncertainty relations’, in the  
following sections together with the recent studies high-
lighting subtle interconnections of the uncertainty  

relations with other important quantum features like 
nonlocality, entanglement, steering, separability, etc.  
Finally, we discuss the experimental validation of uncer-
tainty relations and the lively debate concerning Popper’s 
criticisms vis-à-vis the various experimental studies. 

The uncertainty relations in the context of  
harmonic analysis 

In Schrödinger representation, the appearance of uncer-
tainty relations has a simple explanation in the expres-
sions of the quantum mechanical statefunctions in the two 
conjugate bases (position and momentum), which are 
Fourier transforms of one another. Hardy first provided a 
rigorous mathematical statement of Wiener’s observation 
regarding Weyls formulation of uncertainty relation that a 
quantum state and its Fourier transform cannot both be 
well-localized18. Hardy’s study shows that both a func-
tion and its Fourier transform cannot be simultaneously 
‘very rapidly decreasing’. The trade-off between the 
‘spreads’ of a function ( f ) and its Fourier transform ( )f  
leads to an uncertainty relation. With the observation that 
a Gaussian function is a minimizer for eq. (1), Hardy19 
suggested to measure the spread/localization of f and f  
with respect to a Gaussian distribution. Hardy’s theorem 
has been subsequently generalized and extended for other 
exponential functions, replacing the Gaussian20. 
 Yet another important aspect is revealed in the fact 
(Paley–Wiener theorem) that it is not possible for both f 
and f  to be compactly supported (unless of course they 
vanish entirely). If f is compactly supported, then f  is an 
entire function. Due to the in-built Fourier correlation be-
tween the coordinate and momentum representations, a 
more stringent condition than the uncertainty relation that 
the quantum mechanical state function cannot have a 
compact support in both position and momentum repre-
sentation is imposed21. It is impossible in the statefunc-
tion description for a system to have compact distribution 
functions for both position and momentum density, i.e. to 
know both position and momentum with finite errors. 
Since the statefunction representation provides the com-
plete description of a system in QM, the problem is that 
we cannot demand finite error in both position and  
momentum measurements. For a classical particle it is  
always possible to know both position and momentum 
with finite errors, i.e. both position and momentum den-
sity functions must be compact. This is impossible in the 
statefunction description because band limited functions 
cannot be spatially compact21. Not only macroscopic ob-
jects, states of microscopic particles for which this type 
of measurement is possible (,  particle tracks) also 
seem to defy -function description. 
 A variety of inequalities can be found in Fourier analy-
sis providing mathematical formulations for uncertainty 
relations22. It is pertinent to note here that Bohr’s  
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derivation of uncertainty relations relied on Fourier 
analysis and not on the commutation relations. For Bohr, 
the indeterminacy relations are essentially an expression 
of wave–particle duality in QM, which he further  
expounded as the ‘complementarity Principle’ in his 
Como lecture23. However, the ‘wave–particle trade-off’ is 
now expressed in terms of an inequality, known as 
Englert–Greenberger duality or simply wave–particle  
duality relation24. The inequality derived involving suita-
bly defined visibility V of the interference (pattern) and 
distinguishability D between the two interfering state-
functions is given by 
 
 D2 + V2  1,  (5) 
 
the equality holds for pure quantum states. Also, it is now 
generally accepted that entanglement (nonlocal quantum 
correlation) is essential for a proper explanation of the 
disappearance of the interference pattern due to welcher-
weg/which-state detection (‘complementarity’) in inter-
ference experiments, which has traditionally been  
inadequately explained in terms of position–momentum 
uncertainty relation. The quantum interference effect is 
much more general than the classical wave-like interference 
in ordinary position space and the make-shift uncertainty 
argument is not even applicable for all types of which-
state-interference complementarity25. One can derive an 
uncertainty-like inequality from the duality relation eq. (5), 
so both are related and the duality inequality appears 
stronger. We will again come to this point later on. 
 Finally, it may be pointed out that the two derivations 
of the fundamental uncertainty relations (based on  
Fourier analysis and on the commutation relations)  
pertaining to the state preparations are equivalent as far 
as the relationship between two conjugate observables  
(dynamical variables) are concerned. But this is not so for 
time and energy, since most physical systems do not have 
a time operator. We discuss the formulation and interpre-
tation of the time–energy uncertainty relation in the  
following section. 

The time–energy uncertainty relation 

Since time at which the particle (system) has a given state 
is not an operator belonging to the particle, it is a parame-
ter describing the evolution of the system. The time–
energy uncertainty relation (TEUR), therefore, does not 
follow directly from the Robertson–Schrödinger inequal-
ity. However, using the classical analogy that no wave of 
finite duration can have a definite frequency, a formal 
deduction of TEUR follows from the time–frequency 
Fourier analysis. A relation involving the ‘external time’ 
may be interpreted in terms of the duration of a perturba-
tion or preparation process and the corresponding uncer-
tainty in energy of the state of the system developed. 

 At the same time it should be noted that besides the  
external coordinates of the space–time background, there 
may be internal temporal variables of clocks connected 
with a specific physical system, just like the internal spa-
tial variables – the position variables of the particles of 
the system2. These are characteristic, internal/intrinsic 
dynamical time variables which obey the equations of 
motion for the system. In general, the evolution of an obser-
vable of a system provides a definition for an internal 
time variable of the physical system and also an approach 
to formulate the time–energy uncertainty relation. 
 It is well known from the spectroscopic analysis that 
decaying excited states having a finite lifetime do not 
have a definite energy – fast-decaying states have broad, 
while slow-decaying states have narrow linewidths. As 
the linewidth broadens, the determination of the energy 
of a state becomes less accurate (note 7). Actually the 
atomic de-excitation experiments highlight a different 
type of TEUR for the ‘internal’ time variable. We shall 
discuss presently the formulation of the time–energy  
uncertainty, developed in 1945 by Mandelshtam and 
Tamm26. However, when Heisenberg declared that the 
TEUR is ‘a direct consequence of the familiar equations 
 
 Et – tE = –i or Jw − wJ = –i,  (6) 
 
where J is the action variable and w is the angle variable’, 
it creates much confusion than clarification. First, how 
familiar the given equations are and how one should in-
terpret them in view of the relational word ‘or’? Only in 
an early publication prior to Heisenberg’s paper, Dirac27 
arrived at a similar equation (the first one of the two) by 
turning the (external) time parameter t into an internal 
variable by the procedure described there. In the same 
paper by Heisenberg the subsequent comment, ‘As time 
can be treated as a parameter (or a c-number) when there 
are no time-dependent external forces’, made things 
worse since time-dependent forces did not enter in the 
discussion of eq. (6) either, and there, time was certainly 
not a c-number. It appears that Heisenberg’s view on time 
and specially the introduction of his ‘familiar’ equations 
are quite confusing. In fact, Heisenberg posited a time 
operator conjugate to the Hamiltonian without addressing 
Pauli’s theorem28, which inhibits the concept of a univer-
sal time operator valid for all systems. 
 From his analysis of the Stern–Gerlach experiment, 
Heisenberg finally arrived at the relation E1t1 ~ h, where 
E1 is the imprecision in the energy measurement by the 
apparatus and t1 the time during which the atom is under 
the influence of the deflecting field and concludes that a 
precise determination of energy can only be obtained at 
the cost of a corresponding uncertainty in the time. This 
leads to an early wrong interpretation which claims that 
measuring the energy of a quantum system to an accuracy 
requires an extended observational time interval. This 
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was ridiculed in Lev Landau’s joke: ‘To violate the time–
energy uncertainty relation all I have to do is measure the 
energy very precisely and then look at my watch!’3. 
Aharonov and Bohm29 have shown that the time in the 
uncertainty relation is the time-duration during which the 
system remains unperturbed and not the time during 
which the experimental equipment is turned on. The pre-
sent-day QM capitulates that all observables can be 
measured with arbitrary accuracy in an arbitrarily short 
(external) time and the energy is no exception to this30. It 
is quite evident that Heisenberg’s semi-classical argu-
ments and perceptions regarding TEUR are not quite part 
of the quantum mechanical description and when pushed 
too far, logical contradictions will appear. 
 Following Mandelshtam and Tamm26, we now trace the 
TEUR for an ‘internal’ time to the non-commutation of 
the Hamiltonian ˆ( )H  and an arbitrary quantum mechani-
cal observable, say Â  of any physical system. The pro-
duct of the standard deviations of Â  and Ĥ  is given 
according eq. (2) as 
 

 2 2 2
ˆ ˆ| [ , ] | ˆ ˆ, where ,
2A E E

A H H H   
        (7) 

 
together with the quantum mechanical equation of motion 
of Â  
 

 1d ˆ ˆ ˆ| [ , ] |,
d

A A H
t

      (8) 

 
we have 
 

 d ˆ /(2 ).
dA EA
t

      (9) 

 
Now, for a particular quantum mechanical state, the r.h.s. 
is fixed. So, for any arbitrary Â , the l.h.s. has a lower 
bound and the dimension of time. If we define the aver-
age time taken for the expectation value of some observ-
able Â  of the system to change by its standard deviation 
as a measure of the average lifetime of a state and denote 
it with , then we have a time–energy uncertainty-like 
relation of the form 
 

 ,
2E  
  (10) 

 
where E, the spread in the energy value, may be consid-
ered as the spectral linewidth of the state. 
 Thus the time–energy uncertainty relation may appear 
in two forms – one concerns the time of preparation of a 
given state and the other the lifetime of composite sys-
tems. Furthermore, Busch30 has classified a variety of 
valid measures for the ‘dynamical time’ and the related 
TEUR formulations and also described a formal represen-

tation of the ‘event time’ observables in terms of positive 
operator valued measures (POVM) (note 8; ref. 31) over 
the relevant time domain. A TEUR in this case, though 
not universally valid, holds good in specific cases of 
Hamiltonian and time domain. 
 In popular textbooks on QM, the TEUR is often inter-
preted to suggest a temporary violation of the conserva-
tion of energy with the implication that energy can be 
‘borrowed’ from the universe as long as it is ‘returned’ 
within a very short time. This is not a valid theoretical 
proposition and commenting on this Griffiths32 writes: 
‘Nowhere does quantum mechanics license violation of 
energy conservation, and certainly no such authorization 
entered into the derivation’ (of the TEUR). Clearly, this 
misconception is based on the false axiom that the energy 
of the universe is an exactly known parameter at all 
times. It is argued that when events transpire at shorter 
time intervals, there is a greater uncertainty in the energy 
of these events. Therefore it is not that the conservation 
of energy is violated when quantum field theory uses 
temporary electron–positron pairs in its calculations, but 
that the energy of quantum systems is not known with 
enough precision to limit various possibilities. 
 In the case of decay of an unstable subatomic particle, 
the intermediate state is represented by virtual particles. 
The Casimir effect is a manifestation of the reality of  
virtual particles. Time–energy uncertainty relation offers 
an understanding to the creation of virtual particles and 
the range of the exchange interactions mediated by them 
since the (virtual) particles involved are created and exist 
only for a brief while during the exchange process. 

Other measures of uncertainty – the entropic  
uncertainty relations 

The uncertainty relation, defined in terms of variances/ 
standard deviations of the corresponding conjugate dyna-
mical variables is meaningful only if both the standard 
deviations are finite. It can be shown that apart from the 
well-known Cauchy wavepackets, there are a number of 
other interesting statefunctions whose spatial standard 
deviations diverge. Also, there are states having large 
standard deviations of position, but are actually a super-
position of very narrow bumps. For such states, the mo-
mentum uncertainties may be much larger than those 
obtained from Robertson’s inequality. Again, if Â  and B̂  
are two observables of a finite n-level system, then A 
and B are always finite and vanish in eigenstates of Â  
and B̂  respectively. Therefore, no uncertainty relation of 
the form eq. (2) except the trivial one: AB  0, is possi-
ble at all. 
 In fact, the propriety of variance as a measure of uncer-
tainty is quite limited. Also, there is nothing special about 
the second moment, we could as well use the 2nth  
moment, where n is an integer. Then the error/uncertainty 
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in position q would be (q2n − q2n)1/2n. In fact, the  
‘kurtosis’ defined in terms of the fourth moment captures 
the ‘peakedness’ of a distribution. In harmonic analysis, 
as discussed earlier, it may be noted that Hardy has con-
sidered the rate of decay of a function at infinity as  
the natural measure of its concentration. Benedicks33, on 
the other hand, uses Lebesgue measure to define concen-
tration/localization in terms of smallness of support and 
showed that for a non-zero function, it is impossible for 
both the function and its Fourier transform to have finite 
Lebesgue measure. 
 While formulating the many-worlds interpretation of 
QM in 1957, Everett34 arrived at a new inequality based 
on information theory. He concluded that the new relation 
is stronger than the variance-based relation, since it  
implies the former but is not implied by the former. From 
the point of view of information theory, uncertainty is 
just the lack of information and can be measured in  
exactly the same manner as information is measured. As 
a measure of uncertainty – the deficiency in the informa-
tion or negative information, the information entropy is to 
be used with a reversal of sign. Following Everett34 and 
Hirschman35, the so called ‘entropic’ uncertainty relations 
have been proposed36–38 involving the Shannon entropy39 
as the measure of uncertainty, which is much closer to the 
spirit of quantum von Neumann entropy (note 9; ref. 40). 
 The Shannon entropy is a special class of family of 
Rényi entropies41 in the limit of order 1. For a general 
probability distribution P = (P1,..., Pi,..., PN), Pi  0, 
iPi = 1, on a set of N possible outcomes, the Shannon 
entropy is defined by the following formula closely  
resembling the definition of the physical entropy 
 
  = −iPi ln Pi. (11) 
 
With normalized Gaussian distribution, this entropy 
amounts to the variance (for a fixed variance the Gaus-
sian maximizes the entropy) producing the Shannon-type 
inequality for ‘entropic’ uncertainty relation. If the spatial 
standard deviation of a statefunction is infinite, then it is 
appropriate to take for the position and momentum uncer-
tainties, their respective information entropies and use the 
corresponding entropic uncertainty relation. In this alter-
native form of entropic uncertainty relation, the sum of 
entropies of the considered non-commuting observables 
is employed. 
 In a finite dimensional Hilbert space, applying this  
notion to the probability distributions of two physical  
observables Â  and B̂ , having complete sets of non-
degenerate (normalized) eigenfunctions |ais and |bjs  
respectively, in the state | , Deutsch37 has derived the 
relation 
 

 (A) + (B)  –2 ln 1 ,
2

c 
 
 

 (12) 

where (A) denotes the Shannon entropy of the probabil-
ity distribution of the outcomes of Â  measurement, etc. 
and c = maxi,j | ai|bj | denotes the overlap of these meas-
urements. Partovi38 soon generalized the relation to the 
case when the spectra of Â , B̂  have degeneracies which 
reduce to Deutsch’s inequality in the non-degenerate 
limit. 
 Following an idea for improvement from Kraus42, 
Maassen and Uffink43 have suggested a stronger inequa-
lity for any two observables with nondegenerate spectra 
in a finite-dimensional Hilbert space, in the form: 
 
 (A) + (B)  –2 ln c.  (13) 
 
Subsequently, Krishna and Parthasarathy44 have general-
ized the result of Maassen–Uffink for any pair of obser-
vables in a finite-dimensional Hilbert space, which 
reduces to eq. (13) when the observables have non-
degenerate spectra. It may be pointed out that the 
Krishna–Parthasarathy inequality is stronger than the  
Partovi bound. Maassen and Uffink have also studied and 
obtained a general set of inequalities and indicated exten-
sion of these relations for infinite dimensional Hilbert 
space. 
 The advantage of these relations over variance-based 
Robertson relation is that the right-hand side is always 
independent of the state |. Entropic uncertainty rela-
tions have attained increasing prominence in recent  
studies. The usefulness of various generalizations and  
extensions of the entropic uncertainty relations in quan-
tum theory, their direct connections to the observed phe-
nomena and some open problems are discussed in recent 
reviews45. In another interesting development, Berta et 
al.46 have shown that the lower bound on the uncertain-
ties of the measurement outcomes depends on the correla-
tions between the observed system and an observer who 
possesses a quantum memory (which can store informa-
tion about a quantum state better than any classical mem-
ory). Using a smoother version of the concept of min- and 
max-entropy (note 10), the authors have derived a lower 
bound on the uncertainties, which depends on the amount 
of entanglement between the particle and the quantum 
memory and discussed in detail the application of their 
result to witnessing entanglement and to quantum key 
distribution. The effectiveness of quantum memory in re-
ducing quantum uncertainty has been demonstrated in 
two recent experiments using pure47 and mixed48 entan-
gled states respectively. Pati et al.49 have subsequently 
derived an uncertainty relation by incorporating an addi-
tional term that depends on the quantum discord and the 
classical correlations of the joint state of the observed 
system and the quantum memory that tightens the lower 
bound of Berta’s relation. Recently, Pramanik et al.50 
have obtained further reduction to the uncertainty lower 
bound in the presence of quantum memory using the  
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fine-grained entropic uncertainty relation developed by 
Oppenheim and Wehner51 (the ‘fine-grained entropy’ 
takes into account all details of the probability distri-
bution, whereas the coarse-grained entropy is a smeared-
out averaged version over the entire phase space). In the 
process they have claimed to attain the ultimate or opti-
mal lower bound for the derived uncertainty relation, 
which is independent of the measurement settings. 
 We shall revert to the discussions of other important 
revelations by the entropic uncertainty relation in the 
subsequent sections. 

Origins of quantum uncertainty: how quantum 
are the uncertainty relations? 

It has already been pointed out that Heisenberg in his 
celebrated ‘1927 paper’ envisaged, though vaguely, three 
manifestations of the uncertainty relations. Whilst con-
ceptually distinct, these three kinds of uncertainty rela-
tions are now shown to be formally closely related. 
 The notion of uncertainty is inherent in classical wave 
mechanics. It is well known that, whereas a plane pro-
gressive wave spreads over the entire space, a localized 
wavepacket is spread out in momentum space. Similarly, 
to make a wave pulse shorter – limited in time, more and 
more frequency components are to be added implying an 
‘uncertainty’ in frequency of the pulse. It also appears in 
the signal processing, a generalization and refinement of 
Fourier analysis when the signal frequency characteristics 
vary with time. The basic result of this analysis, devel-
oped in concert with QM in the 1930s and 1940s and  
referred to as the Heisenberg–Gabor limit or simply the 
Gabor limit52, which limits the simultaneous time-
frequency resolution, is that a function cannot be both 
time-limited and band-limited. Waves and particles are 
clearly denizens of the classical world – two distinct cate-
gories of physical entities, having entirely different 
mathematical descriptions and there is no mix-up (note 
11; ref. 53). But in QM this basic difference in represen-
tations of physical entities disappears and the typical 
wave–particle duality sets in. The fundamental quantum 
mechanical uncertainty manifested by Robertson inequa-
lity is already shown to be derivable from both the non-
commutativity of conjugate observables and harmonic 
analysis. We have also noted earlier that this type of inde-
terminacy relations are expression of wave–particle dual-
ity inherent in all quantum systems as reiterated by Bohr. 
It is also pertinent to note that probabilistic theories with 
inherent degree of incompatibility (of two observables) 
greater than that of QM are possible. Based on a concept 
of a ‘global measure’, Busch et al.54 have introduced the 
idea of comparing probabilistic theories with respect to 
the non-classical feature of incompatibility. 
 The two measurement-related uncertainty relations, on 
the other hand, appear due to the operator formulation of 

the dynamical variables (observables) and serious  
attempts of a rigorous formulation of these relations are 
made only recently. First, we note that the quantum 
measurements are generically invasive and measuremen-
tal disturbance cannot be calculated accurately. But non-
invasive measurements are possible in classical mechan-
ics (CM) and even for invasive measurements, the meas-
uremental disturbance may be calculated and accounted 
for accurately (note 12). The putative uncertainty  
described in Heisenberg’s thought experiment, is one 
arising from the measuremental error and concomitant 
induced disturbance on the conjugate observable. 
 The original formulation of Robertson’s inequality im-
plies a limitation on the state preparation and prediction 
from the past. It refers to independent measurements of 
the observables Â  and B̂  on distinct but identically pre-
pared systems of an ensemble in a state represented by 
the density operator, say, ̂  and not to the limitations on 
measuremental observations as envisaged in type (ii) and 
(iii) uncertainties. An entropic formulation of the uncer-
tainty relations for the systematic error and disturbance of 
a quantum system incurred in sequential/successive 
measurements (type ii) was first introduced by Srinivas55. 
But finally, it was Ozawa, who took the initiative for a 
holistic approach to the problem for the derivation of an 
universally valid uncertainty relation by considering both 
the uncertainty due to the measurement disturbance and 
the uncertainty already accrued in a quantum state (dur-
ing the preparation) before the measurement. Starting 
with some reasonable definitions for the error A of a 
measurement on an observable Â  and the disturbance B 
on the observable B̂  caused by the measurement, 
Ozawa56 has ‘reconstructed’ a reciprocal relation between 
A and B in the spirit of Heisenberg’s error–disturbance 
relation given by 
 

 
ˆ ˆ| [ , ] | .
2A B

A B   
  (14) 

 
On the other hand, various aspects of the problem of joint 
measurement of two noncommuting observables were 
first elucidated by Arthurs and Kelly, and Arthurs and 
Goodman57. From a realistic theoretical model for approxi-
mate joint measurement of noncommuting observables Â  
and B̂ , the related uncertainty relation type (iii) may be 
written as 
 

 
ˆ ˆ| [ , ] | ,
2A B

A B   
  (15) 

 
under the joint unbiased measurement condition requiring 
that the experimental mean values of the outcome a of the 
Â -measurement and the outcome b of the B̂ -measure-

ment should coincide with the theoretical mean values of 
observables Â  and B̂  respectively, on any input state . 
Two noncommuting observables Â  and B̂  of a system 
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can be approximately measured on the system states  by 
the measurements of two commuting Hermitian operators 
(theoretical approximants) ̂  and ̂  on the extended 
Hilbert space of the system plus apparatus states. 
Ozawa56 has introduced a standard definition for the  
inaccuracies in an approximate joint measurement of Â  
and B̂  in terms of the statistical deviations 
 
 2 2 2 2ˆˆ ˆˆˆ ˆtr[ ( ) ]; tr[ ( ) ],A BA B          (16) 
 
where tr denotes the trace. 
 Ozawa has further pointed out a logical relationship 
between the noise–disturbance and the joint measurement 
inaccuracies. He argued that if in a sequential measure-
ments of two observables the measurement of Â  using 
any apparatus is immediately followed by a measurement 
of B̂  using a noiseless second measuring apparatus, the 
entire process is equivalent to an approximate joint meas-
urement of Â  and B̂  on the input state of the apparatus 
for Â -measurement. The noise/inaccuracy of B̂ -measure-
ment (approximate joint) is then equal to the disturbance 
caused by the measuring apparatus of Â  to the observ-
ables B̂  and we have the relation: B = B. Although 
there has been some initial apprehension regarding the 
experimental accessibility of these quantities, two inde-
pendent methods58,59 have nevertheless been proposed 
and implemented recently in several experimental works. 
 The naively taken noise–disturbance relation given by 
eq. (14) lacks a rigorous foundation and using the above 
definitions, Ozawa has concluded that the validity of this 
relation cannot be reduced to the uncertainty relation for 
joint measurements (eq. (15)). He has also discussed the 
criterion for the validity of this relation and observed that 
it fails to hold in general. This assertion has been vindi-
cated recently in a series of experimental works60–63 
which we will discuss in some detail in a following sec-
tion. Briefly, according to Ozawa, the common assertion 
that any measurement of an observable Â  with inaccu-
racy A must invariably lead to a minimum disturbance to 
the conjugate observable B̂  of the order consistent with 
eq. (14), is incorrect. Eventually, the recent experimental 
claims regarding the general failure of the naive error-
disturbance and error–error relations, have sparked a 
stimulating debate concerning the proper mathematical 
definition of ‘error’ and ‘disturbance’. Busch et al.64 in a 
recent communication have contradicted Ozawa’s conten-
tion and proposed a new definition for the error–
disturbance quantities. They have taken the maximized 
difference between the respective probability distribu-
tions before and after the measurement, over all localized 
states, as the measure for both error and disturbance to 
obtain the ‘Heisenberg-type inequality’ (eq. (14)). How-
ever, it may be noted that this inequality does not hold for 
any given state since the error and disturbance are  
defined for different localized states. These quantities  

appear to describe the noise and disturbing power of the 
measuring device, whereas eq. (16) (Ozawa’s definition) 
quantifies the error and disturbance in a measurement for 
the same quantum state. We shall return to this discussion 
presently. 
 Starting from Robertson’s relation and using a relevant 
triangle inequality, Ozawa finally developed, without  
imposing any constraint on the statefunctions, except for 
the positive metric Hilbert space with the natural commu-
tator algebra, a single general relation 
 

 
ˆ ˆ| [ , ] | ,
2A B A B A B

A B       
    (17) 

 
the so-called Ozawa’s measurement–disturbance relation 
(MDR) or the universally valid (error–disturbance) uncer-
tainty relation (UVUR). It may be noted that the intrinsic 
fluctuation, the unsharpness due to the measuremental  
errors and the concomitant induced disturbance of the 
conjugate observables are all, in the final expression,  
ultimately related to the noncommutativity of the corre-
sponding operators. 
 It should be noted that a relation similar but inequiva-
lent to Ozawa’s relation was derived subsequently by 
Hall65, which involves the standard deviations (SDs) of 
two commuting approximate observables rather than the 
SDs of the actual noncommuting observables and  
depends more on the particular choice of ̂  and ̂ . Very 
recently, inspired by the works of Ozawa and Hall, a 
stronger and tighter relationship for the error and distur-
bance as defined by Ozawa has been derived by Branci-
ard66. Acknowledging the importance and validity of 
Ozawa’s relation, Branciard has argued that it is not  
optimal because the three independent terms of this rela-
tion cannot be saturated simultaneously in general. The 
(sub)optimality of Ozawa’s relation is improved using a 
more general geometric inequality to provide a modified 
universally valid MDR. It has the property that it may be 
satisfied while the ‘Heisenberg-type’ expression is vio-
lated and also Ozawa’s relation follows directly from 
Branciard’s relation. However, Hall’s inequality, which 
involves more quantities, does not follow from Branci-
ard’s relation and on optimization can provide an even 
stronger relation. 
 In a subsequent development, Fujikawa67 has suggested 
to combine the Ozawa’s inequality (eq. (17)) with 
Robertson’s relation (eq. (2)) to exploit certain freedom 
in the identification with the form (eq. (14)) of the error–
disturbance uncertainty relation. The resulting inequality, 
may be written in a simple form with two factors on the 
left-hand side as 
 

 
ˆ ˆ| [ , ] |, where

and .
A B A A A

B B B

A B    
  

    
 

  (18) 
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It is claimed that this relation can be proved with the 
same mathematical rigour of Kennard–Robertson rela-
tions, without making the assumptions such as unbiased 
measurement, with a clear physical meanings for the two 
factors as the total error/inaccuracy in the measured  
values of the observable Â  and the resulting total distur-
bance in the conjugate observable B̂ . Fujikawa and  
co-workers68 have used the Heisenberg picture for the 
time development of quantum mechanical operators in 
incorporating the effects of the measurement interaction 
to show that all the measurement and disturbance rela-
tions are secondary consequences of Robertson’s relation. 
They have further demonstrated that the Arthurs–Kelly–
Goodman error–error or the naive error–disturbance rela-
tions can be obtained using the assumptions of unbiased 
measurement and unbiased disturbance. These simplified 
uncertainty relations are thus only conditionally valid. On 
the other hand, despite the claim of the vindication of 
‘Heisenberg-type inequalities’ by Busch et al., Ozawa has 
cited a class of solvable models which escape the Busch–
Lahti–Werner assertion. 
 Fujikawa et al. have also argued that the notion of pre-
cise measurement is incompatible with the unbiased 
measurement assumption. The unbiased measurement and 
disturbance lead to unbounded disturbance for bounded 
operators such as spin variables. On the other hand,  
increasing error does not always lead to decreasing dis-
turbance and vice versa in spin measurements. Such a re-
ciprocal behaviour occurs only in certain cases and along 
certain directions. Important practical issues appear in 
quantum estimation theory, high-precision measurements 
using quantum theory and exploiting quantum entangle-
ment (quantum metrology) and in quantum cryptography 
(to decide whether a communication channel has been 
‘sniffed’ or not), which are strictly adhered to the un-
biased measurement and disturbance assumption and use 
the error–disturbance relation. Ozawa’s and the recent 
experimental studies have raised the possibility of furtive 
quantum measurements, barely disturbing a system and 
also the question – how far is the quantum encryption 
really secure? All these works suggest that the mathe-
matical formulation, used to decide whether a quantum 
channel is secure or not, might have to be revised. 
 In this connection it may be mentioned that recently Li 
et al.69 have proposed a new scheme to express the uncer-
tainty principle in the form of inequality of the bipartite 
correlation functions for a given multipartite state,  
which provides an experimentally feasible and model-
independent way to verify various uncertainty and meas-
urement disturbance relations. 
 In view of the absence of a full-fledged theory of time 
measurements, it may be relevant to point out here that an 
appropriate time–energy UVUR is yet to be developed. 
Also, the usual entropic uncertainty relations describe  
informational contents and do not refer to the interaction 
of quantum measurements. They rather represent a  

generalization of Robertson’s relation (eq. (2)) for pro-
bability distributions for which the variance is an inade-
quate measure of uncertainty. Srinivas55 has initiated the 
formulation of a ‘different class of entropic uncertainty 
relation’ and derived an optimal bound on the uncertain-
ties when two or more observables are sequentially 
measured on the same system. This optimal bound is 
shown to be greater than or equal to the bounds on the 
uncertainties for the observables which are traditionally 
derived for the putative measurements on distinct but 
identically prepared systems of an ensemble. Finally, it 
would be interesting if the universally valid uncertainty 
relation of Ozawa (eq. (16)) also has an entropic counter-
part and promising research in this direction is in pro-
gress as evident from the recently archived preprints70,71. 

Classical and quantum uncertainty – correlation 
and entanglement 

Consequently, Luo72 has discussed the subtilities of the 
description of uncertainty and correlation of quantum 
mechanical mixed states and pointed out that even for 
those pure states, where the description of uncertainty in 
terms of variance may be adequate, two kinds of contri-
butions, one quantum and the other classical, appear 
when the states are mixed. It is, therefore, desirable to 
split the ‘fluctuation’ (variance) into two parts, one quan-
tum and the other classical. For a quantum state repre-
sented by the density operator  ̂ , the variance of an 
observable Â  in ̂  may be alternatively expressed as 
 
 2 2 2ˆ ˆˆ ˆtr (tr ) .A A A     
 
Lou has identified the Wigner–Yanase skew information 
(introduced by Wigner and Yanase73) to quantify the in-
formation content of an observable not commuting with 
Â  (conjugate or skew to Â ) in the state ̂ , defined by 
 

 
1
2 2

2
ˆˆtr[ , ] ,

2A
Aq 

   

 
where [,] represents the commutator bracket, as the appro-
priate measure of quantum uncertainty, which is identi-
cally zero in a state of classical mixture of eigenstates of 
Â  and the difference: 2 2 2 ,A A Ac q   gives the classical 
uncertainty which is zero for a pure state. 
 The author has also worked out a similar decomposi-
tion of the conventional covariance into quantum and 
classical parts leading to the corresponding new measures 
for quantum and classical uncertainties and correlations 
through a polarization procedure. He has finally derived 
‘a new uncertainty relation in purely quantum terms’ and 
quantified ‘nonlocal quantum correlation’ or entanglement 
to provide a new perspective for understanding uncer-
tainty, correlation and entanglement for mixed states. 
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 The notion of uncertainty is generally perceived as to 
express a limitation of operational possibilities in the 
quantum regime. However, its full content, as it continu-
ally emerging, both creates new insights for practical 
propositions and relates with other concepts of QM. The 
interconnections of the uncertainty relations with other 
quantum features such as entanglement, nonlocality, etc. 
have been revealed through a number of recent studies. In 
order to demonstrate the EPR correlations for dynamical 
variables having a continuous spectrum, Reid74 first pro-
posed an ‘eminently practical’ method by setting a crite-
rion – the violation of an inequality involving products of 
the inferred variances of noncommuting observables. 
 For states with positive Wigner function, measure-
ments on a pair of noncommuting continuous variables do 
not exhibit violation of a Bell-type inequality, since out-
comes of such measurements obey the predictions of a 
local hidden variable theory. While discussing the prob-
lem of detection of EPR correlations in these cases, Reid 
has derived an experimentally testable criterion in the 
form of an inequality – the above mentioned ‘inferred’ 
Heisenberg uncertainty relation. These EPR correlations 
are, therefore, manifested not by violations of Bell ine-
qualities, but by demonstrating a sufficient correlation 
between results of measurements performed at two spa-
tially separated locations, through the violation of ‘EPR 
inequalities’. In 1992, Ou et al.75 reported the first ex-
perimental demonstration of the violation of Reid’s ‘EPR 
inequality’, using the parametric oscillator method, sug-
gested by Reid and Drummond76. Subsequently, Zhang et 
al.77 detected EPR correlations between the intense out-
put fields of the parametric oscillator above threshold 
frequency. It is noteworthy that a violation of an inferred 
Heisenberg uncertainty relation for measurements in the 
context of EPR correlations was first predicted by Reid 
and was subsequently verified experimentally. 
 The steering interpretation of this type of work pro-
vides another window for exploration (note 13; refs 78 
and 79). Steering is a form of quantum nonlocality occu-
pying an intermediate position between Bell nonlocality 
and entanglement. Cavalcanti et al.80 have developed a 
more general ‘EPR-steering criterion’ which can rederive 
the previous ‘EPR criterion’, and studied its efficacy in 
detecting steering in some classes of quantum states. 
However, for arbitrary non-Gaussian states, the inequality 
based on variances (of noncommuting observables) is not 
very effective and one needs to use the ‘entropic steering 
inequality’ developed by Walborn et al.81. In terms of this 
general criterion, Chowdhury et al.82 have examined the 
steering property in several classes of important non-
Gaussian entangled states. 
 Oppenheim and Wehner51 have recently shown, using 
their ‘fine-grained entropy’, that the presence of uncer-
tainty via steering, directly limits the maximally achiev-
able nonlocality. They have shown that for bipartite 
systems with unbiased measurement settings, the link  

between uncertainty and nonlocality holds for all physical 
theories. The formalism developed with ‘fine-grained en-
tropy’ for bipartite systems and its subsequent extension 
to the case of tripartite systems83 can be used to discrimi-
nate on the basis of the strength of nonlocality among 
classical, quantum and ‘superquantum’ correlations. 
More recently, Dey et al.84 have shown that the fine-
grained entropic uncertainty relation is still able to distin-
guish classical, quantum and superquantum correlations 
(involving two or three parties), but for biased settings 
corresponding to certain ranges of the biasing parameters 
only. This study helps locate the region of advantage for 
different theories, to explore the extent of nonlocality that 
can be captured by regulating the bias parameters and the 
possibility of a generalization to multiparty nonlocal  
retrieval games. Moreover, the strength of nonlocality 
can, in turn, determine the strength of uncertainty in 
measurements. Hari Dass et al.85 have recently shown 
that entanglement puts a bound on the product of uncer-
tainties of non-commuting observables, for certain class 
of systems and states. A complementary result subse-
quently reported by Tomamichel and Hanggi86 claims 
that in order to achieve a certain nonlocality, at least 
some specific amount of uncertainty is necessary. 
 On the other hand, ‘separability’ of a given state as  
an alternative to the criterion for entanglement is also 
found to be expressible in terms of uncertainty relations. 
Separability is the property that distinguishes statistical 
ensembles having a classical description from those that 
need a quantum description. Formulations of ‘separability 
criteria’ with both the variance-based87 and entropy-
based88 uncertainty are available in the literature. 
 It is already pointed out that in quantum interference 
experiments, the mutual exclusiveness of the two com-
plementary properties, the precise which-state informa-
tion and the appearance of sharp interference pattern, is 
enforced by the entanglement of the interfering statefunc-
tion branches with orthogonal detector states. Any tenta-
tive explanation using uncertainty relations provides only 
naive semi-classical arguments. Nevertheless, it appears 
that though ‘uncertainty’ and ‘complementarity’ are two 
independent notions, in some cases they are inextricably 
related. 

Real experiments corroborating and confronting 
the uncertainty relation 

The first high-precision experimental test for the uncer-
tainty relations came about only in 1969 from Shull’s89 
single-slit neutron diffraction experiment. Later in the 
1980s followed the neutron interferometric experiments 
by Kaiser et al.90 and Klein et al.91. More recently, in 
2002, Nairz et al.92 have reported a demonstration of  
uncertainty relation by measuring the increase in momen-
tum spread of the molecular beam of fullerene (C70) 
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molecules after passage through a narrow slit with a  
variable width. 
 In these diffraction and interferometric experiments, 
typical measures used for the width of the spatial state-
function are the slit width and slit separation respectively, 
to confirm the familiar version of uncertainty relations 
(the variance based state preparation relations). The 
mathematical modelling of these experiments make use 
of a Gaussian approximation for the central peak and re-
lating the half widths to standard deviations, the authors 
confirm the correct lower bound for the uncertainty pro-
duct. Here, the momentum uncertainty is inferred semi-
classically from the measured position distribution of the 
particles at the detection screen using far-field approxi-
mation. With this observation, Busch et al.17 have pointed 
out that these analyses of the experimental data do not 
provide model-independent, direct confirmation of the 
uncertainty relation and discussed its possible model-
independent validation. 
 The reports on experimental verification of measure-
ment–disturbance uncertainty relations have started  
appearing in the literature only recently. The neutron-
optical experiment by Erhart et al.60 records the error of a 
spin component measurement as well as the disturbance 
caused on another spin component. It is claimed that their 
experimental results demonstrated the varied quantum 
uncertainty sources and even when either the source of 
error or disturbance is held to nearly zero, the other re-
mains finite. Both the error and disturbance obey the new 
measurement–disturbance relation56, derived using the 
theory of general quantum measurements, but violate  
putative Heisenberg’s error-disturbance relation (eq. 
(14)), valid only under specific circumstances, in a wide 
range of an experimental parameter. This is the first  
experiment which distinguishes different sources of quan-
tum uncertainty and there has been some discussion on 
the significance of this experiment. 
 However, Rozema et al.61 have pointed out that, rather 
than directly characterizing the effects of an individual 
measurement, this work checked the consistency of 
Ozawa’s theory by carrying out a set of measurements 
from which the disturbance could be inferred through  
tomographic means. In contrast, following Lund and 
Wiseman’s59 proposal of using weak measurement (note 
14; refs 93 and 94) to experimentally characterize a system 
before and after it interacts with a measurement appara-
tus, they claimed to have directly measured its precision 
and the disturbance. From the experimental result they 
have also contended that while Ozawa’s MDR formula-
tion remains valid for all the experimentally tested para-
meters, the simplistic error–disturbance relation (eq. (14)) 
always falls below the experimentally measured bound. It 
is finally concluded that, ‘although correct for uncertain-
ties in states, the form of Heisenberg’s precision limit  
is incorrect if naively applied to measurement’ and that 
the experiment ‘highlights an important fundamental  

difference between uncertainties in states and the limita-
tions of measurement in quantum mechanics’. 
 Of the two independent methods, used so far to test the 
validity of different error–disturbance uncertainty rela-
tions experimentally, the three-state method58 requires the 
preparation of multiple input states and is simpler to  
implement for a single qubit systems60,62,95,96. The weak-
measurement method59, on the other hand, more closely 
resembles the classical approach for measuring errors and 
is more feasible in general cases61,97. Ringbauer et al.63 
have observed that both methods were defined under 
ideal conditions which are unattainable in practice and 
extended the respective estimation procedures to account 
for experimental imperfections. They have tested Branci-
ard’s new relations by performing approximate joint 
measurements of incompatible polarization observables 
on single photons using both the three-state and the 
weak-measurement method. Their results show that while 
Ozawa’s relation (eq. (17)) is universally valid and  
indeed satisfied by their data (but not saturated, as it is 
not tight), the relations, eqs (14) and (15) (Arthurs–
Kelly–Goodman) are only conditionally valid under some 
restrictive assumptions. 
 The time–energy uncertainty relation, on the other 
hand, has been verified in various atomic, nuclear and 
particle decay experiments. In these experiments, the 
‘uncertainty’ in time should be interpreted as the duration 
of the state since its creation. If the state is unstable with 
lifetime , then as the external time t  , the uncer-
tainty in the frequency can be expected to settle to its 
‘natural’ value of /. This was observed by Wu et al.98 
and others utilizing the Mössbauer effect in -rays. Time 
indeterminacy was also demonstrated in quantum beats 
experiment in neutron interferometry by Badurek et al.99. 

Popper’s criticisms 

We conclude this critique with a brief discussion of  
Popper’s experimental proposal aimed at falsifying  
uncertainty relations which generated a great deal of  
interest and controversy. In his original proposal of 1934,  
Popper100 conceived a joint measurement scheme on  
entangled particle pairs to test indeterminacy in QM, 
which he referred to as ‘statistical scatter relations’ and 
disagreed with its application to individual systems. 
However, following some crucial objections from von 
Weizsäcker and Einstein, Popper accepted their criticisms 
and withdrew the proposition. Later, he suggested (foot-
note on p. 15 of Popper101) that his example may never-
theless have inspired to conceive the famous EPR thought 
experiment and subsequently he returned to the subject 
with new arguments, which was finally published in 1982 
(ref. 101). In the new version, entangled pair of quantum 
particles is emitted in opposite directions from a source to 
pass through slits on either side, one narrow and the other 
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wider. While predicting diffraction patterns of appropriate 
slit width on each side, Popper argued that according to 
the Copenhagen interpretation it should be, on the contrary, 
same diffraction pattern by the particles on either side. 
 Initially, Popper’s proposed experiment was considered 
by many as a crucial test of QM, although some crucial 
flaws in the proposal were subsequently pointed out by 
Sudbery102, Collet and Loudon103 and Redhead104, after 
scrutinizing the prospect of an actual realization of the 
experiment. Sudbery has pointed out that while the  
momentum spread being infinite for a perfectly correlated 
state, no further spread would be produced by localizing 
one particle of the correlated pair(s). Collet and Loudon 
argued that for the particle pairs originating from the 
source with zero total momentum, the blurring introduced 
by the uncertainty in the position of the source would 
wash out the Popper effect. From an analysis of Popper’s 
experiment with a broad source Redhead, on the other 
hand, concluded that it could not yield the effect that 
Popper was seeking. 
 Circumventing the objections of Collet and Loudon 
through innovative arrangements, Popper’s experiment 
was realized in 1999 by Kim and Shih105 using a sponta-
neous parametric down-conversion (SPDC) photon 
source. They did not observe an extra spread in the  
momentum of particle 2 due to particle 1 passing through 
a narrow slit. In fact, the observed momentum spread was 
narrower than that contained in the original beam. This 
observation seemed to imply that Popper was right. How-
ever, Kim and Shih asserted that this result does not con-
stitute a violation of the uncertainty principle and 
observed ‘Popper and EPR were correct in the prediction 
of the physical outcomes of their experiments. However, 
Popper and EPR made the same error by applying the  
results of two-particle physics to the explanation of the 
behavior of an individual particle. The two-particle  
entangled state is not the state of two individual particles. 
Our experimental result is emphatically NOT a violation 
of the uncertainty principle which governs the behavior 
of an individual quantum’. 
 Contrary to this assertion, from a theoretical analysis 
of this experiment using the path-integral formulation, 
Sancho106 found a similar narrowing in the momentum 
spread of particle 2, as was observed by Kim and Shih. 
Clearly, this calculation indicated that the experimental 
result of Kim–Shih is in agreement with the quantum  
mechanical prediction. On the other hand, Short107 argued 
that the experimental outcome in this case is a conse-
quence of the imperfect imaging process which leads to 
image blurring and there is indeed no violation of the un-
certainty relation. 
 Recently, Qureshi108 has analysed Popper’s proposal 
and showed that the mere presence of slit A in the path of 
particle 1 does not lead to a reduction of the statefunction 
and any spread in the momentum of particle 2, even if the 
source is improved to give a better correlation. For if 

such an experiment could increase the momentum spread 
of that present in the initial state, it would lead to the pos-
sibility of faster than light communication109. Comment-
ing on the outcome of Kim and Shih experiment, Qureshi 
maintained that: ‘Popper may have been right in saying 
that there would be no spread, but for the wrong reasons’ 
and asserted that Popper’s prediction could easily have 
been tested in this experiment by gradually narrowing slit 
A, and observing the corresponding diffraction pattern 
behind slit B. Using the formalism of QM, Krips110 has 
predicted that narrowing slit A would lead to momentum 
spread increasing at slit B. Qureshi has further pointed 
that this effect has actually been demonstrated experi-
mentally in the so-called two-particle ghost diffraction 
experiment111. This experiment was not carried out with 
the purpose of testing Popper’s ideas, but ended up giving 
a conclusive result about Popper’s test. In this experi-
ment, two entangled photons travel in different direc-
tions. Photon 1 goes through a slit, but there is no slit in 
the path of photon 2. However, photon 2, if detected in 
coincidence with a fixed detector behind the slit detecting 
photon 1, shows a diffraction pattern. The width of the 
diffraction pattern for photon 2 increases when the slit in 
the path of photon 1 is narrowed. Thus, increase in the 
precision of knowledge about photon 2, by detecting pho-
ton 1 behind the slit, leads to increase in the scatter of 
photon 2. In both the experiments of Kim and Shih, and 
Strekalov et al., formalism of QM has been vindicated 
against the challenge posed by Popper’s proposal. 
 One may argue here that Popper’s original contention 
regarding the violation of the uncertainty relation using 
an entangled pair has ultimately been vindicated in the 
recent experiments47,48 showing the reduction of uncer-
tainty in the presence of quantum memory (aside from the 
violation of an ‘inferred’ Heisenberg-like uncertainty re-
lation in the demonstration of EPR correlations75,77 or as 
in the case of observed violations60,61 of the naively-taken 
Heisenberg-like uncertainty relation). In spite of some 
basic flaws102–104 in the original analysis, Popper’s intui-
tive recognition of the problem shows great insight. 
However, it should be pointed out in the same breath that 
his challenge to the foundation of QM has turned out to 
be misplaced.  
 A further interesting recent claim may be noted in this 
context. Using the results of Oppenheim and Wehner51, 
Hanggi and Wehner112 have argued in a recent work that 
violation of quantum mechanical uncertainty relation(s) 
leads to a thermodynamic cycle (quantum) with positive 
net work gain, meaning a breakdown of the second law of 
thermodynamics and is very unlikely. 
 
 

Notes 

 1. In popular scientific literature the term Heisenberg’s Uncertainty 
Principle (HUP) is most common. However, Heisenberg never 
seems to have endorsed the term ‘principle’ and presented the  
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relations as the result of a ‘pure fact of experience’. His favourite 
terminology was ‘inaccuracy relations’ (Ungenauigkeitsrela-
tionen) or ‘indeterminacy relations’ (Unbestimmtheitsrelationen). 

 2. A state that only exists for a short time cannot have a definite  
energy. In order to have a definite energy, the frequency of the state 
must be defined accurately, and this requires the state to hang 
around for many cycles, the reciprocal of the required accuracy3. 

 3. ‘While position operators are commonplace, no time operators 
occur in ordinary quantum mechanics (QM). In view of relativity 
theory this seems problematic. Most present-day textbooks em-
phasize that space and time play fundamentally different roles in 
quantum mechanics. ... time poses no fundamental problem for 
quantum mechanics. If by space and time one understands the co-
ordinates of a given space and time background, none of these 
coordinates are operators in quantum mechanics. If, on the other 
hand, one thinks of position and time as dynamical variables 
(obeying equations of motion) of a specific physical system situ-
ated in space–time, the representation of such variables by quan-
tum mechanical operators is possible’2. 

 4. Variance or standard deviation (the positive square root of vari-
ance) provides a simple measure of the fluctuation/spread around 
the mean value for many distributions. 

 5. For two random variables one can define three second moments: 
the variances of each observable and their covariance. In Ken-
nard’s/Robertson’s relation only the two variances are involved. 

 6. Although interpretations of QM, in which each system has a defi-
nite value for its position and momentum are still viable, this is 
not to say that they are without strange features of their own and 
they do not imply a return to classical physics. 

 7. The same linewidth effect also makes it difficult to measure the 
rest mass of fast decaying particles in particle physics. The faster 
the particle decays, the less certain is its mass. 

 8. In situations where the outcomes are non-discrete and the meas-
urements determine probability measures on a non-discrete  
outcome space, the associated operators have a general represen-
tation in positive operator valued measures (POVMs) – an ele-
ment of which can be defined using the so-called Kraus 
operator31. POVMs may be seen as a completion of the notion of 
observable within the Hilbert space framework of QM when in-
cluded with the traditional concept of observables in the form of 
projection valued measures (PVMs). A projective measurement 
on a large system acts on the subsystems in ways that cannot be 
described by a projective measurement on the subsystem alone. 
POVMs are recognized to provide appropriate description of the 
effects on the subsystems produced by a projective measurement 
on the whole system. Here, a rough analogy may be drawn with 
the role of density matrices in the description of part of a larger 
system which is in a pure state. 

 9. In quantum statistical mechanics, von Neumann entropy40 is the 
extension of classical entropy concepts to the field of QM. For a 
quantum-mechanical system described by a density matrix , the 
von Neumann entropy is  = –tr( ln ), where tr denotes the trace. 
If  is written in terms of the eigenvectors |1, ...|i, ... etc. as 
 = ii |i i|, then the von Neumann entropy is  = −ii ln i. 
In this form,  can be seen to be related to the Shannon entropy 
. 

10. The name min/max-entropy stems from the fact that they are the 
smallest and largest entropy measures in the family of Rényi en-
tropies (of order  ) respectively. In this sense, the min-entropy 
is the strongest way to measure the information content of a dis-
crete random variable. In particular, the min-entropy is never lar-
ger than the Shannon entropy. According to the information-
theoretic interpretation, the min-entropy represents the maximum 
achievable quantum correlation and the max-entropy gives the 
decoupling accuracy. 

11. In classical wave propagation, Fourier analysis reveals uncer-
tainty relations in the form of a reciprocal relationship between 

the widths of the spatial/temporal wave pattern and the wave 
number/frequency distributions. On the other hand, in classical 
statistical physics, relations akin to the quantum uncertainty rela-
tions in terms of the product of the root mean square (rms) fluc-
tuations of a thermodynamic extensive variable with its conjugate 
intensive variable, representing stability equations of equilibrium 
thermodynamics, may be obtained53. These statistical relations as 
derived from the distribution functions, however, differ by a  
factor of 1/2 from the quantum uncertainty relations which are  
derived from the probability amplitudes (statefunctions). 

12. For example, one can measure velocity in classical mechanics 
(CM) by stopping the body and measuring the work done in the 
process. 

13. The term steering was introduced by Schrödinger78 in 1935 for 
the fact that entanglement would seem to allow an experimenter 
to remotely steer the state of a distant system as in the Einstein–
Podolsky–Rosen (EPR) argument. Einstein called this ‘spooky  
action at a distance’. Steering has recently been rigorously formu-
lated as a quantum information task, opening up to new experi-
mental tests79. 

14. Weak measurement is a technique to measure the average value 
of a quantum observable Â  without appreciably affecting the 
state of the system being measured93,94. Weak measurements dif-
fer from normal (strong or ‘von Neumann’) measurements in two 
ways. A strong measurement of an observable Â  of a quantum 
system in an arbitrary state S yields an eigenvalue of Â . If the 
measurement is repeated many times (starting each time with the 
system in state S), one obtains a sequence of eigenvalues of the 
observable. The different eigenvalues appear with probabilities 
determined by the state S and the average of a large number of  
repeated measurement gives the expectation value Â   of the  
observable in the state S. In a strong measurement, the initial pure 
state S is also changed/projected to an eigenstate of Â , i.e. the 
measured state is substantially changed unless it happened to be 
close to that eigenstate. By contrast, a weak measurement only 
yields a sequence of numbers which average to Â  . For example, 
a strong measurement of the spin of a spin-1/2 particle must yield 
spin 1/2 or –1/2, but a particular weak measurement could yield 
spin 100 (ref. 93), while a subsequent weak measurement value 
on an identical system might be –28. Therefore, a single weak 
measurement gives no information, except yielding correct expec-
tation value. A weak measurement, as mentioned above, does not 
substantially change the initial state. 
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