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Risk of possible damage to important hydraulic struc-
tures needs to be kept at the minimum by suitably 
modelling environmental parameters like rainfall for 
extreme values of desired return period. Efficient  
estimation of such meteorological extremes depends 
on the historical records available at the site of inter-
est. Each of the sampled data is essentially a signal 
from the natural system and in any statistical analysis  
uncertainty about the underlying phenomenon gets  
reduced with increase in the record length. In this  
article, the effect of record length on the extreme value 
estimates of daily rainfall at Colaba and Santacruz  
using theoretically appropriate generalized extreme 
value (GEV) model has been analysed. The study indi-
cates that estimates for different return periods get 
stabilized with the increase in the length of record. 
Data analysis-based recent past records at Colaba give 
comparatively higher estimates which can possibly be  
attributed to increased variation and observance of 
more number of extreme events during the recent 
past. The heavy rainfall of 944.2 mm recorded at  
Santacruz on 26 July 2005 has shown an extraordi-
nary effect on extreme value estimates. A possibility of 
temporal dependence in the series requires further 
studies by parameterization of trend in the GEV 
model. 
 
Keywords: Extreme precipitation analysis, generalized 
extreme value model, hydraulic structures, return level, 
return period. 
 
RISK analysis is essential while deciding whether a  
hydraulic project should be allowed to go forward in a 
zone of certain risk, for selection of a site or to design 
important civil structures to withstand meteorological  
extremities that are likely to occur during the lifetime of 
the structures. As such, estimation of extreme values of 
meteorological parameters such as rainfall intensity/ 
quantum, maximum/minimum temperature, wind speed, 
mean sea-level pressure during cyclonic storms, etc. is an 
important aspect for protection of structures against natural 
disasters. 
 The meteorological parameters required to be used as 
the basis for design should have a very low exceedance 
probability of occurrence during the lifetime of the facility. 

This is generally achieved by carrying out extreme value 
analysis (EVA) of recorded meteorological data to arrive 
at design basis values according to the requirement. The 
motivation for analysing extremes is often to find an  
optimum balance between adopting high safety standards 
that are costly on the one hand, and preventing major dam-
age to equipment and structures from extreme events that is 
likely to occur during the useful life of such infrastructure, 
on the other hand. A relation between the magnitude, de-
sign period in years and the probability of not exceeding 
that magnitude in the design period was derived by Riggs. 
 The information on extreme rainfall forms an impor-
tant input to other hydrological processes that need to be 
critically examined for maximum water level at a pro-
posed site due to extreme floods. Confidence levels of the 
statistically derived value depend on the size of the data 
as well as the data scatter with respect to fitted probabi-
lity distribution function. For generating the design basis 
value of the parameter for a specified degree of risk to the 
structure involved, one can prescribe a mean recurrence 
interval (MRI) which is the mean time between the occur-
rences of two events that are equal or greater than a given 
magnitude1. For example, the Atomic Energy Regulatory 
Board (AERB) has prescribed a MRI of 1000 years for 
the design parameter maximum daily rainfall and of 
10,000 years for extreme wind. Sea dams in the Nether-
lands are dimensioned for the one in 10,000 year event. It 
is important to remember that the uncertainty in the pro-
jected extreme events will increase as the return period 
approaches the length of the data available and increases 
still further as the return period exceeds the length of the 
data series2. 
 The standard practice in assessing current meteorological 
conditions at any location is to use historic records repre-
sentative of the point of interest to calculate extreme 
value statistics. The purpose of this article is to present 
the effect of length of recorded data on the estimates of 
extreme values and also to discuss the impact of recent 
events with increased variability that have been observed 
during the last couple of decades. 

Aims and objectives 

A general rule in any statistical analysis is that the uncer-
tainty about a system gets reduced with more observa-
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tions recorded from the system. That is, with the increase 
in the record length, we will get closer to the true value 
of the population parameter, which is unknown. Thus, the 
size of the available historical database plays a vital role 
in the analysis of hydro-meteorological extremes. For a 
better reliability of estimates in EVA, the amount of data 
needed should be commensurate with the need of a MRI 
for which the estimates are required. Normally, for a few 
hundreds of years of MRI, a minimum of 30 years data 
should be used. For higher MRIs, database of around 100 
years is ideal. However, as such extensive database is 
normally not available, even 50 years database, if avail-
able, can be used for 1000 years MRI1. 
 Papalexiou and Koutsoyiannis3 analysed the annual 
maximum daily rainfall of 15,137 records from all over 
the world, with lengths varying from 40 to 163 years, by 
fitting generalized extreme value (GEV) distribution. The 
analysis reveals that the record length strongly affects  
the estimation of GEV shape parameter and long records 
are needed for reliable estimates. Therefore, for assessing 
the effect of record length on the extreme value estimates, 
historical database has been divided into subgroups of 
different sizes and its impact on efficiency of estimates is 
assessed in this article. Nowadays, there is concern about 
global warming, related climate change and its overall 
impact on hydro-meteorological parameters. With climate 
change it is likely that there will be change in some ex-
tremes that lie outside the envelope of constant variability 
assumed under stationary climate conditions. It is possi-
ble to account for this ‘non-stationarity’, but the best way 
to do so is still under debate4. A general observation is 
that during the last couple of decades, there has been an 
increase in the variation of hydro-meteorological para-
meters such as temperature, rainfall, streamflow, etc. His-
torical data are therefore analysed by separating out the 
events that occurred during the recent past and their  
effect on extreme value estimates are studied. The projec-
tion of extreme values of environmental parameters likely 
to be encountered in the future using historically obser-
ved data has been carried out using statistical frequency 
analysis and extreme value theory (EVT), which is dis-
cussed below. 

Material and methods 

Extreme value theory and the GEV model 

There is a long tradition of applying the statistics of  
extremes to weather and climate, starting at least as early 
as Gumbel in 1942. The objective of EVA is to model the 
observed data extremes and hence to allow generalization 
about the likely recurrence of these events. EVT can be 
traced back to the pioneering work of Fisher and Tippet 
in 1928, wherein the limits for the distributions of maxima 
of samples of independent and identically distributed (iid) 

random variables were shown to converge to one of three 
forms of extreme value distributions, called types I, II 
and III, when the number of selected extreme values is 
large. 
 Suppose one has a sample X1, X2, …, Xn of iid random 
variables from an unknown distribution function F. The 
main objective of EVT is to try to model the tail of F. 
Theoretically, if the distribution of daily rainfall is known 
or justifiably assumed, then one could argue, based on 
EVT, that the distribution of the annual maxima of daily 
rainfall would resemble one of the three limiting types: 
(a) type I known as Gumbel; (b) type II known as Fré-
chet, and (c) type III known as reversed Weibull. The 
three extremal distributions describe different limiting 
behaviours in the tail of the distribution. Moreover, the 
three types of distribution can be combined into one  
parametric family: the GEV family of distributions. The 
cumulative distribution function of the GEV distribution 
is given by: 
 
 

1/(1 ( ) / )( ) e ,xF x
       

 
for all x such that 1 +  (x – /) > 0, where  is a shape 
parameter,  > 0 is a scale parameter and  is a location 
parameter. The shape parameter controls the tail beha-
viour of the probability distribution. To fit the appropri-
ate function to the tail of the distribution, one has then to 
decide on the shape and on the appropriate location and 
scaling constants. 
 The three parameters of the GEV distribution may be 
estimated from a sample data by a variety of techniques. 
Once the GEV parameters have been determined, the  
return level for a given return period, T, can be readily 
calculated. In the current context, the return level can be 
thought of as that value of daily rainfall that can be  
expected to be realized on an average every T years over 
a long period of time in a stationary climate. Alterna-
tively, the return level is expected to occur in any single 
year with a probability of 1/T. Formally, the cumulative 
probability of non-exceedence is given by  
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Solving for xT using the definition of the GEV distribu-
tion yields: 
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Basic assumptions that should be evaluated prior to  
performing the EVA are: the data are independent and 
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identically distributed random events; they are from the 
sample population; they are assumed to be representative 
of the population and the process generating these events 
is stationary with respect to time. The validity of these 
four assumptions can be evaluated using well-known  
statistical tests. 

Reliability of the return period rainfall and issues  
related to data 

The return period T is best thought of as the inverse of a 
probability, e.g. the rainfall corresponding to T = 50 has a 
probability of 0.02 of being exceeded each year. Risk can 
also be expressed in terms of return period rainfall. The 
rainfall corresponding to T = 238 years has a probability 
of 0.9 of not being exceeded during the next 25 years, i.e. 
the risk r is 0.1 (ref. 5). Assuming that the annual 
maxima are statistically independent and are drawn from 
the same distribution 
 

 1/
1 ,

1 (1 ) nT
r


 

 

 
where the design horizon is n years and the risk is r. 
 The studies carried out by Fitzgerald et al.6 on point 
rainfall frequencies in Ireland showed that accepting the 
current consensus on the high likelihood of changes in 
the precipitation climate, there seems to be little sense in 
estimating 500-year return period rainfall. In fact, the 
above equation indicates that estimating a 10% risk for a 
time horizon of 50 years requires a return period rainfall 
for 475 years. 
 For statistical reasons, a valid analysis of extremes in 
the tails of the distribution requires long time series to 
obtain reasonable estimates of intensity and frequency of 
rare events. As noted in IPCC7, in many regions of the 
world it is not yet possible to make firm assessments of 
how global warming has affected extremes due to lack of 
high-quality daily observation records covering multiple 
decades. As a result, far less is known about past changes 
in extremes than past changes in mean climate. Even 
where the necessary data are available, systematic 
changes in extremes may be difficult to detect locally if 
there is a large amount of natural inter-annual variability 
in extremes4. 
 In many daily resolution climatic time series, a number 
of observation days are missing. A particular concern  
regarding missing observation days in the case of an  
extreme analysis is that an extreme event might have 
been responsible for the failure of the observing system 
and thus the fact that the observation for that day is miss-
ing; such ‘censoring’ of extremes would result in nega-
tively biased estimates of the intensity of rare events4. 
Similarly, extreme events are often localized and so some 
could be missed by the rain gauge network. Great care 

must be taken in determining whether identified outliers 
are truly erroneous because their inclusion, adjustment or 
exclusion can profoundly affect subsequent extremes 
analyses. 
 Usually the daily rainfall totals are measured for discrete, 
fixed, 24 h duration, 0830–0830 h, at ordinary rain gauge 
(ORG) stations, whereas automatic rain gauge (ARG)  
station have a facility of measuring rainfall depths on a 
sliding duration. Generally, rainfall depths measured on 
sliding duration are a more realistic measure of 1-day 
rainfall than that based on discrete, fixed, 24 h duration. 

Study area 

For critically analysing the effect of size of the sample on 
the estimates of extreme events, particularly on the effi-
ciency of higher-order return-level estimates, daily rain-
fall recorded at Colaba (1901–2004) and Santacruz 
(1950–2005) meteorological stations of India Meteoro-
logical Department (IMD) has been used. Colaba mete-
orological station is located in the southern part of 
Mumbai city, while Santacruz station is located in subur-
ban Mumbai. Mumbai Metropolitan Region falls in the 
west coast of India between 1852N and 1910N lat. and 
7248E and 7258E long. Over 95% of monsoon rainfall 
occurs primarily during June–October, 70% of the aver-
age annual rainfall occurs in July and August and 50% of 
this occurs in just two or three events8. On 26 July 2005, 
the region received heavy rainfall totalling 944.2 mm in a 
period of 24 h, as recorded at the Santacruz station. The 
Probable Maximum Precipitation (PMP) Atlas for India 
published by the Indian Institute of Tropical Meteorology 
(IITM)9 gives a PMP estimate of 700 mm for the Mumbai 
region, indicating that the July 2005 rainfall event was 
extraordinarily high that has resulted in catastrophic 
flooding10. It is therefore interesting to see the effect of 
such extraordinarily high events in EVA analysis. 

Results and discussion 

Data analysis has been carried out using software pack-
ages available in the free, open-source statistical software 
language and environment called R11, as the academic 
recognition for R packages is increasing. 
 In EVA, we try to estimate T-year design value of  
hydro-meteorological parameters where T is usually very 
high, say, 100 or 1000 years based on n years available 
historical record. Whereas, practically the available size 
of the sample is usually very small, say, of the order of 
30 or 50 years. Availability of enough data for carrying 
out EVA is a concern in hydro-meteorological studies. In 
fact, what is the requisite size of sample for estimating 
higher-order return levels with MRI 1000 or 10,000 years 
is unknown. Practically, once the distribution is fitted to 
available data, EVT allows us to compute return level for
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Table 1. Testing randomness, independence and stationarity of data series on annual maximum daily rainfall using Wald–Wolfowitz run test at  
 5% significance level 

  Station 
 

 Colaba  Santacruz 
 

 1901– 1901– 1901– 1901– 1901– 1901– 1901– 1936– 1971– 1901– 1951– 1950– 1950– 
Data series 1920 1935 1950 1970 1990 2004 1935 1970 2004 1950 2000 2004 2005 
 

Test statistic  –0.230  –2.399  –2.572  –0.963  –0.424  –1.182  –2.399  1.035  0.000  –2.572  1.143  –1.495  –1.888  
P value  0.82  0.02  0.01  0.34  0.67  0.24  0.02  0.30  1.00  0.01  0.25  0.14  0.06 

 
any order of MRI, but with what efficiency is the real 
matter of concern. As soon as the size of the sample  
increases, the uncertainty about the underlying system  
decreases and the estimates of design storms for di fferent 
MRIs actually get converged to true but unknown values. 
 The size of the available historical data is important in 
estimating return levels of higher periods using the analy-
sis of annual extreme events by statistical frequency 
method. This has an effect on the efficiency of the esti-
mates of model parameters and hence on the estimated  
return levels. For assessing the effect of size of the sam-
ple in the analysis of annual extremes, historical data 
have been divided into different subgroups as given  
below. EVA for different return periods T = 2, 5, 10, 50, 
100, 200, 500 and 1000 years has been carried out and the 
results are discussed below. 
 
Case-1: Colaba 1901–1920 (n = 20), 1901–1935 (n = 35), 
1901–1950 (n = 50), 1901–1970 (n = 70), 1901–1990 
(n = 90) and 1901–2004 (n = 104). 
Case-2: Colaba 1901–1935 (n = 35), 1936–1970 (n = 35) 
and 1971–2004 (n = 34). 
Case-3: Colaba 1901–1950 (n = 50 years) and 1951–2000 
(n = 50). 
Case-4: Santacruz 1950–2004 (n = 55) and 1950–2005 
(n = 56). 
 
The statistical assumption of randomness, independence 
and stationarity of data series in respect of all the above 
cases have been tested using Wald–Wolfowitz (1943) run 
tests. The test results are given in Table 1. For Colaba 
station, it can be seen that there is evidence against  
randomness in series based on the first half of the 20th 
century, except for the 1901–1920 series where the sam-
ple size is insufficient to make any meaningful inference. 
For Santacruz station, although the data series 1950–2004 
is random, when the extraordinary event of 2005 is  
included, the P value is reduced up to 0.06, which is just 
above the 5% level at which the data series will not  
be random. Such non-stationarity in the data series could 
be induced due to climate change for which through  
investigation is required. 
 
Case-1: For demonstrating as to how the uncertainty 
about the system gets reduced over time, the extreme 

value estimates get closer to its true value as sample size 
increases over time, the historical data at Colaba station 
are catagorized into six subgroups by cumulatively add-
ing some samples, viz. 1901–1920 (n = 20), 1901–1935 
(n = 35), 1901–1950 (n = 50), 1901–1970 (n = 70), 1901–
1990 (n = 90) and 1901–2004 (n = 104). EVA has been 
carried out using GEV distribution and return levels have 
been estimated for different return periods; the results are 
presented in Tables 2 and 3. From Table 2, it can be seen 
that location parameter of the GEV distribution is consis-
tently shifting towards the right, which is somewhat  
obvious, whereas increase in estimated scale parameter 
over different data subgroups implies that over the time-
scale more variation has been seen. Gumbel was the ap-
propriate model for Colaba up to 1970, beyond which 
likelihood ratio (LR) test shows strong evidence against 
Gumbel model, which could be due to the increased 
variation and recording of annual maximum daily rainfall 
events above 400 mm too frequently for data period of 
the last 35 years. 
 Table 3 shows estimates of return levels for MRI T = 2, 
5, 10, 50, 100, 200, 500 and 1000 years. A comparison of 
estimates over different data subgroups indicates that the 
estimates are converging to their true but unknown values 
as the sample size increases. Figure 1 displays the GEV 
density plot for different cumulative data subgroups at 
Colaba. The tail becomes heavier with increase in the size 
of the sample and probability distribution approaching 
the Frechet type. 
 
Case-2: It is generally noticed that whenever extensive 
database is not available, EVA is based on sample size of 
the order of 30 years. For analysing the variability of  
estimates based on comparatively smaller sample size, 
the data are divided into three non-overlapping parts of 
sample size, n = 35, 35 and 34 years. This arrangement 
will also help in checking the effect of stationarity over 
temporal scale. EVA has been carried out using GEV dis-
tribution and return levels have been estimated for different 
return periods T = 2, 5, 10, 50, 100, 200, 500 and 1000 
years, the results are presented in Tables 4 and 5. From  
Table 2, it can be seen that Gumbel was the appropriate 
model for 1901–1935 and 1936–1970, whereas LR  
test shows strong evidence against Gumbel model for 
data subgroup 1971–2004, indicating thereby that the



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 106, NO. 5, 10 MARCH 2014 702 

 
 

Figure  1. Generalized extreme value density plot for different cumulative data subgroups for annual maximum daily 
rainfall (mm) at Colaba. 

 
Table 2. Generalized extreme value distribution fit summary for annual maximum daily rainfall (mm) at Colaba 

Statistical parameter  1901–1920  1901–1935  1901–1950  1901–1970  1901–1990  1901–2004 
 

n  20  35  50  70  90  104  
Minimum 82.3  82.3  82.3  58.6  58.6  58.6  
Maximum  304  548.1  548.1  548.1  575.6  575.6  
Location ()  137.44  144.28  149.16  150.74  155.09  157.71  
Scale ( )  44.80  50.99  52.55  54.25  57.96  57.40  
Shape ( )  0.07  0.17  0.14  0.05  0.15  0.14  
P value for likelihood- 0.73, 0.13, 0.14, 0.46, 0.02, 0.01, 
 ratio test H0:  = 0  does not reject does not reject does not reject does not reject rejects Gumbel rejects Gumbel 
 Gumbel hypothesis Gumbel hypothesis Gumbel hypothesis Gumbel hypothesis hypothesis hypothesis 

 
Table 3. Estimates of annual maximum daily rainfa ll (mm) using generalized extreme value distribution at Colaba 

 Estimated annual maximum daily rainfall (mm) 
 

Return period (year) 1901–1920 1901–1935 1901–1950 1901–1970 1901–1990 1901–2004 
 

2 154.1 163.6 168.9 170.8 176.9 179.3 
5 208.3 231.7 237.0 235.4 252.5 253.5 
10 246.6 284.8 288.4 280.3 310.0 309.5 
20 285.3 342.7 343.2 325.0 371.5 369.1 
50 338.3 429.3 422.9 385.5 461.6 455.6 
100 380.4 504.0 489.9 432.7 537.7 528.3 
200 424.4 588.1 563.6 481.5 621.9 608.1 
500 485.8 715.9 672.6 548.7 747.2 726.1 
1,000 534.9 827.0 764.9 601.7 853.8 825.8 

 
 
observed frequency pattern of first two data subgroups is 
completely different from the third data subgroup. The 
computed 100-year annual maximum 1-day precipitation 
for these three data subgroups is 504.0, 384.7 and 
1133.2 mm respectively. 

 The comparatively higher values of return level in the 
third data subgroup can possibly be due to the higher  
values of standard errors of model parameters. Therefore, 
if we assume that data collection was initiated in 1971, 
which is true for many meteorological stations in India,
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Figure  2. Scatter plot and generalized extreme value density plot for different data subgroups for annual maximum daily 
rainfall (mm) at Colaba. 

 
Table 4. Fitting of generalized extreme value distribution to three non-overlapping data subgroups for  
  annual maximum daily rainfall (mm) at Colaba 

Statistical parameter  1901–1935 1936–1970  1971–2004 
 

n 35  35  34 
Minimum  82.3  58.6  123.5  
Maximum 548.1  432.8  575.6  
Location ()  144.28  156.85  168.79  
Scale ( )  50.99  55.31  46.83  
Shape ( )  0.17  –0.05  0.54 
P value for likelihood– 0.13, 0.61, 0.0002, 
 ratio test H0: γ = 0  does not reject does not reject rejects 
 Gumbel hypothesis Gumbel hypothesis Gumbel hypothesis 

 
Table 5. Estimates of annual maximum daily rainfa ll (mm) using generalized extreme value distribution at Colaba 

 Annual maximum daily rainfall (mm) 
 

  1901–1935 1936–1970 1971–2004 
 

Return period (year) Estimate  95% CI  Estimate  95% CI  Estimate  95% CI 
 

2 163.6 141 186 176.9 155 199 187.8 164 212 
5 231.7 192 271 236.8 207 267 277.3 212 343 
10 284.8 221 348 274.7 235 314 375.4 234 517 
20 342.7 241 444 309.8 258 362 515.7 225 806 
50 429.3 250 608 353.3 280 427 801.3 117 1,486 
100 504.0 241 767 384.7 291 479 1,133.2 –109 2,376 
200 588.1 214 962 414.9 297 533 1,616.1 –565 3,798 
500 715.9 146 1,286 453.3 300 607 2,608.4 –1,810 7,027 
1,000 827.0 61 1,593 481.1 298 664 3,765.5 –3,606 11,137 

 
the estimates of different T-year storms based on the last 
data subgroup are completely different from the actual 
one. The scatter plot for three data subgroups in Figure 2 
shows that there is only one historical peak above 

400 mm for 1901–1935 and 1936–1970, whereas there 
are three such peaks in case of data subgroup 1971–2004 
leading to heavy tail in the density plot. This also could 
be one of the reasons for comparatively high return levels
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Table 6. Generalized extreme value distribution fit summary for annual maximum daily rainfall (mm)  
  at Colaba 

Statistical parameter  1901–1950  1951–2000 
 

n  50  50  
Minimum 82.3  58.6  
Maximum 548.1  575.6  
Location ()  149.18  168.73  
Scale ( )  52.56  64.05  
Shape ( )  0.14  0.14  
P value for likelihood-ratio test H0:  = 0 0.14, 0.08, 
  does not reject does not reject 
 Gumbel hypothesis  Gumbel hypothesis 

 
Table 7. Estimates of annual maximum daily rainfall (mm) using generalized extreme value   
  distribution at Colaba 

 Annual maximum daily rainfall (mm) 
 

  1901–1950  1951–2000 
 

Return period (year) Estimate  95% CI  Estimate  95% CI 
 

2 168.9 150 188 192.8 170 215 
5 237.0 204 270 275.3 236 314 
10 288.4 238 339 337.4 278 397 
20 343.2 264 422 403.3 314 493 
50 422.9 287 558 498.7 352 645 
100 489.9 294 686 578.6 373 784 
200 563.6 290 837 666.1 386 946 
500 672.6 265 1,081 795.1 387 1,203 
1,000 764.9 226 1,304 903.9 373 1,435 

 

 
 

Figure 3. Return- level plot using generalized extreme value distribution for data subgroups 1901–1950 and 1951–2000 
for annual maximum daily rainfa ll (mm) at Colaba. 

 
 
in the third data subgroup. The underlying meteorological 
process behind the annual peak storms at Colaba has not 
remained stationary over temporal scale. Whether this is 
an evidence for climate change during the period of the 
third data subgroup, however, needs further detailed 
study. 
 
Case-3: In case-2, EVA was carried by keeping size of 
the samples around 35 and different results were obtained 
for different subgroups of the same station data. In real 

life situations, we frequently come across cases where 
size of the sample is in the order of 50. For studying the 
behaviour in such situations, in case-3, historical data 
have been divided into two non-overlapping subgroups 
1901–1950 and 1951–2000, with sample size 50 each and 
continuity of the data series has also been maintained. 
EVA with GEV distribution shown in Tables 6 and 7  
indicates that LR test has not rejected Gumbel hypothesis 
for both the data subgroups, 1901–1950 and 1951–2000. 
Table 7, however, indicates that the estimated values of
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Figure 4. Scatter, density, QQ and return- level plots using generalized extreme value distribution for data 1950–2004 
and 1950–2005 for annual maximum daily rainfall (mm) at Santacruz. 

 
 
annual maximum daily rainfall for different return peri-
ods based on data subgroup 1951–2000 are consistently 
higher than those based on data subgroup 1901–1950. 
The return-level plot showing the estimated values of an-
nual daily rainfall extremes for different return periods 
based on data subgroups 1901–1950 and 1951–2000 

along with 95% CI is given in Figure 3. It indicates that 
GEV fit based on data subgroup 1901–1950 is better than 
that based on 1951–2000. 
 
Case-4: On 26 July 2005, the Santacruz station recorded 
very heavy rainfall totalling 944.2 mm in a period of
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Table 8. Generalized extreme value distribution fit summary for annual maximum daily rain 
  fall (mm) at Santacruz 

Statistical parameter  1950–2004 1950–2005 
 

n  55  56 
Minimum  121.2  121.2  
Maximum 399.0  944.2  
Location ()  176.52  175.51  
Scale ( )  45.74  47.17  
Shape ( )  0.21  0.35  
P value for likelihood-ratio test H0:  = 0  0.11, 0.0001, 
  does not reject  rejects 
 Gumbel hypothesis Gumbel hypothesis 

 
Table 9. Estimates of annual maximum daily rainfall (mm) using generalized extreme value   
  distribution at Santacruz 

 Annual maximum daily rainfall (mm) 
 

 1950–2004 1950–2005 
 

Return period (year) Estimate  95% CI  Estimate  95% CI 
 

2 193.9 177 211 194.0 176 212 
5 257.2 227 287 268.9 230 307 
10 308.2 257 360 338.0 266 410 
20 365.3 277 453 424.1 294 554 
50 453.3 286 620 573.6 309 838 
100 531.6 276 787 723.0 293 1,153 
200 621.9 247 997 913.7 238 1,590 
500 763.3 168 1,359 1,249.2 70 2,429 
1,000 889.8 69 1,711 1,586.1 –168 3,341 
10,000 1,471.1 –644 3,587 3,539.0 –2,371 9,449 

 
24 h, much higher than the PMP of 700 mm for the  
region, indicating that the July 2005 rainfall was an  
extraordinary high natural event. For assessing the impact 
of this event on extreme value estimates, EVA of the data 
at Santacruz station has been carried by excluding the 
July 2005 rainfall (1950–2004, n = 55 years) and by  
including July 2005 rainfall (1950–2005, n = 56 years) 
using GEV distribution. Table 8 gives the summary of  
fitting results, whereas Table 9 gives estimated annual 
maximum daily rainfall for return periods T = 2, 5, 10, 
50, 100, 200, 500, 1000 and 10,000 years. While exclud-
ing July 2005 event of 944.2 mm daily rainfall, LR test 
accepts Gumbel model, whereas when the extraordinary 
event was considered in the analysis, LR test inferred 
strong evidence against the Gumbel model. 
 The diagnostics plots for fitting GEV distribution for 
annual maximum daily rainfall (mm) in Santacruz are 
shown in Figure 4. Unusual effect of July 2005 event is 
evident from these plots. If the event of 944.2 mm is  
interpolated from Figure 4, it can be seen that it has a 
MRI of 1298 years while excluding it in the analysis, 
whereas it has a MRI of only 221 years when the EVA is 
carried out by including it in the analysis. It is therefore 
difficult to decide as how to treat such extraordinary 
events in the EVA. Such behaviour similar to outliers 
could probably have emerged from extremely rare mete-
orological processes having a localized scale. 

Conclusion 

The effect of historical record length and impact of recent 
past records on extreme value estimates has been analysed 
using GEV model through case studies on annual maxi-
mum daily rainfall at Colaba and Santacruz. Some of the 
findings are given below: 
 
1. Extreme value estimates of environmental parameters 

gets stabilized with increase in record length. Large 
sampling uncertainty is observed (as shown by width 
of confidence intervals) despite the theoretical ration-
ale for the GEV model in EVA. 

2. Comparatively more recorded events with higher 
magnitude and more variation are seen during the  
recent past, indicating strong evidence against the 
Gumbel model and leading to heavy tail for the fitted 
GEV distribution that finally resulted in compara-
tively higher values of environmental extremes. 

3. The extraordinary heavy rainfall of 944.2 mm recorded 
at Santacruz on 26 July 2005 has a major impact on 
hydrological extremes. This observed event has com-
pletely changed the fit of the probability distribution 
when included in the EVA. 

4. It has been found using Wald–Wolfowitz (1943) run 
test that the assumption of randomness, independence 
and stationarity of data is not fully satisfied. Hence, it 
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cannot be ruled out that varying estimates of parame-
ters for this particular process (Mumbai rainfall) may 
be climate change-induced non-stationarity, in addi-
tion to insufficient record length. 

 
Further studies in this field may be carried out, such as 
EVA by incorporating parameterization of trend in the 
GEV model that will help in investigating the possible 
temporal dependence in the data series. The effect of cli-
mate change-induced non-stationarity could be assessed, 
for which extensive, large-scale data analysis is needed. 
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