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This article presents an experimental approach for 
evaluating the various flight characteristics of a  
mahogany seed in its autorotative descent. Analytical 
formulae proposed by Yasuda and Azuma are used to 
interpret the results. The findings are used in the de-
velopment of a sophisticated blade element computa-
tional model, primarily to analyse planar autorotating 
systems. This approximate computational approach is 
then used to predict the flight performance of maho-
gany seeds and the results are compared with experi-
mental data. The potential use of the computational 
model in the design of autorotating systems is then 
brought to light. 
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THE continuous rotation of an object, sustained solely by 
the influence of aerodynamic forces is termed as autoro-
tation; unless artificially induced (such as in a wind tun-
nel), this phenomenon is typically observed in falling 
objects. The rotation might be stable or unstable depending 
on the physical configuration of the body and atmospheric 
conditions at the time of descent. Autorotation is ob-
served in nature in varied forms; historically, autorotation 
of flat plates was the first to spark curiosity in physicists. 
 Isaac Newton was to describe the complex behaviour 
of a body freely falling in a fluid medium in The Prin-
cipia (1726). However, it was J. C. Maxwell (1854) who 
first conducted a systematic study of autorotation1; he  
observed that a flat plate or a card, when dropped would 
start rotating even when no initial angular velocity was 
imparted to it. He deduced that the centre of pressure and 
centre of mass for such plates did not coincide during the 
fall. Therefore, this produced a torque that triggered the 
spin. 
 By the latter half of the 20th century, the autorotation 
phenomenon in seeds captured the eyes of the scientific 
community. In particular, the maple seed or the samara 
became the most widely used seed for experimentation. 
These seeds have the reputation for descending with  
extremely low descent velocities and high rates of spin. 

An auto-rotating seed wing in air is very much like the 
blade of a windmill. This similarity has led aerodynami-
cists to employ mathematical models that are used to  
optimize wind turbine blades, in also modelling the auto-
rotation phenomenon in seeds. Some of these models in-
clude the momentum theory and the blade element theory 
(BET). 
 In 1973, Norberg2 conducted the first scientific study 
of a single-winged samara. He employed the simple  
momentum theory for analysis and used planar models to 
mimic the performance of the samara. Two major  
assumptions were made in his analysis: (1) The samara 
was a flat wing. (2) The mass of the wing lay on the long 
axis from the wing root to the wing tip. 
 Figure 1 shows the force diagram for a samara as pre-
sented by Norberg. It is the side view of the seed when it 
has reached a steady auto-rotational state. At equilibrium, 
the vertical component of the net lift force FAV balances 
the weight W of the seed. The resultant components of  
the centrifugal forces, acting on the right and left side  
of the centre of gravity (CG) are designated by CT  and 
CR respectively. CT  and CR act through moment arms PCT 
and PCR respectively, to generate a clockwise moment. 
This moment is balanced by an anticlockwise moment 
 
 

 
 

Figure 1. Pictorial representation of the aerodynamic, gravitational 
and centrifugal forces in a samara2. 
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created by the action of the net aerodynamic force about 
the moment arm RCP. Generally, the axis of rotation is 
slightly displaced away from the CG towards the left, 
which implies that a net centrifugal force acts towards the 
right. This force is balanced by the horizontal component 
of the aerodynamic force FAH. The stable angle created by 
the seed surface with the horizontal is called the coning 
angle or roll angle. 
 In 1989, Azuma and Yasuda3 conducted a detailed 
study of the autorotative descent of different samara 
seeds. They used a camera with a stroboscope flash cou-
pled with a smoked flow observation technique. A simple 
momentum analysis on the lines of Norberg with the 
same geometric assumptions helped Azuma and Yasuda 
to arrive at the optimal expressions for terminal velocity 
and tip speed. 
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It follows that for a given set of geometric parameters, 
terminal velocity and angular velocity of a seed cannot be 
less than that obtained from these expressions. 
  Seter and Rosen4 completed a detailed study of autoro-
tational mechanics in 1991. They used a theoretical blade 
element model with six degrees of freedom analysis for 
this purpose. In 2007, Andreas Kellas (a graduate student 
at MIT) made one of the first noteworthy attempts in de-
signing a single-blade autorotating vehicle. This vehicle 
was to function as a reliable and cost-effective payload 
drop mechanism that could serve as a viable alternative to 
the existing ones used by the US army. His work covered 
several interesting aspects of autorotation such as the 
coupling of angular velocity components and the effect of 
control surfaces on the performance of a samara-inspired 
flight vehicle. He partially succeeded in developing such 
a vehicle. The flight performance of the vehicle was com-
pared with the results from a numerical model based on 
the BET5. 
 Varshney et al.6 analysed the factors that triggered  
gyration in maple seeds. The initiation of spin was attri-
buted to the subtle interplay between rigid body dynamics 
and aerodynamics. This interaction was possible because 
the asymmetric mass distribution of the seed allowed for 
the coupling of different angular velocity components. 
 This summarizes some of the most significant literature 
available in autorotation. Although extensive work has 
been done in the area of winged seeds, these efforts only 
address a small portion of the entire autorotation process. 

The first purpose of this study is to assess the feasibility 
of using the well-established momentum theory in evalu-
ating the performance of the seed. A direct outcome of 
this study would be determination of the operating region 
of the seed (windmill state, or the turbulent windmill  
state5). This information is vital for employing sophisti-
cated blade element methods to accurately predict the 
aerodynamic performance of the seeds. This brings us to 
the second purpose of this study; the presentation of a 
computational approach based on the modified BET. Al-
though a few papers exist describing the use of BET for 
evaluating autorotation performance, they describe an 
oversimplified model that adopts the BET in its original 
form. The fact that the local wing thrust coefficients can 
exceed one, leaving the use of the original BET invalid is 
one of the many factors not taken into account. Further, 
an extensive comparison of the results from a computa-
tional model with experimental data has not been pre-
sented before; we do so, by comparing the results with 
the experimental values for 13 mahogany seed specimens 
of varying size and geometry. The implications of using 
this model in such a scenario, its strengths and drawbacks 
are briefly discussed. 

The mahogany seed 

The unique geometry of the mahogany seed enables it to 
autorotate, a fraction of a second after its release. As a 
consequence, these seeds have low terminal velocities (of 
the order 0.5–1 m/s), which provide sufficient time for 
wind gusts to carry them far away from the parent tree, 
before they touch the ground. 
 Figure 2 shows the peculiar shape of the seed; it can be 
seen that its side view mimics the curvature of an airfoil.  
 
 

 
 

Figure 2. A magnified view of the mahogany seed. 
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The wing exhibits non-uniform geometry, the leading 
edge being thicker at the root. The plan view resembles 
an ellipse. The ribs on the seed ‘wing’ provide structural 
strength and also increase the surface roughness. High 
surface roughness generates beneficial turbulence that 
improves flight performance7. 
 Another striking observation made was that the bulk of 
the seed mass is located at one end of the seed. According 
to this mass distribution, about 80–85% of the total mass 
is located in the ‘actual seed’ and the remaining mass is 
distributed in the wing. Figure 3 shows cross-sectional 
elements obtained by slicing the wing along its span. 
 We observe from the figure that the pieces to the right 
have distinct airfoil shapes. The pieces to the left are 
much thicker and harbour majority of the total seed mass. 
The length of this particular seed is 80 mm and the calcu-
lated centre of mass is 17 mm from the origin, i.e. within 
the first four slices (Table 1; see supplementary material, 
online). 

Experiment set-up 

The seeds to be tested were split into three groups based 
on their mass – group 1: 0.45 to 0.5 g; group 2: 0.35 to 
0.45 g and group 3: 0.3 to 0.35 g. Only fully developed 
seeds were considered. The dimensions of the seeds were 
measured using a digital vernier caliper (least count = 
0.1 mm) and the mass was measured with an electronic 
balance (least count = 0.001 g). 
 Figure 4 shows a schematic diagram of the experimen-
tal set-up. It consists of a high-speed camera capable of 
taking pictures at one million frames per second. The 
camera was set to take pictures at 200 frames per second 
and at an exposure time of 400 ms. The picture frames 
were stored in a digital format (*.cci). The camera photo-
graphed a region approximately 50–82 cm from the point 
where the seed was dropped. Since the exposure time was 
small, an external light source of 350 W (extremely 
bright) was used for lighting. Attempts were made to 
photograph two envisaged phases of the seed fall and 
flight. The objective was to find out how the seed begins 
to autorotate from a free-fall mode and to understand how 
the seed behaves when it has reached a steady state. 
 
 

 
 

Figure 3. Cross-sectional elements of the wing. 

 A total of 13 seeds were dropped from a fixed height/  
datum and at a fixed inclination with the vertical (exactly 
vertical with zero angle of attack and seed facing down-
ward). As these seeds are curved, it is difficult to deter-
mine what 0 angle of attack means; all seeds were 
dropped such that the lower part of the seeds was in  
line with the vertical. A soft landing spot was made for 
the seeds such that they would not break when they hit 
the ground. The seeds were dropped in still air by carry-
ing out these trials in a closed room. This method was 
adopted to ensure that their flight characteristics were not 
affected by draughts of wind. The results are tabulated in 
Tables 2 and 3 in supplementary material (see online). 

Comparative study 

A comparative study was done between the experimental 
data and the theoretical values derived from the expres-
sions proposed by Azuma and Yasuda. The results from 
this study are depicted graphically. 
 Figure 5 shows the variation of terminal velocity of the 
13 mahogany seeds with disc loading. The blue points  
indicate the performance of the seeds, whereas the red 
line represents the variation of optimum terminal velocity 
with disc loading as proposed by Azuma and Yasuda’s 
theory. According to this theory, the minimum terminal 
velocity is given by 
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where discloading = Mg/s. 
 

 
 

Figure 4. Experimental set-up. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 106, NO. 8, 25 APRIL 2014 1104 

 We observe that four seeds have a descent velocity 
smaller than that proposed by Azuma and Yasuda’s and 
hence a positive error. The reason for this deviation be-
comes evident when one considers the limitations of the 
momentum theory, which serves as the basis for Azuma’s 
theoretical expressions. A key assumption made in this 
theory is that the streamlines are definite and smooth as 
they cross the rotor blade7. 
 Figure 6 shows the two possible descent states of the 
mahogany seed according to the classic rotor craft and 
windmill theory. In the windmill state, the descent veloc-
ity V is large enough to overpower the induced velocity  
and the streamlines flow smoothly through the disc traced 
by the seed wing. However, in the turbulent windmill 
state, the streamlines are not smooth and there are regions 
where there the flow is chaotic with areas of recircula-
tion. This case occurs when V < /2. 
 Considering the windmill state, the thrust equation  
according to the momentum theory3 is given by 
 
 T = 2S(V – ), (5) 
 
 

 
 

Figure 5. Experimental and theoretical terminal velocity. 
 
 

 
 

Figure 6. The two possible descent configurations. 

where V is the free stream velocity, which in this case is 
the vertical descent velocity of the seed. At optimum  
velocity of descent, all the kinetic energy is extracted 
from the flow, in which case the velocity far downstream 
of the seed reduces to zero. 
 
 V – 2 = 0 or  = V/2. (6) 
 
Indeed, if this is substituted in eq. (6), we arrive at 
Azuma and Yasuda’s expression for optimum velocity, 
i.e. eq. (3). 
 For a more general case, let the induced velocity be ex-
pressed in terms of the free stream velocity by the relation 
 
  = aV, (7) 
 
where a is the axial induction factor. Substituting this in 
the thrust equation and modifying, we get 
 
 CT = 4a(1 – a), (8) 
 
where CT = T/((1/2)SV2) is called the thrust coefficient. 
 Equation (9) is valid only when 0  a  0.5 or equiva-
lently 0    V/2. Azuma and Yasuda’s operating point 
is given by a = 0.5 and CT = 1. 
 What happens to the thrust coefficient when a crosses 
0.5, i.e. when the seed enters the turbulent windmill 
state? 
 Figure 7 shows the variation of CT with a. Beyond 
a = 0.5, the momentum equation under predicts the thrust 
coefficient. The correct CT values are obtained experi-
mentally and proven to be higher (see the dotted points 
on the graph). Clearly, the momentum curve (shown in 
pink) travels beneath these points. In fact, the answer  
becomes evident when the thrust coefficient is calculated 
for each seed (Figure 8). 
 
 
 

 
 
Figure 7. Theoretical and experimental thrust coefficient in the  
two descent states (courtesy: Buhl8, National Renewable Energy Labora-
tory). 
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 All seeds (1, 2, 4 and 6) that showed a positive error 
have their experimental thrust coefficients greater than 
one. Consequently, Azuma and Yasuda’s theory failed to 
predict the correct descent values for these seeds because 
they were operating far beyond the theory’s limitation. 
 Figure 9 shows the plot of tip speed versus disc load-
ing. The solid line represents the tip speed according to 
Azuma and Yasuda’s theory and is given by 
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The curve is plotted assuming  to be equal to 0.05. 
 
 

 
 

Figure 8. Net thrust coefficient. 
 
 

 
 

Figure 9. Experimental and theoretical tip speed. 

 Most of the seeds had tip speeds greater than that pre-
dicted by this equation. A comparative study might not be 
meaningful in this case because each seed has a di fferent 
solidity  and aerofoil properties (and hence different   ). 
Figure 10 shows a bar chart depicting the tip-speed error 
for each seed. The solidity of each seed was calculated 
using the formula 
 

 max .B
R




  (11) 

 
The  value is assumed to be equal to 0.5. 

Conclusion from comparative study and  
motivation for a computational model 

The comparative study revealed that the mahogany seeds 
operate in both the windmill state and turbulent windmill 
state. Therefore, the classic BET is not always applicable 
and a more realistic blade element formulation is  
required that can model aerodynamic forces even in  
the turbulent windmill state. One such scheme is the 
WT_PERF algorithm, a description of which can be 
found in Buhl8. It is evident that simplistic models  
like that of Azuma require the angular velocity and disc 
diameter before some analysis can be performed. In this 
work, these parameters were obtained with a high-speed 
camera. However, this method of analysis is not elegant. 
A more comprehensive approach would be to solve for  
all these parameters simultaneously using a numerical 
method. Essentially, we solve a giant initial value pro-
blem. A brief description of the model is given below. A 
detailed explanation of the work can be found in Rao9. 

The computational model 

Two frames of reference are used in the numerical analy-
sis. The first frame is the inertial frame/global frame XYZ  
 
 

 
 
Figure 10. Deviation (in %) between theoretical and experimental 
values. 
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attached to a stationary observer on Earth. The second 
frame xyz, referred to as the body frame, is attached to the 
autorotating object, which in this case, is a two-
dimensional wing that is an approximate representation of 
the mahagony seed (Figure 11). 
 The motion of the seed is determined by the solution of 
three well-known vector differential equations that repre-
sent the dynamics of a rigid body in the body frame sys-
tem of coordinates. 
 
Linear momentum equation:  × ,f vcm w vcm 

    (12) 
 
Angular momentum equation:  × ,Tb Iw w Iw 

     (13) 
 

Quaternion angular velocity relation: 1 [0 ] .
2

Q W Q
  

 (14) 

 
Equation (14) represents the change in orientation of the 
system and is required for mapping vectors between the 
two frames of reference and  is the quaternion multipli-
cation factor. To integrate eqs (12–14), a first-order ap-
proximation for the force and torque vector is used, i.e. 
they are kept constant over a small time-interval. The 
modified equation can then be integrated using a higher-
order scheme to yield new values for vcm


, w  and Q


. 

The force and torque vectors are then updated using these 
values and the next time-advancement step is performed. 
To update the force and torque vectors, we make use of 
the panelling approach in conjunction with the 
WT_PERF algorithm. The initial conditions used in the 
simulations are cm 0,v 


 0w   and [1000].Q 


 

 The MATLAB ode15s solver is used to solve the sys-
tem of differential equations. The relative and absolute  
error tolerances were kept at their default values of 10–3 
and 10–6 respectively. ode15s is a variable-order solver 
based on the numerical differentiation formulas (NDFs). 
It is particularly useful in solving a stiff system of differ-
ential equations. 
 
 

 
 

Figure 11. Vector R in the global and local coordinate system. 

Local coordinate system positioning 

The 2D wing system consists of a point mass m that car-
ries 80–90% of the total seed mass M. The remaining  
mass (20–10%) is distributed uniformly along the wing 
surface. The wing has a NACA 0012 cross-section and 
for the purposes of our calculations, the thickness was 
neglected in the inertia calculations. The reason for 
choosing a NACA 0012 airfoil was that there was reliable 
lift, drag and quarter chord moment coefficient data 
available from the National Renewable Energy Labora-
tory (NREL) at a low Reynolds Number for the full range 
of angle of attack. A flat plat airfoil would have been 
ideal but a reliable source of airfoil performance could 
not be found for the full range of angle of attack. The  
location of point mass can be varied to position the centre 
of mass (COM) at any desired point (xcm, ycm) with re-
spect to the axes x1y1. The point load was positioned 
based on the co-ordinates with reference to the axes x1y1. 
Once the point load was fixed, the CG was calculated and 
the local coordinate system xyz was positioned about the 
CG. The local coordinate system has its origin at the 
COM and is orientated as shown in Figure 12. The axes z 
and z1 point out of the plane of the paper, towards the  
observer. The wing is divided into 101 panels along its 
span. 
 The inertia matrix I0 is first calculated about axes x1y1z1 
and when the COM position is set, the inertia matrix I 
(used in eq. (13)) is determined about the local coordinate 
system xyz using the parallel axis theorem. 

Calculating force and torque 

The aerodynamic forces considered in the panelling  
approach are only those resolved in the xz plane. The 
spanwise components (along y) are neglected. 
 The net force and torque are computed by taking into 
account the aerodynamic forces and torques produced by 
all panels and summing them up (Figure 13). The gravita-
tional force contribution is then added to this sum to form 
the net force. These calculations are done in the body 
frame of reference. To compute the aerodynamic forces, 
we need the impinging velocity vector at the leading edge 
of each panel. The impinging velocity vector is com-
prised of two components – one due to rigid body rota-
tion and the other due to the induced velocity (Figure 14). 
The rigid body component can be calculated using: 
 

 r cm  × .v v r   (15) 

 
The induced velocity component is calculated using the 
PERF algorithm. Once the velocity vector is known, the 
real angle of attack (Figure 15) can be calculated and 
with the NACA 0012 properties, the lift, drag and quarter
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Figure 12. Various parameters as viewed in the local coordinate sys-
tem. 
 

 
 

Figure 13. Forces acting on a blade element. 
 
 

 
 

Figure 14. Velocity vectors impinging on a blade element. 

chord moment coefficients are known at each panel; the 
aerodynamic forces and moments can now be calculated. 
 The net aerodynamic force in the body frame is thus 
given by 
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where the terms within brackets indicate resolved com-
ponents of lift and drag along the x and z directions. 
 From Figure 14, it can be easily seen that the aerody-
namic moments are given by 
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where 
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2 2
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Results from the numerical method 

The results are shown in Table 4 in supplementary mate-
rial (see online). The performance plots obtained for seed1 
are shown in Figures 16–20. From Figure 16 one can see 
the COM (green curve) trace an initial vertical trajectory 
under the influence of gravity for a short distance 
 

 
 

Figure 15. Net velocity and real angle of attack. 
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(< 0.5 m), and later trace a helix once the centrifugal 
forces are set up. We need to keep in mind that the three 
coordinate axes have different scaling. A better visualiza-
tion of the solution trajectory can be observed from  
Figure 17. 
 Figure 18 shows the time history of the global Z com-
ponent of velocity. Initially it is linear, predominantly 
under the influence of gravity. Once the spin rate deve-
lops, the magnitude drops and reaches a stable value. 
This is the terminal velocity of the seed. In Figure 19, the 
negative spin rate indicates a clockwise spin direction. 
 The corresponding global Z-component of acceleration 
(Figure 20) starts at –9.81 m/s2 and increases to positive 
values. When a mahogany seed falls, it initially plummets 
under the influence of gravity. Once the aerodynamic 
forces develop, its descent rate drops and stabilizes. This  
 

 
 
Figure 16. Trajectory of the centre of mass and wing tip. All dimen-
sions in metres. Direction of spin is clockwise. 
 
 

 
 

Figure 17. Trajectory of the centre of mass and wing tip trailing edge 
(magnified view). 

‘recovery’ phase has positive acceleration associated with 
it in the global Z direction. Once equilibrium is attained, 
the acceleration drops to zero. 

Drawbacks and application 

Although the results are highly encouraging, one must 
still recognize the drawbacks of the approximate appro-
ach: 
 (i) The real flow is three-dimensional over the blade 
element and the spanwise forces are neglected in our 
model. Also, the velocity over the blade is not a constant 
due to variation in spin vector contribution. 
 

 
 

Figure 18. Terminal velocity. 
 

 
 

Figure 19. Spin rate at equilibrium. 
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Figure 20. Zero acceleration in the Z direction at equilibrium. 
 
 
 (ii) We have approximated the mahogany seed with a 
simplistic planar model. However, the grand scheme can 
be extended to account for 3D geometry provided the 
aerodynamic model is replaced with a superior one. 
 When one attempts to design an autorotating system, 
the mass distribution for a given wing planform and 
cross-section, cannot be arbitrary. There is a fixed region 
within which bulk of the mass must be distributed. This is 
referred to as the autorotation boundary10. The computa-
tional model helps estimate this region. In the case of the 
planar wing loaded with a point mass, violent oscillations 
were observed in the solutions when the point load was 
placed in unfavourable regions, indicating that for the 
given configuration an equilibrium point could not be  
attained. Thus this program can be used as a rough esti-
mate to determine autorotation boundaries. 

Conclusion and scope for further work 

An experimental study was conducted and the perform-
ance of mahogany seeds was determined. A comparison 
with the theoretical results showed that the simplified 
momentum theory served as a poor basis to evaluate the 

flight characteristics of these seeds. The calculation of the 
thrust coefficients revealed that the seeds operated in 
both the windmill and the turbulent windmill state. 
Therefore, a more sophisticated wind turbine perform-
ance evaluation method such as the modified blade  
element theory was employed to gauge the performance 
of the mahogany seed with reasonable success. The crux 
of the approach presented can be extended to incorporate 
a Computational Fluid Dynamics model (which replaces 
the modified BET for evaluating the aerodynamic forces 
and torques). This would require the use of a grid that 
continuously adapts in each iteration (time interval) and 
that takes into account the new seed orientation and the 
free stream condition at each grid point. The use of such a 
rigorous approach would then reveal the true trajectory of 
the seed during its fall. Development of the three-
dimensional boundary layer over the seed surface can 
also be visualized in the process. 
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