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Orchidaceae is one of the largest flowering plant fami-
lies of the plant kingdom. The habitats of orchids are 
highly diverse, ranging from tree bark and damp for-
est floors to rock crevices, sandy dunes and semi-arid 
deserts. The diversity of endophytes (internal symbi-
otic fungi) associated with orchids is enormous. Most 
studies of endophytic fungi from orchids in the past 
have focused on mycorrhizal endophytes (internal 
symbiotic fungi associated with plant roots). There 
has, however, been an increasing trend to study non-
mycorrhizal endophytes from orchids because of their 
physiological roles and their potential as sources of 
novel bioactive compounds. This review discusses the 
methods used in the isolation and identification of 
endophytic fungi from orchids, their diversity and 
host-specificity, their significance in orchid conserva-
tion and cultivation, and their potential application in 
the discovery of bioactive compounds. 
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Introduction 

ORCHIDACEAE is one of the largest flowering plant fami-
lies of the plant kingdom, which comprises more than 
899 genera and 27,801 species (The Plant List 2013). Of 
these, over 200 genera have been studied for their endo-
phytic fungal diversity (see Appendix 1), which is less 
than 30% of the total orchid genera. Orchids with horti-
cultural, ornamental, medical and commercial importance 
have been studied for the presence of endophytes1,2. Rare 
or endangered orchids, including species in Cypripedium, 
Holcoglossum and Paphiopedilum have also received  
attention3–5. Terrestrial orchids which make up nearly 
one-third of all orchid species occupy approximately half 
of the endangered orchid list (The World Conservation 
Union 1999)6. Many of them have also been subjected to 
endophyte research (Table 1). Orchid species in the  

genera Aa, Hadrolaelia, Gavilea and Satyrium have been 
poorly studied and can be regarded as new topics for  
research7–10. 
 Research on endophytic fungi in orchids has been car-
ried out in all trophic groups (i.e. photosynthetic, 
mixotrophic and mycoheterotrophic) of all growth habits 
(i.e. terrestrial, epiphytic and lithophytic), from highly 
diverse habitats (e.g. rainforests, evergreen forests, coni-
ferous forests, bamboo forests, ectomycorrhizal forests, 
wetlands, swamps, calcareous coastal plains, botanical 
gardens and greenhouses) in all continents except Antarc-
tica (Table 1). Some orchids occur in a wide range of 
habitats, while others are endemic to certain regions. For 
example, Platanthera minor grows in forests on slopes 
and alpine meadows at elevations 90–3000 m in China, 
Japan and Korea11,12. Satyrium nepalense was reported to 
be distributed from grassy hill slopes at varying altitudes 
(600–4600 m) in India10. Ophrys benacensis occurs  
only in northern Italy13 and Piperia yadonii only in  
North America14. The epiphytic orchid Sarcochilus  
parviflorus survives only with its main host Backhousia 
myrtifolia15.  
 The purpose of this article is to review the studies on 
non-mycorrhizal endophytic fungi of orchids and present 
the main conclusions from the research. 

Isolation and identification of fungal endophytes 
from orchids 

Isolation 

Orchid mycorrhizal fungi are known to be associated 
with roots of orchids16,17. Therefore, most endophyte 
studies on orchids have investigated orchid roots for  
mycorrhizal and endophytic diversity18. Other orchid 
parts, including leaves, rhizomes, mature bulbs, tubers, 
stems and stem-collars have also been studied for endo-
phytes19,20. Since endophytes are commonly defined as 
‘all organisms inhabiting plant organs that at some time 
in their life, can colonize internal plant tissues without 
causing apparent harm to the host’21,22, only healthy  
organs were used in these studies23.  
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Table 2. Protocols used for surface sterilization in orchid endophyte studies 

Tissue             Protocol Reference 
 

Root 5% solution of ‘Domestos’ (20–30 min) – sterilized water 114 
Root 0.1% HgCl2 in 20% ethanol – sterilized distilled water (4~5 changes) 115 
Root Several changes in sterile water 116 
Root 20% ‘Milton’ (15–20 min) 117 
Root 20% solution of household bleach (1 min) – sterile distilled water 39 
Root 70% ethanol (30 s) – 5.25% household bleach (10 min) 118 
Root 75% ethanol (35 s) – 3% NaClO2 (1 min) – 75% ethanol (30 s) 73 
Root 75% ethanol (30 s) – 0.5% NaClO2 (3–5 min) 42 
Root 70% ethanol (30 s) – 95% ethanol, 5.25% NaClO2, sterile H2O2 (1 : 1 : 1) (1 min) 43 
Root 75% ethanol (1 min) – 3.4% NaClO (10 min) – 75% ethanol (30 s) 47 
Root 5.25% NaClO (1 min) – sterile water (2 times) 119 
Root 70% ethanol, 2.5% NaClO (1 min) – 70% ethanol (1 min) 36 
Root 70% ethanol (30s) – 2.6% NaClO (3 min) 120 
Root 70% ethanol (1 min) – 2% NaClO (5 min) 121 
Stem 75% ethanol (40 s) – 4% NaClO (10 min) 19 
Root, leaf 70% ethanol (30 s) – 4% NaClO (90 s) 28 
Root 95% ethanol (20 s) – 5% NaClO (3 min) 23 
Root 70% ethanol (2 min) – 10% NaClO (3 min) 7 
Root 70% ethanol (1 min) – NaClO with 1% available chlorine (1 min) 78 
Rhizome 70% ethanol (30 s) – NaClO with 1% available chlorine (30 s) 69 
Root 30% H2O2 (1 min) – sterile water 49 
Root 3% H2O2 (10 min) – sterile distilled water (three times) 4 
Root 75% ethanol (30 s) – 0.1% HgCl2 (5 min) 122 
Root 70% ethanol (1–2 min) – 0.1% HgCl2 (7–8 min) 70 
Root Detergent solution (5–6 min) – 10% Ca(ClO)2 (7–8 min) 123 

 
 
 The study of endophytic fungi starts with a collection 
of orchid samples, followed by isolation in the labora-
tory. Epiphytic microorganisms are removed via surface 
sterilization prior to isolation24. All surface sterilization 
procedures in orchid endophytic research have used ster-
ilizing reagents, including ethanol, chlorine (Cl2), sodium 
chlorite (NaClO2), sodium hypochlorite (NaClO), mer-
cury (II) chloride (HgCl2), hydrogen peroxide (H2O2) and 
calcium hypochlorite (Ca(ClO)2) to disinfect tissues via 
sequentially immersing tissues in reagents (see Table 2 
for details). The concentration and time for surface ster-
ilization vary depending on the sterilizing reagents and 
the type of orchid tissues studied. The concentration of 
reagents is important. Sterilization with 0.1% or 0.2% 
HgCl2 for 3 min did not kill Bacillus species, but using 
0.3% HgCl2 for 10 min successfully killed the bacteria25. 
NaClO has been reported26 to be more damaging to tis-
sues than Ca(ClO)2. The degree of surface sterilization 
greatly affects the fungal endophytes recovered22. There-
fore, Schulz et al.27 suggested leaf imprinting to test the 
effectiveness of the protocol. However, in most orchid 
endophyte studies to date, leaf imprinting was not carried 
out. The work of Sawmya et al.28 was the only orchid 
endophyte study that tested the effectiveness of their sur-
face sterilization protocol. No microorganisms grew on 
media after imprinting the surface-sterilized tissues on 
agar, which indicated that their surface sterilization pro-
tocol was successful. 
 The isolation of non-mycorrhizal endophytes has in-
volved teasing apart or crushing surface-sterilized root 

pieces or rhizomes aseptically to liberate hyphae on media 
or sterilized water29,30. Cultivation of surface-sterilized 
segments on media has also been widely used for all  
orchid tissues to isolate endophytic fungi (Table 1). 
 Antibiotics were used in culture-dependent isolation to 
prevent bacterial contamination. Streptomycin sulphate 
and potassium penicillin G restrained the growth of  
G– bacteria and G+ bacteria respectively31. Sometimes re-
searchers added several kinds of antibiotics to prevent 
contamination. Otero et al.32 applied streptomycin, tetra-
cycline and penicillin together to prevent contamination. 
A study in which Colletotrichum species were isolated 
from Bletilla ochracea used streptomycin and chloram-
phenicol to prevent contamination33.  
 Different protocols may be tried for isolating endo-
phytic fungi. Epulorhiza fungi could be isolated using  
either single peloton or root section protocol and they 
grew more quickly when bacteria were present than if  
excluded31,34. Some mycorrhizal fungi, however, were 
isolated using root section because they did not form 
massive hyphal colonization4,32,35,36. Moreover, not all 
studies on orchid endophytes used isolated fungi as mate-
rials for fungal identification. Direct sequencing of DNA 
extracted from orchid tissues containing fungi has also 
revealed diversity of fungal endophytes. However, it is 
necessary to emphasize that although some fungal-
specific primers are available, they do not necessarily 
amplify only fungal DNA. For example, primer ITS1F 
(ref. 37) is intended to be specific to fungi and it can also 
amplify DNA of many species of eu-dicots and some  
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orchids38. Therefore, analysis and interpretation of the  
results from such protocols must be treated with caution. 
Comparison of the sequences of fungal endophytes with 
those of well-characterized fungi in GenBank is neces-
sary to name the species. 

Identification of fungal endophytes 

Fungi can be identified using morphology, molecular 
analysis or a combination of both approaches. In the past, 
fungal identification relied on morphological characteris-
tics such as colony, mycelium and spore characters39. 
However, molecular approaches have more recently been 
applied to identify orchid endophytes40. The use of com-
bined morphological–molecular data is probably a better 
approach41, but most studies on orchid endophytes have 
used either morphology or molecular analysis (Table 1). 
Only a few studies performed both33,42,43.  

Morphological identification 

Even though endophytes can be directly visualized inside 
the tissues by staining22, most studies of orchid endo-
phytes did not use this method. Majority of fungal endo-
phyte studies have adopted surface-sterilized tissues 
which can be problematic because not all endophytic 
fungi grow in culture, or epiphytic fungi are not  
completely killed29. Orchid mycorrhizal fungi can be dis-
tinguished by hyphal coils (pelotons); however, many 
non-mycorrhizal fungal endophytes from orchids do not 
possess any specific characters or have some overlapping 
traits in culture32,44.  
 
Problems with identification of orchid endophytic fungi 
using morphology: Morphological identification of orchid 
fungal endophytes to species or sometimes even genus 
level is not always possible41. Many endophytic fungi 
will not sporulate, even if sporulation-inducing methods 
are applied7,45. These include ectomycorrhizal fungi 
(ECM fungi) such as Russula46. Apart from the nature of 
the fungi, morphological identification requires research-
ers to have a good understanding of basic fungal taxon-
omy and good skills in handling fungal cultures. 
Morphological identification may take more time than 
molecular identification, as endophytic fungi may need at 
least three to four weeks to sporulate47,48. However,  
employing morphological characterization to identify 
endophytes is less expensive.  

Molecular identification 

Molecular identification of orchid endophytes can be 
done using polymerase chain reaction (PCR) to amplify a 
specific DNA region and subsequently cleave the PCR 

product using specific restriction endonucleases (i.e. 
PCR-RFLP)30,45,48,49. However, the more commonly used 
molecular identification is sequence-based approach by 
which a selected DNA region is sequenced. Then the 
DNA sequence can be blasted in the public database (e. g. 
GenBank) and/or used to construct a phylogenetic tree 
(Table 1). Selection of genes/regions for molecular iden-
tification is particularly important48. The ITS region (i.e. 
internal transcribed spacers of the rDNA gene or ITS1-
5.8S rDNA-ITS2) is the region of choice because of its 
high degree of variation and the fact that it is the most 
common sequence generated29,50. Therefore, applying ITS 
sequence approaches to identify fungi increases the pos-
sibility to find similar or homologous sequences. For  
example, 66 distinct operational taxonomic units (OTUs) 
were isolated from Pseudorchis albida and identified 
through only ITS sequencing and phylogenetic analysis51.  
 However, using ITS region alone for identification of 
some groups of fungi is not adequate. As a result, multi-
ple gene loci are usually sequenced52,53. Besides ITS,  
regions of DNA that have been used in sequence-based 
identification of orchid fungal endophytes include the nu-
clear coding regions, i.e. 28S rDNA, -tubulin (TUB2), 
glycerdalehyde-3-phosphate dehydrogenase (GAPDH), 
actin (ACT), and the mitochondrial large subunit rDNA 
(mt-LSU-rDNA) (Table 1). For example, the ITS region 
alone compared with a combination of ITS, TUB2 and 
tef1 gave relatively poor species resolution in identifica-
tion of Pestalotiopsis species54 isolated from Dendrobium 
nobile1 and Pholidota pallida28, as well as Fusarium from 
Pecteilis susannae and Cattlteya skinneri2,43,55. For iden-
tification of fungal endophytes from P. pallida to generic 
level, the ITS region was used; however, the ITS region 
combined with TEF, GPDH and ACT was used for inter-
specific distinction28,55. Similarly, ITS in combination 
with mt-LSU-rDNA were used to identify endophytes 
from Habenaria radiata, Epipactis thunbergii and six 
species of Chiloglottis56,57. Huang et al.58 reported that 
sequencing multiple barcodes of fungi from Phalaenopsis 
microbiome using next-generation sequencing gave much 
higher fungal diversity than that sequencing nuclear-ITS 
alone. 
 
Problems with identification of orchid endophytes using 
molecular methods: There are several disadvantages in 
relying on molecular methods for identifying endophytes, 
including low quality and misidentification of a large 
number of ITS sequences in GenBank41. These problems 
are now being addressed41. For example, Cai et al.59 com-
pared ITS sequences of ex-type specimens of Colleto-
trichum with the sequences in GenBank and reported that 
the majority of Colletotrichum ITS sequences in GenBank 
are wrongly named. Recently, some researchers advo-
cated applying sequences of fungal ex-type for construct-
ing phylogenetic backbone which may avoid improper 
identification41,55. Furthermore, some fungal-specific 
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primers may fail to amplify DNA of some fungi. The 
fungal primers ITS1F and ITS4 cannot efficiently amplify 
DNA of fungal species in the family Tulasnellaceae60. 
Therefore, although in most of the cases morphological 
identification or molecular identification alone is adequate, 
it is best, where possible, to use both morphological and 
molecular methods. We recommend a combination of two 
methods for endophytic identification in orchids. This is 
because endophytes may contain some fungal taxa that 
grow vigorously on media61, but others are only revealed 
when molecular methods are applied.  

Diversity of orchid non-mycorrhizal endophytes 

The orchid non-mycorrhizal endophytic fungi contain 
over 110 genera, which are more diverse than mycorrhi-
zal endophytes (Table 3). At least 39 genera of Sordario-
mycetes (i.e. Cylindrocarpum, Hypocrea, Nigrospora, 
Pestalotiopsis)1,62,63, 25 genera of Dothideomycetes  
(i.e. Alternaria, Cercospora, Lasiodiplodia, Phyllos-
ticta)28,35,64, 12 genera of Leotiomycetes (i.e. Chaeto-
mella, Sclerotinia)1,63 in Ascomycota and 32 genera of 
Agaricomycetes in Basidiomycota (i.e. Conocybe, Gym-
nopus, Hydropus, Psathyrella, Resinicium)65,66 have been 
reported as orchid non-mycorrhizal endophytic fungi. 
They also involve a few species of Pezizomycetes (i.e. 
Geopora)67, Eurotiomycetes (i.e. Talaromyces)44, Chaeto-
thyriomycetes (i.e. Exophiala)67, Helotiales and Xylaria-
les of ascomycetes (i.e. Nemania)19 in Ascomycota and 
Tremellomycetes (i.e. Cryptococcus)64 as well as Puccin-
iomycetes (i.e. Tuberculina)68 in Basidiomycota. Orchid 
non-mycorrhizal fungi related to Chytridiomycota (i.e. 
Olpidium)69, Glomeromycota57 and Zygomycota (i.e. 
Umbelopsis)70 have also been reported. Among all genera 
observed in orchid non-mycorrhizal fungi, Colleto-
trichum and Fusarium frequently appeared in different 
orchids such as S. nepalense and D. nobile10,19. Aspergil-
lus, Trichoderma and Verticillium have also been repeat-
edly found in orchids47,71 (Table 3). 
 Since the traditional protocol of surface sterilization 
has a significant influence on the fungal endophytes  
obtained, it is possible that some surface contaminants 
could be mistakenly identified as orchid non-mycorrhizal 
endophytes. This may be particularly true for species of 
Aspergillus, Penicillium and Cladosporium which are 
common surface contaminants22, as well as Trichoderma 
hamatum and Verticillium sp., which are soil-dwelling 
fungi but reported as fungal endophytes from orchids63,71,72. 

Specificity and factors affecting fungal diversity 

Host-specificity between orchids and their non-
mycorrhizal endophytic fungi has been less well studied 
compared to their biodiversity. Endophytes of certain 
non-photosynthetic orchids appeared to be more specific 

than in green photosynthetic orchids3. Psathyrella can-
dolleana is specific to the mycoheterotrophic orchid  
Eulophia zollingeri66. However, fungal specificity could 
be observed in some photosynthetic orchids. The photo-
synthetic orchids like Dendrobium spp. have frequent  
associations with fungi in Xylariaceae1,19,73. Grammato-
phyllum speciosum was reported to be colonized by Fusa-
rium and Trichoderma72. Endophytic fungi isolated from 
another photosynthetic orchid – Orchis militaris were 
found to be host-specific68. Specificity was also observed 
in mycoheterotrophic orchids. Thirteen different taxa  
occurred on a single sample in the study of endophytes 
from the mycoheterotrophic orchid, Aphyllorchis mon-
tana18. 
 Orchid tissues used for the fungal endophyte study also 
affect the diversity of non-mycorrhizal endophytes. The 
diversity of non-mycorrhizal endophytic fungi in orchids 
is higher in leaves than roots20,73. Tao et al.64 found that 
there was overlap in the case of few endophytic fungi in 
roots and leaves of Bletilla ochracea. They pointed out 
that orchid leaves and roots had different endophyte asso-
ciations and speculated that this was probably because the 
organ texture provided different ecological habitats (air 
or below ground) with varying physiology and chemistry 
for the taxa64,74.  
 The diversity of orchid non-mycorrhizal endophytic 
fungi probably also depends on the localities from where 
the orchids were collected. Sudheep and Sridhar20 re-
ported that relatively similar endophytic fungal assem-
blages were isolated from distantly related orchids Vanda 
testace and Bulbophyllum neilgherrense sampled in the 
same habitat, i.e. the Kaiga forest of the Western Ghats, 
India. There was no overlap in taxa of non-mycorrhizal 
endophytic fungi isolated from individuals of Epipactis 
atrorubens sampled respectively, at a meadow in a 
coastal farm and at Ash Hill67. Bunch et al.75 found that 
fungal endophytes in Cypripedium acaule were signifi-
cantly influenced by geography and soil. Therefore, when 
studying orchid non-mycorrhizal endophytic fungi, sam-
pling at different niches will help understand their fungal 
ecology. Furthermore, as climate change occurs, this may 
alter orchid niches by impacting their surroundings such 
as soil moisture and rainfall74. Endophyte diversity in 
plants may also be affected by insect-induced galls, 
which can change fungal colonization and diffusion76. 

Groups of non-mycorrhizal endophytes from  
orchids  

Orchid non-mycorrhizal endophytes can be classified into 
several groups according to their lifestyles, i.e. ECM 
fungi, saprobes, parasites and latent pathogens (Table 1). 
However, fungal lifestyles are not always stable traits. 
Some endophytic fungi can switch to a necrotrophic life-
style at an ecological timescale77. Further studies on the 
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evolution of endophytic fungi at the gene and ecological 
levels need to be carried out to explore their roles in  
orchids78. 

Ecto-mycorrhizal fungi  

Roots of many mycoheterotrophic orchids with internal 
hyphal coils of saprotrophic fungi, were found to be  
associated with ECM Ascomycota (e.g. Terfeziaceae, 
Saroscyphaceae)79 and/or ECM Basidiomycota (e.g. Rus-
sulaceae, Thelephoraceae, Clavulinaceae, and Sebacina-
ceae)18,29,44,79 of trees and shrubs. ECM symbiosis has 
long been understood as the way orchids derive carbon 
from the surrounding ectomycorrhizal trees. This hy-
pothesis was later verified by the McKendrick et al.80, 
who used 14CO2 to track the transfer of carbon from  
ectomycorrhizal tree seedlings via hyphal connections to 
the mycoheterotrophic orchid Corallorhiza trifida in the 
field that was later confirmed by other studies69,81. Inter-
estingly, photosynthetic orchids were also found to be as-
sociated with ECM fungi in the roots12,53,68,67 and were 
partial exploiters of fungal carbon12,53,69. The degree of 
specificity between orchids and their ectomycorrhizal 
partners, therefore, largely but not entirely depends on 
the degree of dependency of orchids on the fungal car-
bon. Achlorophyllous orchids and species with inefficient 
photosynthesis were reported to be specifically associated 
with narrow groups of ECM fungi, including Russula49,79, 
whereas chlorophyllous orchids were associated with a 
wide range of ECM fungi82. However, Roy et al.18 stud-
ied orchid–fungal associations in tropical regions and re-
vealed the absence of specificity in two and the presence 
of specificity in one mycoheterotrophic species. 
 The role of ECM fungi in orchids, however, is proba-
bly not limited to carbon transport. It has been speculated 
that mycorrhizal networks increase the bioactive zones of 
infochemicals by serving as the direct connecting super-
highways for plants to communicate underground83. Even 
though arbuscular mycorrhizal fungi are presently the 
only group of fungi that have been proven to transport 
compounds between multiple plant species through com-
mon hyphal networks84, it will be interesting to investi-
gate if ECM fungi play this role in orchids.  

Saprobic fungi 

Many saprobic species of Agaricomycetes (i.e. Hydropus, 
Gymnopus, Marasmiellus)85 and Sordariomycetes (i.e. 
Clonostachys, Resinicium)19 have been identified as  
orchid non-mycorrhizal endophytic fungi. Endophytes are 
important saprobic decomposers22. Gymnopoids and 
mycenoids saprobes isolated from mycoheterotrophic  
orchids Gastrodia similis have been reported to secrete 
laccases and peroxidases44,66,86,87. Resinicium spp. living 
in G. similis are also wood-decaying fungi66. Lasiosphae-

ria spp. found in the photosynthetic orchid Habenaria 
radiataare are important ligninolytic saprotrophs57,88.  

Latent pathogen 

Some of the non-mycorrhizal endophytes are plant patho-
gens. For example, Fusarium oxysporum can cause plant 
wilt and rot diseases89. Alternaria, Aspergillus, Chaeto-
phoma and Trichoderma have relationships with cotton 
plant disease90. Xylaria is a well-known pathogen from 
decaying plant organs91. Paeciliomyces sp. isolated from 
Vanda testacea is also reported as an entomopathogen20. 
 Latent pathogens in plants have been noticed from the 
1950s (ref. 92). They may exist as endophytes and proba-
bly become pathogens during a later period of life, espe-
cially when plants are stressed67. Some Colletotrichum 
species are pathogens of orchids such as Oncidium  
flexuosum, Bulbophylum cylindrum and Coelogyne 
cristata33,93, while they have also been isolated as endo-
phytes from healthy orchids, such as species in Lepanthes 
and Dendrobium1,47. In fact, endophytes in plant stems 
and leaves can switch from latent pathogens to mutualis-
tic symbionts94. Freeman and Rodriguez95 found that non-
pathogenic and pathogenic strains in plants can restrict 
the growth of each other, and mutualists may also be 
pathogens. Orchids at different life stages perhaps carry 
latent pathogens to different extents because all plants 
have been found potentially infected by endophytes and 
when competition for energy occurs between plants and 
fungi, plants may tend to be more susceptible to the 
pathogens96. Furthermore, some well-known virulent taxa 
such as Fusarium species, which are often isolated from 
orchids, tend to be asymptomatic endophytes rather than 
pathogens under optimal growth conditions62,97. There-
fore, although we speculate that latent pathogens exist in 
orchids, only further investigations can identify their 
roles in host tissues. 

Role of non-mycorrhizal endophytes in orchids 

The role of orchid non-mycorrhizal endophytes has rarely 
been addressed. In general, plant endophytes are thought 
to be the resources for bioactive compounds. For exam-
ple, a Trichoderma species from Cupressaceae was 
shown to have antimicrobial properties98. Screening bio-
active compounds for disease treatment from higher 
plants has increased99. Potential pharmaceutically impor-
tant substances are abundant in orchids and this to some 
extent may be a result of extreme diversity of non-
mycorrhizal fungal metabolites. Alternaria sp. and F. ox-
ysporum isolated from orchids in Brazil showed strong 
inhibition to Escherichia coli100. From the orchid Anoec-
tochilus setaceus, an antibacterial nortriterpenoid helvolic 
acid was extracted from the endophytic taxon Xylaria 
sp.101. These orchid non-mycorrhizal endophytes may 
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Appendix 1. Orchid genera in endophytic research 

Orchid genera Reference Orchid genera Reference Orchid genera Reference 
 

Aa 7 Dryadella 135 Oerstedella 151 
Acampe 112 Dryandra 93 Oncidium 32 
Acianthera 100 Dryas 93 Onychium 152 
Acianthus 30 Elythranthera 63 Ophrys 145 
Aerangis 127 Encyclia 143 Orchis  142 
Aeranthes 66 Epiblema 63 Oreorchis 139 
Aerides 123 Epidendrum 32 Ornithidium 153 
Amerorchis 39 Epipactis 44 Orthoceras 117 
Anacamptis 23 Epipogium  69 Paphiopedilum 123 
Angraecopsis 66 Eriochilus 117 Paracaleana 154 
Angraecum 127 Erythrodes 32 Pecteilis  43 
Anoectochilus 128 Erythrorchis 140 Pelexia 134 
Aphyllorchis 18 Eulophia 113 Peristeranthus 117 
Aplectrum 129 Galeola 144 Phaius 144 
Apostasia 130 Gastrochilus 71 Phajus 139 
Appendiculata 131 Gastrodia 85 Phalaenopsis 123 
Arachnis 114 Gavilea 9 Pholidota  28 
Arachnorchis 132 Gennaria 145 Piperia 155 
Arthrochilus 117 Geodorum 71 Platanthera  53 
Arundina 131 Glossodia 117 Platylepis 66 
Beclardia 66 Gomesa 146 Plectorrhiza 117 
Benthamia 66 Gongora 135 Pleione 64 
Bipinnula 133 Goodyera 147 Pleurothallis 118 
Bletilla  33 Grammatophyllum 72 Plocoglottis 144 
Brassia 129 Graphorchis 66 Pogonia 129 
Bromheadia 131 Graphorkis 127 Polystachya 127 
Buddleja 134 Gymnadenia 142 Pomatocalpa 117 
Bulbophyllum 28 Habenaria  57 Prasophyllum 63 
Caladenia 30 Hadrolaelia  8 Pseudorchis 51 
Calanthe 131 Hetaeria 135 Psychilis 32 
Caleana 53 Hexalectris 148 Pteroceras 117 
Calochilus 117 Hexisea 135 Pterostylis 30 
Calopogon 129 Himantoglossum 62 Pterygodium 156 
Calypso 39 Hoffmannseggella 8 Pyrorchis 63 
Camaridium 119 Holcoglossum 5 Renanthera 123 
Campylocentrum 32 Holothrix 66 Rhinerrhiza 117 
Catasetum 135 Hymenocallis 93 Rhizanthella 117 
Cattlteya 2 Ionopsis 32 Rhynchostylis 157 
Cephalanthera 53 Isochilus 45 Robiguezia 135 
Chamaegastrodia  78 Jacquinella 135 Robiquetia 117 
Changnienia  42 Jumellea 66 Rodriguezia 135 
Chiloglottis 56 Laeliocattleya 114 Rossioglossum 158 
Clivia 93 Lecanorchis 124 Saccolabiopsis 117 
Coeloglossum 119 Lepanthes  47 Sacoila 134 
Coelogyne 64 Leporella 117 Sarcochilus 116 
Coppensia 136 Leucorchis 142 Sarcoglottis 159 
Corallorhiza 80 Limodorum 49 Satyrium  10 
Corybas 63 Liparis 147 Scaphyglottis 135 
Corycium 137 Lirope 73 Serapias 145 
Corymborkis 66 Listera 142 Sobralia 135 
Cranichis 138 Loroglossum 149 Sophronitis 100 
Cremastra 139 Ludisia 126 Spathoglottis 131 
Cryptopus 66 Luisia 150 Spiculaea 63 
Cryptostylis 63 Lycaste 129 Spiranthes 23 
Cymbidium 139 Lyperanthus 63 Stanhopea 160 
Cynorkis 66 Macodes 144 Stelis 118 
Cypripedium 3 Maxillaria 138 Taeniophyllum 117 
Cyrtosia 140 Microtis 63 Thelymitra 63 
Cyrtostylis 141 Miltonia 135 Thrixspermum 114 
Cystopus 135 Myoxanthus 135 Tipularia 147 
Dactylorchis 142 Myrmechis 129 Tolumnia 32 
Dactylorhiza 53 Neottia 79 Trichoglottis 117 

(Contd) 
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Appendix 1. (Contd) 

Orchid genera Reference Orchid genera Reference Orchid genera Reference 
 

Dendrobium  1 Neottianthe 162 Trichopilia 135 
Dendrochilum 131 Nervilia 163 Trichosalpinx 135 
Dichaea 135 Neuwiedia 164 Trigonidium 135 
Dichromanthus 161 Nidema 135 Trizeuxis 138 
Didymoplexis 135 Nigritella 165 Vanda 114 
Dimerandra 135 Notylia 138 Vanilla 138 
Diplocaulobium 34 Oberonia 150 Vrydagzynea 135 
Dipodium 125 Octomeria 135 Wullschlaegelia  66 
Disa 63 Odontoglossum 166 Yoania 167 
Diuris 63 Oeceoclades 32 Zeuxine 168 
Dryadella 135 Oeonia 66 

 
 
occur in other plants and possibly be involved in the pro-
duction of bioactive compounds. Gogoi et al.102 screened 
bioactive metabolites from Hypocrea spp. isolated from 
Dillenia indica. Hypocrea species have also been isolated 
from orchids, such as Wullschlaegelia aphylla and Hima-
ntoglossum adriaticum66,82. Xu et al.103 found that ap-
proximately 160 metabolites isolated from Pestalotiopsis 
species had anti-tumour, anti-fungal or anti-microbial  
potential. This perhaps provides hope for decreasing pre-
ssure for the huge requirement for taxol, as the anti-
tumour drug is restricted to yew trees104.  
 Besides highly bioactive alternatives, Hou and Guo105 

showed that dark septate endophytes isolated from Den-
drobium and Leptodontidium spp., interacted with the 
seedlings of D. nobile in a manner similar to that of  
orchid mycorrhizal fungus. The endophyte formed pelo-
ton-like structures in cortical cells of the orchid and 
greatly enhanced the growth and biomass of the orchid 
seedlings. Non-mycorrhizal Fusarium was reported to 
promote seed germination in Cypripedium and Platan-
thera orchids, even though the effect was relatively minor 
when compared to that of specific orchid Rhizoctonia 
mycorrhiza106. Similarly, Umbelopsis nana isolated from 
Cymbidium spp. has a vigorous effect on development of 
Cymbidium hybridum, enhancing K, Ca, Cu, Mn contents 
in symbiotic plantlets81. Researchers detected fuel poten-
tial in volatile organic compounds isolated from Phomop-
sis sp. from orchid Odontoglossum sp.107. Applications of 
endophytes of other plants have been shown to have in-
dustrial potential, which may be worth exploring in or-
chid endophytes. For example, endophytic antioxidant 
activities have been reported in many plants108. Phoma, 
Alternaria and Aspergillus species are metal-resistant and 
play roles in phytoremediation109. Phomopsis isolates can  
secrete enzymes, including cellulases, lipases, pectinases, 
pectate, lyases and proteases110. Cladosporium, Alter-
naria and Fusarium species that are major groups  
of endophytic fungi in grasses have close relationships 
with allergen exposure, which may help in understanding 
the evolution of immune reaction to respiratory aller-
gens111. 
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