
REVIEW ARTICLE

CURRENT SCIENCE, VOL. 108, NO. 12, 25 JUNE 2015 2186

*e-mail: pinaki_chakraborty_163@yahoo.com

Fifty years of peephole optimization

Pinaki Chakraborty*
Division of Computer Engineering, Netaji Subhas Institute of Technology, New Delhi 110 078, India

In 1965, William M. McKeeman introduced the con-
cept of peephole optimization. This article provides a
brief review of the major peephole optimization tech-
niques identified so far and the methodologies used to
implement them. Topics for further research on peep-
hole optimization have been also identified.

Keywords: Code generators, compilers, instruction
sequences, peephole optimization.

MCKEEMAN1 presented a code optimization technique
‘that consists of a local inspection of the object code to
identify and modify inefficient sequences of instructions’.
He also suggested a name that very well describes this
technique – peephole optimization.
 Code generators in most compilers operate locally pro-
ducing at the best locally optimal object code fragments
which may not be efficient when juxtaposed2. The situa-
tion can be improved by peephole optimization. This is
typically applied on the object code late in the compila-
tion process. A window or peephole is slid over the
object program replacing instruction sequences within the
peephole by equivalent but shorter and/or faster instruc-
tion sequences. The peephole typically consists of 2–3
contiguous instructions. Peephole optimization can be
used for almost all types of programing languages and
machine architectures. It takes care of machine-
independent as well as machine-specific issues. Peephole
optimization is simple, efficient and easy to implement.
Unlike most other code optimization techniques, peep-
hole optimization does not make the compiler much heav-
ier or slower. Moreover, the logic behind it can be
appreciated by all computer scientists. Consequently,
peephole optimization is covered in most textbooks on
compiler construction3,4, taught to millions of students in
universities around the world, has been used in many re-
search-purpose and production-quality compilers, and
serves as an important topic for research even 50 years
after its invention.

Common peephole optimization techniques

McKeeman1 originally discussed only a few optimization
techniques. Later researchers like Bagwell Jr5, Wulf et
al.6, and Tanenbaum et al.7 identified many more such

peephole optimization techniques (Table 1). These can be
grouped as follows.

Elimination of redundant instructions

Code generators often produce redundant instructions
which can be deleted without any side effect. There may
be load and store instructions that act on the same data
unit even before its value has been modified. Such redun-
dant load and store instructions may be deleted. An unla-
belled instruction sequence following an unconditional
jump instruction is unreachable and may be deleted too.
A test or a compare instruction not followed by a condi-
tional branch instruction may also be deleted. An incon-
sequential instruction sequence, such as addition of zero
or two consecutive negations, may be deleted too.

Improvements in flow of control

An unconditional or a conditional jump instruction pro-
duced by a code generator may have another jump in-
struction as its target. The flow of control of the program
can be improved by suitably changing the target address
of such a jump instruction, and in some cases the second
jump instruction may be even deleted. Moreover, if a
conditional jump instruction is preceded by a compare or
a negation instruction, then the two instructions may be
replaced by a new conditional jump instruction that pre-
serves the logic.

Algebraic simplifications

If a program uses an expression consisting of two or more
constants and no variables, then that expression may be
evaluated at the compile time only. Some arithmetic in-
structions can be replaced by much simpler instructions
on the occurrence of some specific operands. For exam-
ple, x2 can be implemented as x * x and if a square root
instruction is available, then x0.5 may be implemented as
sqrt(x). Similarly, multiplication by a power of 2 may be
implemented as left-shift, division by a power of 2 may
be implemented as right-shift, addition of 1 may be im-
plemented as increment, subtraction of 1 may be imple-
mented as decrement, and multiplication or division by
–1 may be implemented as negation. Logic expressions
may be simplified at the compile time using the concepts of
Boolean algebra like the De Morgan’s laws. Additionally,

REVIEW ARTICLE

CURRENT SCIENCE, VOL. 108, NO. 12, 25 JUNE 2015 2187

Table 1. Common peephole optimization techniques

Optimization McKeeman1 Bagwell Jr5 Wulf et al.6 Tanenbaum et al.7

Elimination of redundant instructions
 Removal of redundant load and store instructions  
 Removal of unreachable instructions 
 Removal of useless test and compare instructions 
 Removal of inconsequential instruction sequences (null sequences)    

Improvements in flow of control
 Elimination and coalescing of jump instructions 
 Modification of comparisons 

Algebraic simplifications
 Evaluation of constant expressions (constant folding)   
 Modifying instructions to simpler forms (operator strength reduction)   
 Simplification of logic expressions 
 Reordering arithmetic instructions  

Use of machine idioms
 Addressing optimizations  
 Using special instructions  

arithmetic instructions may be reordered taking advan-
tage of the commutative and associative properties of the
operations to facilitate further algebraic simplifications.

Use of machine idioms

To obtain an efficient object program, the machine-
specific features of the target machine need to be
exploited at some stage. A typical target machine sup-
ports several addressing modes. Choosing an appropriate
addressing mode can help in optimizing data transfer in-
structions, and arithmetic and logical instructions. Target
machines often provide some kind of special instructions.
For example, a target machine may provide an instruction
to duplicate the data unit at the top of the stack. Such
special instructions should be used to obtain an efficient
object program.

Hand-coding of peephole optimization

Peephole optimization was initially supposed to be hand-
coded into compilers. A compiler developer identifies
inefficient instruction sequences and also suggests
equivalent instruction sequences that should replace
them. These replacement rules are hand-coded to form
the peephole optimizer of a compiler. Several compilers
have been implemented using this methodology.
 The first of these compilers was developed by
McKeeman1 himself (Box 1). He used a hand-coded
peephole optimizer in the compiler of a simple procedural
language called Gogol8. The compiler ran on, and pro-
duced object code for, PDP-1 machines. He found that
peephole optimization led to considerable improvement
in the object code.

 Wulf et al.6 used peephole optimization in the FINAL
phase of the Bliss/11 compiler. They presented several
new peephole optimization techniques and improved the
existing ones. Additionally, they presented a data struc-
ture that can be used to efficiently implement peephole
optimization (Figure 1). The object program is stored in a
doubly linked list. Each node in this list is either a code
cell or a label cell. A code cell stores an instruction along
with its operands, while a label cell marks a position in
the object program. A label cell also has a sublist of
nodes called reference cells. If a code cell has an instruc-
tion that makes a jump to a given label, then the label cell
corresponding to that label has a reference cell that points
back to that code cell. This data structure allows reading
the object program in both forward and backward direc-
tions, easy insertion and deletion of instructions, and oth-
er operations that help in implementing peephole
optimization. This data structure and its variants have
been used by several later researchers9,10.
 Although peephole optimization was actually proposed
for object code, some researchers have employed it on
intermediate code and obtained encouraging results.
Tanenbaum et al.7 used peephole optimization on a stack
machine-based intermediate language. They identified
more than a 100 replacement rules. This list of replace-
ment rules remains till date the largest repository of its
type and is often used as a benchmark. Tanenbaum et al.7
also found that using peephole optimization produces
object programs that on an average have 16% fewer
instructions and are 14% smaller in size. This peephole
optimizer was used as the third of the seven phases in the
Amsterdam Compiler Kit11. Interestingly, this peephole
optimizer was followed by a machine-independent global
optimizer as the fourth phase and a machine-specific
target optimizer as the sixth phase in the Amsterdam

REVIEW ARTICLE

CURRENT SCIENCE, VOL. 108, NO. 12, 25 JUNE 2015 2188

Box 1. Story behind the invention of peephole optimization.

In the summer of 1964, William M. McKeeman, then a graduate student at the Stanford University, USA, went to
work with John McCarthy. McCarthy was at the time working on time-sharing using a PDP-1 computer with 4K 18-
bit words of memory. McCarthy suggested McKeeman to use an available arithmetic simplification program to calcu-
late the Einstein-Ricci-Christoffel tensor. However, that did not work out because the simplification program could
not handle the complexity of the problem. So, McKeeman decided to write a fast compiler for PDP-1 instead.
 McKeeman designed a simple procedural language focusing on arithmetic. The language was first named ‘go’
denoting that it is fast, but the name was later changed to Gogol in the memory of Nikolai Gogol. When McKeeman
started implementing the Gogol compiler, the small memory of PDP-1 motivated him to invent peephole optimiza-
tion. Dense object code meant bigger problems could be solved. The compiler itself had to be small. In fact, the
compiler was limited to about 2K 18-bit words because it needed the other 2K words to place the object code it pro-
duced.
 When McKeeman showed the Gogol compiler to McCarthy he said ‘Well, you surely wasted your summer’. Some
of McKeeman’s contemporaries at Stanford at that time thought that it was too simple an idea to merit publication.
Nevertheless, McKeeman’s paper on peephole optimization was published in 1965 and the concept was soon
adopted by many compiler developers.

Figure 1. Data structure used by Wulf et al.6 to implement peephole optimization.

Compiler Kit. Later, McKenzie12 improved this peephole
optimizer using a buffering technique. Chakraborty13 also
used peephole optimization on intermediate code in the
iXC85 cross compiler that has a simple C-like language
as its source language and produces object programs for
Intel 8085 machines.

Automatic inference of replacement rules

Peephole optimization can be also implemented using a
tool to automatically infer replacement rules from a sym-
bolic description of the target machine. The replacement
rules may be inferred either at the compile–compile time
or at the compile time. There are two major advantages of
this method. First, using a large number of automatically
inferred replacement rules results in a much thorough op-
timization. Second, the compiler may be easily retarget-
ted to another target machine by editing the machine
description.
 Davidson and Fraser2 developed the first peephole
optimizer using automatically inferred replacement rules
and named it PO. PO takes as input a symbolic descrip-
tion of the target machine and an object program. It
then checks each pair of adjacent instructions in the
object program and, if possible, replaces them with an
equivalent single instruction. PO is mostly machine-

independent. It can be modified to replace three consecu-
tive instructions by a single one. This makes PO slow but
not more complex. PO has been also modified to replace
some inefficient nonadjacent pairs of instructions14.
An instruction that sets a data unit and the next instruc-
tion modifying that data unit may be sometimes replaced
by a single instruction. PO can be also augmented with a
compile–compile time training system to improve its
speed15.
 The method of automatically inferring replacement
rules has been followed by several later researchers.
Lamb9 used this method to implement the peephole opti-
mizer of a compiler for a subset of Preliminary Ada.
Kessler16 used the method to implement a peephole opti-
mizer, called Peep, for a Portable Standard Lisp Compiler.
Peep can also reduce nonadjacent instructions. Later,
Kessler et al.17 used automatically inferred replacement
rules in a peephole optimizer that serve as the last of the
seven phases in the Experimental Portable Standard Lisp
Compiler. In this compiler, two sets of replacement rules
are inferred at the compile–compile time. The first set of
replacement rules takes into account the flag register of
the target machine, while the second set ignores it. The
second set is typically much larger. At the compile time,
flow analysis performed determines if the flag register is
significant for a particular instance of an instruction.

REVIEW ARTICLE

CURRENT SCIENCE, VOL. 108, NO. 12, 25 JUNE 2015 2189

Figure 2. Performance of peephole optimization at (a) compile–compile time and (b) compile time.

Since the flag register can be ignored in most cases, the
second set of replacement rules is used more often result-
ing in better optimization. Warfield and Bauer III18 im-
plemented a peephole optimizer as an expert system. This
expert system identifies inefficient pairs of instructions,
replaces them with equivalent single instructions, infers
new replacement rules and saves them for future use.
Several researchers10,19,20 used automatically inferred re-
placement rules to implement peephole optimizers for C
compilers, while Lambright21 used automatically inferred
replacement rules to implement a peephole optimizer for
Java bytecode. Several of these researchers observed that
a small number of replacement rules is sufficient to get
satisfactorily efficient object programs. In fact, Lamb9,
Davidson and Whalley19, and Lambright21 used only 53,
39 and 25 replacement rules respectively.
 Bansal and Aiken went a step forward and developed a
peephole superoptimizer22,23. Unlike normal optimizers,
superoptimizers use brute force optimization using thou-
sands of replacement rules. The optimizer uses training
programs to infer the replacement rules and stores them
in a database. The superoptimizer has been successfully
used on C programs. Superoptimizers produce object
programs of high quality, but are slower than normal op-
timizers and hence should be used to compile production-
quality software only.

Performance issues

The effectiveness of peephole optimization depends on
several factors like the nature of the source language, the
parsing and code generation techniques used in the com-
piler, and the specifications of the target machine. The
performance of peephole optimization can be measured at
compile–compile time, compile time and runtime. At the
compile–compile time, a compiler developer identifies
the replacement rules or they are automatically inferred
from a description of the target machine. However, many

of these replacement rules are variants of each other just
using different registers. The number of unique replace-
ment rules is generally much less than the total number of
replacement rules. The replaceable instruction sequences
typically consist of 1 to 5 instructions. In most compilers,
maximum of the replaceable instruction sequences have
two instructions, while maximum of the unique replace-
able instruction sequences have three instructions (Figure
2 a). At the compile time, the number of replacements
initially rises with an increase in the number of replace-
ment rules. However, the number of replacements be-
comes saturated after a threshold is reached (Figure 2 b).
It is wise to use more replacement rules than this thresh-
old only in a superoptimizer. Several researchers have
measured the performance of peephole optimization at
the runtime. It has been observed that peephole optimiza-
tion generally leads to 10–15% decrease in the size and
execution time of the object programs.

Concluding remarks

Peephole optimization will certainly continue to be used
in compilers both in hand-coded form and with automati-
cally inferred replacement rules. Additionally, new topics
related to peephole optimization as listed below may be
also investigated.

1. The concept of peephole optimization can be extended

from general purpose programing languages to
domain-specific languages. In fact, peephole optimi-
zation has been successfully used for hardware
description languages24 and database languages25. In
future, peephole optimization may be applied to other
domains as well.

2. Object-oriented programing is an effective technique
for implementing large and complex pieces of soft-
ware. This technique can be used to efficiently im-
plement compilers as well. It will be interesting to see

REVIEW ARTICLE

CURRENT SCIENCE, VOL. 108, NO. 12, 25 JUNE 2015 2190

how object oriented programing can be used to realize
peephole optimization.

3. Peephole optimization can be applied in just-in-time
compilers too. A suitably designed peephole optimizer
can help a just-in-time compiler to produce efficient
executable codes on the fly.

4. Peephole optimization can also be used in compilers
for parallel computers. Specialized replacement rules
for parallel architectures may be inferred.

5. With the advent of the energy-efficient paradigm of
computing, compilers are supposed to produce energy-
efficient object programs. Peephole optimization may
be used to replace more energy consuming instruction
sequences by equivalent but less energy-consuming
instruction sequences.

1. McKeeman, W. M., Peephole optimization. Commun. ACM, 1965,
8, 443–444.

2. Davidson, J. W. and Fraser, C. W., The design and application of
a retargetable peephole optimizer. ACM Trans. Program. Lang.
Syst., 1980, 2, 191–202.

3. Aho, A. V., Lam, M. S., Sethi, R. and Ullman, J. D., Compilers:
Principles, Techniques, and Tools, Addison-Wesley, 2007, 2nd
edn.

4. Fischer, C. N., Cytron, R. K. and LeBlanc Jr, R., Crafting a Com-
piler, Addison-Wesley, 2010.

5. Bagwell Jr, J. T., Local optimizations. ACM SIGPLAN Not., 1970,
5, 52–66.

6. Wulf, W., Johnson, R. K., Weinstock, C. B., Hobbs, S. O. and
Geschke, C. M., The Design of an Optimizing Compiler, Elsevier,
1975.

7. Tanenbaum, A. S., van Staveren, H. and Stevenson, J. W., Using
peephole optimization on intermediate code. ACM Trans. Pro-
gram. Lang. Syst., 1982, 4, 21–36.

8. McKeeman, W. M. and Wirth, N., Gogol, Technical report, Stan-
ford time-sharing project, Memo no. 24, Stanford University,
USA, 1964.

9. Lamb, D. A., Construction of a peephole optimizer. Software:
Pract. Exp., 1981, 11, 639–647.

10. Zhang, H. G. and Lan, X.-Z., Design and implementation of peep-
hole optimization based on extensible template. In Proceedings of

the First International Workshop on Education Technology and
Computer Science, 2009, vol. 2, pp. 95–98.

11. Tanenbaum, A. S., van Staveren, H., Keizer, E. G. and Stevenson,
J. W., A practical tool kit for making portable compilers. Com-
mun. ACM, 1983, 26, 654–660.

12. McKenzie, B. J., Fast peephole optimization techniques. Software:
Pract. Exp., 1989, 19, 1151–1162.

13. Chakraborty, P., Design and implementation of a cross compiler.
J. Multidiscip. Eng. Technol., 2009, 3, 6–15.

14. Davidson, J. W. and Fraser, C. W., Register allocation and exhaustive
peephole optimization. Software: Pract. Exp., 1984, 14, 857–865.

15. Davidson, J. W. and Fraser, C. W., Automatic inference and fast
interpretation of peephole optimization rules. Software: Pract.
Exp., 1987, 17, 801–812.

16. Kessler, R. R., Peep: an architectural description driven peephole
optimizer. ACM SIGPLAN Not., 1984, 19, 106–110.

17. Kessler, R. R., Peterson, J. C., Carr, H., Duggan, G. P. and Knell,
J., EPIC – a retargetable, highly optimizing Lisp compiler. ACM
SIGPLAN Not., 1986, 21, 118–130.

18. Warfield, J. W. and Bauer III, H. R., An expert system for a retar-
getable peephole optimizer. ACM SIGPLAN Not., 1988, 23, 123–
130.

19. Davidson, J. W. and Whalley, D. B., Quick compilers using peep-
hole optimization. Software: Pract. Exp., 1989, 19, 79–97.

20. Spinellis, D., Declarative peephole optimization using string pat-
tern matching. ACM SIGPLAN Not., 1999, 34, 47–50.

21. Lambright, H. D., Java bytecode optimizations. In Proceedings of
the Forty-second IEEE International Computer Conference, 1997,
pp. 206–210.

22. Bansal, S. and Aiken, A., Automatic generation of peephole
superoptimizers. ACM SIGPLAN Not., 2006, 41, 394–403.

23. Bansal, S., Peephole Superoptimization, Ph D thesis, Stanford
University, USA, 2008.

24. Keutzer, K. and Wolf, W., Anatomy of a hardware compiler. ACM
SIGPLAN Not., 1988, 23, 95–104.

25. Derr, M. A., Morishita, S. and Phipps, G., The glue-nail deductive
database system: design, implementation, and evaluation. VLDB
J., 1994, 3, 123–160.

ACKNOWLEDGEMENTS. I thank Prof. W. M. McKeeman, Dart-
mouth College, USA for sharing information about the events that led
to the invention of peephole optimization and for reading a draft of this
manuscript.

Received 4 November 2014; accepted 22 March 2015

