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Abiotic stress factors severely limit plant growth and 
development as well as crop yield. There is a great 
need to develop understanding of plant physiological 
responses to abiotic stresses in order to improve crop 
productivity through crop improvement programmes. 
Proteins play a central role in plant adaptations under 
stress and hence their identification is important to 
the biologist. Identification of such proteins by wet lab 
experimentation is sometimes expensive and time-
consuming. In such a situation, in silico approaches 
can be used to narrow down this search. In this study, 
classification of cereal proteins subjected to four  
different stresses, namely, extreme temperature, 
drought, salt and abscisic acid (ABA) was undertaken. 
Classification models were built using support vector 
machine (SVM) to predict the function of proteins  
under these abiotic stresses on the basis of 34 physico-
chemical features extracted from the protein sequence. 
Specific features of the protein sequence that are 
highly correlated with certain protein functions were 
selected by stepwise logistic regression, a feature selec-
tion method. SVM was trained using different kernel 
functions and cross-validated using 10-fold cross-
validation technique. Prediction precision was assessed 
through different measures such as sensitivity, specific-
ity and accuracy. The accuracy of protein function 
prediction using SVM with different kernel functions 
ranges from 60% to 100%. 
 
Keywords: Abiotic stress, cross-validation, physico-
chemical properties, proteins, support vector machine. 
 
ABIOTIC stress has negative impact on growth and pro-
ductivity of crops. Abscisic acid (ABA), drought, heat 
and salinity are among major abiotic stresses of plants1. 
Abiotic stress causes series of morphological, physiologi-
cal, biochemical and molecular changes which are not  
favourable for plant growth. These stress conditions are 
interrelated and induce cellular damage in plant either in-
dependently or in combination. ABA is the central regu-
lator of many plant responses to environmental stress, 
particularly stress related to osmotic regulation. ABA is 
produced in plants under water deficit and high salinity 

conditions and plays an important role in stress response2. 
Worldwide, drought is one of the most serious abiotic 
stresses to agricultural crops. It is associated with re-
duced water availability and cellular dehydration in 
plants. Therefore, there are changes in cellular metabo-
lism associated with an osmotic adjustment. Heat stress is 
associated with an enhanced risk of improper protein 
folding and denaturation of several intracellular protein 
and membrane complexes. It leads to reduction in the  
duration of developmental phases causing development of 
fewer organs/smaller organs, reduced light perception 
over the shortened life cycle and perturbation of pro-
cesses related to carbon assimilation which are responsi-
ble for significant yield losses in cereals3. Salt stress is 
responsible for low agricultural production in several hot 
and dry semi-arid regions, where, agriculture is depend-
ent on irrigation4. Plants, as sessile organisms, often have 
to cope with multiple environmental stresses and in order 
to mitigate these stresses, most plants employ complex 
regulatory mechanisms to trigger effective responses 
against various abiotic stresses. 
 Plants have special physiological mechanisms by 
which tolerance against different stresses is expressed. 
These mechanisms are regulated by a number of genes or 
proteins. Hence, it is important to identify these 
genes/proteins involved in various plant stress responses. 
However, identification of genes/proteins, which are  
important for these abiotic stresses, by wet lab experi-
mentation is expensive and time-consuming. Therefore, 
in silico approaches are used to narrow down this  
search and then wet lab experimentations are used for 
validation. 
 Computational approaches are used for predicting and 
classifying unknown proteins into their functional groups 
in a cost-effective way5. In silico classification of pro-
teins based on their functional trait can be done using 
their physicochemical properties derived from the seque-
nces. Large number of physicochemical properties can be 
derived from a protein sequence. These are often interre-
lated; therefore, it is important to select only important 
properties (i.e. features) through an appropriate feature 
selection procedure. Feature selection reduces the  
dimensionality of data by selecting only a subset of 
measured features (predictor variables) to develop a  
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classification model. Selection criteria usually involve the 
minimization of a specific measure of predictive error for 
models fit to different feature subsets. Algorithms search 
for a subset of predictors that optimally model measured 
responses, subject to some constraints. A good feature 
subset is one that contains features highly correlated with 
the response class, yet uncorrelated with each other. Also, 
classification and prediction performance can be impro-
ved by avoiding overfitting through feature selection pro-
cedure. There are different methods for feature selection 
such as correlation-based feature selection, Markov blan-
ket filter, fast correlation-based feature selection, sequential 
forward selection (SFS), sequential backward elimination 
(SBE)6, step-wise logistic regression, etc. 
 Many linear and nonlinear statistical techniques are 
available for binary classification such as discriminant 
analysis (DA), logit or probit models, neural networks, 
random forest, etc. However, support vector machine 
(SVM) is a promising nonlinear, non-parametric classifi-
cation technique, which has already been applied to number 
of scientific datasets for classification. It has theoretical 
advantages over other machine learning methods as it is 
based on fewer assumptions and is capable of discovering 
nonlinear separating boundaries between classes. SVM 
was first proposed by Vapnik7 and attracted a high degree 
of interest in the machine learning research community. 
Further, SVMs simultaneously minimize the empirical 
classification error and maximize the geometric margin 
and works on the principle of structural risk minimization 
(SRM). It maps input vector to a higher dimensional 
space, where a maximal separating hyperplane is con-
structed to separate the data. SVM has been employed in 
the classification of genes in various microarray experi-
ments8,9 and also used in the classification of proteins 
based on various physicochemical properties5. Though 
primarily it has been designed for binary classification, 
subsequently other variations were developed to extend 
this to the problem of multi-class classification10,11. To 
build confidence on the classifier, estimation of the error 
is a critical step. There are number of cross-validation 
techniques used for this purpose such as re-substitution 
validation, hold-out validation, leave-one-out cross-
validation, 10-fold cross-validation, bootstrap cross-
validation (BCV), leave-one-out bootstrap (LOOBT), 
BT632, BT632+, etc.12. 
 In this study, classifiers were built for in silico classifi-
cation of proteins related to major abiotic stresses of  
cereals such as ABA, drought, heat and salt using  
SVM. These SVM classifiers were trained using three 
different kernel functions, i.e. polynomial, radial and  
sigmoid. The prediction accuracy of classifiers, with  
respect to abiotic stresses and kernel functions, was  
estimated using 10-fold cross-validation technique. Per-
formance of classifiers for classification of proteins  
related to each abiotic stress was found to be quite  
satisfactory. 

Materials and methods 

Protein sequences from the Poaceae family which are res-
ponsible for regulation of four different stresses, i.e. 
ABA, drought, heat and salt were downloaded from the 
National Center for Biotechnology Information (NCBI) 
database (http://www.ncbi.nlm.nih.gov/). These proteins 
were either upregulated or downregulated in response to 
abiotic stresses undertaken. The upregulated and down-
regulated protein sequences were named as positive and 
negative proteins respectively, and considered as two 
classes in this analysis for each of the abiotic stresses. 
These two classes of the protein sequences, under each 
stress, were further subdivided into two parts randomly. 
The first subpart, two-thirds of the sequence, have been 
considered as training set and rest one-thirds of the  
sequences are considered as test set. Sample size for these 
sub-categories is given in Table 1. 

Feature selection from protein sequences 

Physicochemical properties of the protein sequences are 
useful in providing insight into the structural and  
functional behaviour of a molecule. In order to extract 
physicochemical features, Protparam tool was used. It 
computes various physicochemical properties from pro-
tein sequences. The parameters computed by ProtParam 
include molecular weight, theoretical pI, amino acid 
composition, atomic composition, extinction coefficient, 
estimated half-life, instability index, aliphatic index and 
grand average of hydropathicity (GRAVY). To reduce the 
dimensionality of the data, feature selection procedure 
was carried out using stepwise logistic regression (LR). 
Logistic regression model is given by 
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where  (x) = probability of outcome,  = [1, …, p] are 
the parameters of the logistic model. X is an n  p matrix 
pertaining to n proteins; whereas, p is total number of 
features included in the model. LR computes maximum 
 
 
Table 1. Sample size of protein sequences for positive and negative  
  regulation of different abiotic stresses 

  Training set Test set 
 

Protein class Positive Negative Positive Negative Total 
 

ABA 1,737 2,093 869 1,046 5,745 
Drought 369 469 184 235 1,257 
Heat 57 41 28 21 147 
Salt 3,063 2,093 1,532 1,046 7,734 
 
Total 5,226 4,696 2,613 2,348 14,883 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 107, NO. 8, 25 OCTOBER 2014 1285 

likelihood estimates of parameters of the logistic model. 
Stepwise LR enters independent (predictor) features in a 
stepwise manner. Feature selection was carried out by 
stepwise logistic regression using ‘proc logic’ of SAS 
ver. 9.3 software. Independent variables were, in stepwise 
manner, introduced into the model, evaluated, and then 
retained or discarded based on their significance in the 
overall model. Features are added to the logistic regres-
sion equation one at a time based on statistical criterion 
of reducing the –2 log Likelihood (–2 log L) errors for the 
included features. Details for calculating –2 log L is 
given in eq. (2). The likelihood-ratio test uses the ratio of 
the maximized value of the likelihood function for the 
full model (L1), the likelihood of obtaining the data 
evaluated at the maximum likelihood estimate (MLE) of 
the parameter over the maximized value of the likelihood 
function for the simpler model (L0), and the likelihood of 
obtaining the data when the parameter is zero. After add-
ing each feature, the model is tested for its inclu-
sion/exclusion or exclusion of other features which are 
present in the model. This process of inclusion and exclu-
sion of features stop at the point when it is not possible to 
reduce –2 log L statistically. This procedure helps in 
identification of important physicochemical features of 
proteins related to a particular abiotic stress. 
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After identification of important features of proteins  
related to a particular abiotic stress, classifier has been 
developed based on SVM. 

Support vector machine 

A support vector machine constructs a hyperplane which 
separates two different groups of feature vectors with a 
maximum margin. The hyperplane is constructed through 
learning from the training datasets by minimizing ||w||2 
and estimating the model parameters w and b that satisfy 
the following conditions 
 
 xi  w + b  1 for yi = +1, (3) 
 
 xi   w + b  –1 for yi = –1, (4) 
 
where yi is the class index which indicates the two classes 
of proteins (upregulated and downregulated) for each 
stress. Here, the values of yi are taken as 1/–1 for posi-
tive/negative protein classes respectively, xi represents 
feature vector with physicochemical descriptors of a pro-
tein as its elements. w is a vector normal to the hyper-
plane, |b|/||w|| is the perpendicular distance from the 
hyperplane to the origin and ||w||2 is the Euclidean norm 

of w. With the estimates of w and b, a given vector x can 
be classified by 
 
 fw,b(x) = sgn(xi  w + b). (5) 
 
Further, SVM maps the input variable into a high-dimen-
sional feature space using a kernel function K(xi, xj) in 
case of nonlinear relationship between predictor and  
response variables. SVM is applied to this feature space 
and then the decision function can be written as 
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where the coefficients i and b* are determined by maxi-
mizing the following Langrangian expression 
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under conditions 
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A positive or negative value from eqs (5) or (6) indicates 
that x belongs to the positive or negative class respectively. 

Kernel selection of SVM 

The training vectors xi of observations are mapped into a 
higher (maybe infinite) dimensional space by the function 
. The SVM then finds a linear separating hyperplane 
with the maximal margin in this higher dimension space, 
with a penalty parameter C > 0 of the error term. 
K(xi, xj) =  (xi)T (xj) is called the kernel function. Here, 
following popular kernel functions have been used to fit 
the nonlinear SVM. 
 
Polynomial kernel 
 
 ( , ) ( ) 0T d

i j i jK r   x x x x  (8) 
 
RBF kernel 
 
 2( , ) exp( || || ) 0i j i jK     x x x x  (9) 

Sigmoid kernel 
 

 ( , ) tan ( ) 0.T
i j i jK h r   x x x x  (10) 

 

CRAN package: e1071 version 1.6-2 of R software has 
been used for modelling SVM and a computer program 
has been developed in R14,15. The training of the support 
vector machine has been done by using subroutine ‘svm’ 
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of e1071 package on training data set. Function ‘tune’, 
which tunes the parameters of kernel functions using a 
grid search over supplied parameter ranges, was used to 
obtain an optimal value of parameters of kernel functions. 
Different parameters for a kernel functions and grid space 
of search for optimal values are given in Table 2. 

Estimation of prediction errors 

Performances of developed models were assessed through 
numbers of available measures such as sensitivity, speci-
ficity and accuracy, which are defined as 
 

 Sensitivity = TP/(TP + FN), (11) 
 
 Specificity = TN/(TN + FP), (12) 
 

 Accuracy = TP TN ,
TP TN FP FN


  

 (13) 

 

where, true positives (TP) and the true negatives (TN) 
were correct predictions for proteins, which belong to the 
stress class and proteins which do not belong to that 
stress class respectively. A false positive (FP) occurs, 
when a protein belonging to non-stress class is predicted 
in stress class and a false negative (FN) occurs, when, a 
protein belonging to stress class is predicted in non-stress 
class. Sensitivity measures the proportion of actual posi-
tives, which are correctly identified as such, i.e. it is de-
fined as the proportion of the proteins belonging to the 
class and is predicted rightly. Also, specificity measures 
the proportion of negatives which are correctly identified. 
However, it does not provide information about a protein 
which actually belongs to a class, it is predicted under 
non-class. Accuracy refers to the percentage of correct 
predictions made by the model when compared with the 
actual classifications in the test data. 
 Further, prediction errors are estimated using 10-fold 
cross-validation. In 10-fold cross-validation, the training 
data set for each stress was randomly partitioned into 10 
subsamples. Out of 10 subsamples, a single subsample is 
retained for validation of the model, and the remaining 9 
subsamples are used for training the models. The cross-
validation process is then repeated 10 times (the folds), 
with each of the 10 subsamples used exactly once as the 
validation data. The above statistics were calculated for 
each fold and results were averaged to produce a single 
estimate. 
 

Table 2. Parameters of kernel functions and grid space of search 

Degree [1 : 5] Parameter needed for kernel of type polynomial (d) 
Gamma [–1 : 1] Parameter needed for all kernels except linear () 
Coef ( ) [0 : 2] Parameter needed for kernels of type polynomial  
    and sigmoid (r) 
Cost [0–5] Constant of the regularization term in the  
    Lagrange formulation (C) 

Results and discussion 

In this study, important physicochemical features of pro-
teins for each abiotic stress were selected through  
stepwise logistic regression. Summary of statistics of 
stepwise logistic regression for salt, drought, ABA and 
heat stress is given in Tables 3–6 respectively. It was ob-
served from Table 3 that the values of –2 log L decrease 
with inclusion of new feature at every step in stepwise 
logistic regression until the 22nd step, where it was found 
to be 5780.468, which is higher than the previous step 
and there was further decrease in the value of –2 log L 
with inclusion of new features. Therefore, with the re-
moval of composition of Q, the process of feature selec-
tion was terminated at this stage and only 20 important 
features were included in the model. Similarly, pursuing 
Tables 4–6 reveals that until step 17, 11 and 5, the values 
of –2 log L decreaseed with inclusion of new features. 
Thus, process of feature selection was terminated after 
steps 17, 11 and 5 and total of 13, 9 and 5 important fea-
tures were retained for drought, ABA and heat respec-
tively. Support vector classifiers for four abiotic stresses 
were trained on training data sets with respective selected 
features by using three different kernel functions. These 
trained models are nothing but the two parallel hyperplanes 
obtained through process of optimization under constrained 
conditions. The training data points which lie on these 
hyperplanes are called support vectors. The number of 
support vectors in each case is given in Table 7. 

Performance assessment with different  
kernel functions 

Estimates of prediction error (%) of the SVM-based clas-
sifiers, with three different kernel functions, for all the 
four stresses were obtained through 10-fold cross-
validation. Results are presented in Table 8 and it can be 
seen that prediction error for predicting ABA stress is 
minimum (around 0.4%) for all kernel functions followed 
by drought and salt stresses (around 5%). The highest 
prediction error was found in case of heat stress (from 
12–14%), which may be due to small size of sample. 
 Performance of the support vector classifiers with three 
different kernel functions was further evaluated on test 
data set. Measures of evaluation such as accuracy, sensi-
tivity and specificity were calculated based on the values 
of TP, TN, FP and FN. Calculated values of these meas-
ures were given in Table 7 and used for comparative 
evaluation. It can be seen from Table 7 that in case of 
salt, performance of radial is best followed by polynomial 
and sigmoid; whereas in case of ABA, radial and poly-
nomial function performs equally well and are better than 
sigmoid kernel. For drought stress, overall performance 
of radial and polynomial was better than sigmoid func-
tion. In case of heat, sigmoid kernel performs better than
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Table 3. Feature selection through stepwise logistic regression for salt stress 

 Effect  
 

Step  Entered  Removed  DF* Number in Score chi-square  Pr **> ChiSq  –2 log L 
 

 1 Instability index  1  1 1538.6396 <0.0001  8492.989 
 2 Theoretical pI  1  2 977.6641 <0.0001 7445.325 
 3 Composition of S  1  3 503.2934 <0.0001 6923.619 
 4 Number of sulphur atoms  1  4 306.5713 <0.0001 6578.392 
 5 Number of nitrogen atom  1  5 124.3727 <0.0001 6456.570 
 6 Composition of I  1  6 103.9651 <0.0001 6350.993 
 7 Number of carbon atoms  1  7 227.4993 <0.0001 6131.524 
 8 Half life  1  8 98.8909 <0.0001 6026.403 
 9 Composition of K  1  9 48.5245 <0.0001 5977.178 
10 Composition of W  1 10 38.1635 <0.0001 5938.713 
11 Composition of F  1 11 29.3935 <0.0001 5909.103 
12 Composition of Q  1 12 16.5212 <0.0001 5892.588 
13 Number of positive amino acid  1 13 16.3233 <0.0001 5878.072 
14 Composition of M  1 14 14.3775 0.0001 5863.935 
15 Composition of D  1 15 16.2535 <0.0001 5847.539 
16 Composition of C  1 16 18.2926 <0.0001 5829.332 
17 Composition of V  1 17 11.4089 0.0007 5817.940 
18 Composition of Y  1 18 13.5471 0.0002 5803.911 
19 Composition of A  1 19 10.3869 0.0013 5793.558 
20 Composition of P  1 20 8.5904 0.0034 5784.764 
21 Composition of E  1 21 6.9706 0.0083 5777.793 
22  Composition of Q 1 20 2.6703 0.1022 5780.468 

*DF, Degrees of freedom; **Pr, Probability. 
 
 

Table 4. Feature selection through stepwise logistic regression for drought stress 

 Effect  
 

Step  Entered  Removed  DF* Number in Score chi-square  Pr **> ChiSq  –2 log L 
 

 1 Composition of N  1 1 307.2251 <0.0001 1355.148 
 2 Number of positive amino acid  1 2 161.9058 <0.0001 1172.919 
 3 Instability index  1 3 188.4156 <0.0001 960.916 
 4 Composition of Y  1 4 56.8022 <0.0001 901.223 
 5 Composition of P  1 5 37.2754 <0.0001 859.729 
 6 Composition of Q  1 6 33.8179 <0.0001 830.219 
 7 Composition of W  1 7 23.3684 <0.0001 805.164 
 8 Composition of L  1 8 20.5085 <0.0001 783.793 
 9 Aliphatic index  1 9 22.2672 <0.0001 761.930 
10 Composition of R  1 10 15.3094 <0.0001 744.983 
11 Composition of T  1 11 17.7495 <0.0001 728.240 
12 Number of negative amino acid  1 12 7.8604 0.0051 720.372 
13 Composition of D  1 13 6.4826 0.0109 713.895 
14  Number of positive amino acid 1 12 0.3604 0.5483 714.255 
15  Composition of Q 1 11 3.1613 0.0754 717.298 
16 Half life  1 12 5.0289 0.0249 712.215 
17 Composition of A  1 13 4.5254 0.0334 707.664 

 
 
radial and polynomial. It can be seen from the Table 7 
that sensitivity of radial kernel ranges from 79% to 100% 
for different stresses. For polynomial kernel, this range 
varies from 79% to 99.5%; whereas sensitivity for sig-
moid kernel ranges from 53% to 93%. Among these three 
kernel functions, radial kernel has highest sensitivity. A 
model with 100% sensitivity means that it is capable of 
predicting all actual positives. Further, from this table, it 
can be seen that radial function has specificity ranging 

from 80% to 98%. Specificity of polynomial function 
ranges from 49% to 99.5%; while for sigmoid kernel 
function, it ranges from 20% to 100%. Accuracy of radial 
function ranges from 84% to 99.4%. For polynomial kernel 
function, accuracy ranges from 74% to 99.5%. Sigmoid 
kernel accuracy ranges from 39% to 96%. Therefore, the 
performance of radial function with respect to specificity 
is the best as it can predict actual negatives more accu-
rately. Overall accuracy of radial kernel function is found 
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Table 5. Feature selection through stepwise logistic regression for ABA stress 

 Effect  
 

Step  Entered  Removed  DF* Number in Score chi-square  Pr **> ChiSq  –2 log L 
 

 1 Number of negative amino acid  1 1 1747.9651 <0.0001 5464.306 
 2 Molecular weight  1 2 3732.4232 <0.0001 1148.043 
 3 Composition of E  1 3 378.5988 <0.0001 710.850 
 4 Composition of D  1 4 152.7613 <0.0001 536.503 
 5 Number of positive amino acid  1 5 115.1702 <0.0001 426.639 
 6 Amino acid number  1 6 236.2700 <0.0001 346.525 
 7  Molecular weight 1 5 0.2028 0.6525 346.738 
 8 Composition of C  1 6 29.7063 <0.0001 323.389 
 9 Composition of G  1 7 15.9303 <0.0001 304.973 
10 Composition of T  1 8 13.3642 0.0003 292.156 
11 Composition of M  1 9 6.2321 0.0125 287.821 

 
 

Table 6. Feature selection through stepwise logistic regression for heat stress 

 Effect  
 

Step  Entered  Removed  DF* Number in Score chi-square  Pr **> ChiSq  –2 log L 
 

1 Gravy  1 1 42.6819 <0.0001 151.019 
2 Composition of W  1 2 24.2972 <0.0001 123.383 
3 Composition of Y    – 1 3 13.7552  0.0002 110.346 
4 Composition of D  1 4  5.9772  0.0145 103.911 
5 Composition of P  1 5  7.2325  0.0072  95.979 

 
 

Table 7. Performance evaluation of support vector classifiers using different kernel functions 

  Test data set 
    
   Number of            Positive                Negative Accu- Sensiti- Specifi- 
Abiotic Kernel Penalty and kernel support     racy vity city 
stress  function function parameters vectors TP FN TN FP (%) (%) (%) 
 

Salt  Radial C = 1,  = 0.05 2062 1453 79 833 213 87 95 80 
  Polynomial C = 1, degree = 3,  = 0.05, coef. 0 = 0 3153 1395 137 514 532 74 91 49 
  Sigmoid C = 1,  = 0.05, coef. 0 = 0 3331 809 723 208 838 39 53 20 

ABA  Radial C = 1,  = 0.111 435 869 0 1035 11 99.4 100 98 
  Polynomial C = 1, degree = 3,  = 0.111, coef. 0 = 0 1142 865 4 1041 5 99.5 99.5 99.5 
  Sigmoid C = 1,  = 0.111, coef. 0 = 0 462 756 113 973 73 90 87 93 

Drought  Radial C = 1,  = 0.077 287 162 22 197 38 86 88 84 
  Polynomial C = 1, degree = 3,  = 0.077, coef. 0 = 0 462 145 39 224 11 88 79 95 
  Sigmoid C = 1,  = 0.077, coef. 0 = 0 324 127 57 198 37 78 69 84 

Heat Radial C = 1,  = 0.2 44 22 6 19 2 84 79 90 
  Polynomial C = 1, degree = 3,  = 0.2, coef. 0 = 0 54 26 2 11 10 75.5 93 52 
  Sigmoid C = 1,  = 0.2, coef. 0 = 0 46 26 2 21 0 96 93 100 

Coef., Coefficient. 
 

Table 8. Estimates of error (%) using 10-fold cross- 
  validation technique  

Stress  Radial  Polynomial  Sigmoid  
 

Salt   5.0  5.2  5.1 
ABA   0.1  0.2  0.4 
Drought   3.7  4.1  3.8 
Heat  12.1 13.2 12.0 

to be reasonably satisfactory. This clearly shows that pro-
teins pertaining to ABA stress can be predicted with quite 
high accuracy; whereas, predictions of drought, salt and 
heat stresses are reasonably good by using the developed 
classifiers. The range of accuracy, sensitivity and specific-
ity in this study was found comparable to other classifica-
tion studies of proteins using SVM5,16. 
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Conclusion 

Plants have special physiological mechanisms of stress 
tolerance where proteins play the central role. Identifica-
tion of these proteins by wet lab experimentation is  
expensive and time-consuming. Therefore, an in silico 
approach is advocated to narrow down this search prior to 
wet lab validation. Classification models were built to 
predict the function of proteins of cereals under four 
abiotic stresses using specific features of the protein  
sequence that are highly correlated with certain protein 
functions. In this study, features were selected through 
stepwise linear regression and the classification models, 
based on SVM, were trained using different kernel func-
tions. The estimates of errors were obtained through  
10-fold cross-validation techniques and comparative per-
formances of the models were assessed on test data sets 
through different measures such as sensitivity, specificity 
and accuracy. In case of salt, performance of radial was 
found to be the best followed by polynomial and sigmoid; 
whereas in case of ABA, radial and polynomial function 
performs equally well and are better than sigmoid kernel. 
In case of drought stress, performances of all the three 
kernel functions were almost same. Thus, by using the 
developed classifiers, proteins pertaining to ABA, 
drought and salt stress can be classified with high accu-
racy level whereas heat stress protein can be classified 
with reasonably good accuracy. Heat stress protein can be 
predicted with reasonably good accuracy. These devel-
oped models can be used to develop a Web-based server 
for reliable prediction of functions of protein sequences 
with respect to these abiotic stresses which may further be 
validated through wet laboratory experiments. This may 
lead to considerable saving of cost and time. 
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