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A sediment core recovered from the southeastern 
Arabian Sea off the Indian subcontinent was analysed 
to understand the distribution of major (Fe, K, Mg, 
Al, Ca and Sr) and trace elements (Mn, Ni, Cu and 
Co) as well as their environmental significance. Ac-
cording to the results, variation of Fe, K, Mg and Al 
during early Holocene period is reflective of the 
strengthened southwest monsoon and resulting fluvial 
input of terrigenous materials to the study region. The 
concentration profile of Ca, Sr and total organic car-
bon during late Holocene reveals increased producti-
vity and coastal upwelling during recent periods. The 
profile of redox-sensitive metals indicates the role of 
terrigenous sources in the variation of these elements 
apart from the scavenging-releasing effects of Fe–Mn-
oxides/hydroxides as well as decrease in oxygen level 
in sediment–water interface from early Holocene to 
late Holocene period. The study suggests that two  
factors are predominantly responsible for observed 
geochemical variations – terrigenous and biological 
contribution.  
 
Keywords: Fluvial input, Holocene, major and trace 
element chemistry, upwelling,  
 
GEOCHEMICAL study of marine sediments provides im-
portant insights on the role of environmental processes in 
controlling sediment distribution, fluctuations in biologi-
cal productivity, redox state of bottom water, tectonic  
activity and wind strength1–7. The understandings about 
the distribution of sedimentological, geochemical and 
magnetic proxies such as clay minerals, elements and 
magnetic records from sediments are useful tools in the 
assessment of status of environmental conditions8–12. 
Once elements are discharged into the water, they rapidly 
become associated with particulates and are incorporated 
in bottom sediments13,14. The elements associated with 
sediments are, however, not sheltered permanently.  
Under changing environmental conditions, they may be 
released to the water column by various processes of  
remobilization. Also in the marine aquatic systems, sedi-
ments may be both a carrier and a possible source of 
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various elements, metals in particular. Especially in the 
oxygen minimum zone (OMZ), trace elements play a  
vital role, since OMZ has an important impact on ecosys-
tems in terms of their contribution to greenhouse gases 
(GHGs) to the atmosphere during decay of organic mat-
ter15. Here, the trace elements minimize the ecosystem 
stress by forming complexes and sulphides, which leads 
to decrease in the release of GHGs. The role of organic 
matter and other geochemical factors in trace metal accu-
mulation has been studied16. There are several studies 
dealing with geochemistry of Arabian Sea sediments17–21. 
These are mainly focused on the clay mineralogy and 
elemental distribution of the Arabian Sea.  
 The Arabian Sea is characterized by a reversal of mon-
soonal winds that results in large seasonal variations in 
upwelling and related primary productivity, which has a 
large impact on the distribution of elements in the sedi-
ment. Of the two monsoons, southwest (SW) and north-
east (NE), the former is dominant in the Arabian Sea and 
surface winds associated with this season (June–
September) blow from the SW direction leading to the  
increase in continental humidity and precipitation over 
the Indian peninsula. The hinterland of the SE Arabian 
Sea also receives heavy rainfall (up to a maximum of 
3000 mm/yr) and upwelling waters in this region are 
capped by a thin lens (5–10 m thick) of warm, low-
salinity water, which in part forms from local precipita-
tion and in part from run-off from the narrow coastal 
plain22–24. During the SW monsoon, biological producti-
vity increases and results in a permanent OMZ that  
impinges the continental margins at depths between 150 
and 1200 m (ref. 25). The distinct geochemical composi-
tions of sediment cores from the Arabian Sea reveal the 
source, weathering mechanism and factors that control 
their composition26. Moreover, the presence of OMZ in 
the Arabian Sea makes the investigation of geochemical 
proxy variation significant in this region.  
 The present study examines the down-core variations 
in major (Al, K, Fe, Mg, Ca and Sr) and trace element 
(Co, Cu, Ni and Mn) concentrations in a sediment core 
from southeastern Arabian Sea in terms of changes in  
terrigenous flux and biological productivity.  
 A 180 cm long gravity core was recovered from a water 
depth of 218 m from the eastern Arabian Sea (72.62E, 
15.99N) during SK-268 cruise of ORV Sagar Kanya (SK 
268/GC 01, Figure 1). The core falls within the modern 
OMZ. The sediment along the entire length of the core 
comprises olive-grey clayey silt/silty clay. The core was 
sub-sampled on-board at an interval of 2 cm.  
 The subsamples were subjected to detailed visual exa-
mination under a binocular microscope. Grain-size analy-
sis was carried out on 10 representative sediments at 
depth intervals following standard procedures27. Samples 
were treated with 20% hydrogen peroxide to remove the 
organic matter. Calcareous materials were removed by 
treating with 1 N hydrochloric acid. Later, the samples 

were washed and sieved through 63 m sieve after adding 
20% sodium hexametaphosphate. Using this method the 
weight of sand and clay fraction was determined.  
 For inorganic elemental chemistry, sediments were dis-
solved following acid dissolution procedure28. The pow-
dered sediment samples (n = 90) were weighed accurately 
(50 mg), transferred to clean Teflon beakers and sub-
jected to open acid digestion. The sediments were repeat-
edly digested by treating with a mixture of HF, HNO3 and 
HClO4 in the ratio 6 : 3 : 1. Finally, the extract was 
brought to a standard volume. Major and minor elements 
were analysed using AAS (Thermofisher Scientific M  
Series at National Centre for Antarctic and Ocean Re-
search, Goa). The accuracy and reproducibility were con-
firmed by repeated measurements of the NIST standards. 
The accuracy of the analytical method was better than 3% 
and reproducibility of the measurements for all the ele-
ments was better than 8%. Total organic carbon (TOC) 
analysis was performed on 19 subsamples from selected 
depth intervals. Sediment samples were treated with 2 M 
HCl to remove inorganic fraction, dried in an oven and 
powdered well. About 100 mg of the treated samples was 
used for TOC analysis on a TOC-V series SSM-5000A 
Shimadzu elemental analyser. The analytical accuracy 
was better than 4% and precision of the TOC analysis ex-
ceeded 5%. For age determination of the core, we 
adopted the radiocarbon dating results of core AAS9/19 
(ref. 29), which is very close to our core location (Table 1). 
Core AAS9/19 was collected at 7308.515E and 
 
 

 
 
Figure 1. Map showing location of sediment core and bathymetry of 
the study area.  
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1430.115N in the eastern Arabian Sea at water depth of 
367 m.  
 According to the adopted radiocarbon dating results, 
the studied sediment core represents the Holocene period 
(9–1 ka). We discuss the down-core geochemical varia-
tions with reference to three Holocene periods: (i) early 
Holocene (9–7 ka), (ii) middle Holocene (7–4 ka) and 
(iii) late Holocene (4–1 ka). Also, the elements were clas-
sified into terrigenous (Fe, K, Mg, Al), biogenous/ 
organic-associated (Ca, TOC, Sr) and redox-sensitive 
elements (Cu, Ni, Mn, Co) for descriptive purposes.  
 The down-core variations of grain sizes of the sediment 
are shown in Figure 2 a. The figure indicates that the 
sediment grain size is mostly dominated by fine-grained 
sediments. The clay fraction is higher during early Holo-
cene and it shows a decrease in trend towards late Holo-
cene. The highest clay content in this period corresponds 
with the intensified SW monsoon and resulting fresh-
water run-off from the rivers9.  
 The geochemical data show that early to middle Holo-
cene sediments comprise higher average concentrations 
of Fe, K, Al, Mn, Co and Ni (Figure 3 a and b). While 
late Holocene sediments show enrichment of biogenic 
elements such as Ca and Sr (Figure 3 c). These variations 
of elements are mainly controlled by geological and 
chemical factors such as provenance, precipitation, 
oxic/anoxic condition, etc.25.  
 The early Holocene period witnessed relative enrich-
ment in the concentration of Fe, Al and K (Figure 3 a). 
The higher concentration of Al can be related to an  
increased input of alumino-silicate minerals, which are 
generally detrital30. The observed higher concentration of 
Fe can be attributed to an increased input of smectite clay 
minerals derived from the Deccan traps in the hinter-
land21,30,31. Also, the early Holocene sediments are 
marked by a higher concentration of redox-sensitive ele-
ments, Mn, Ni, Cu and Co (Figure 3 b). These elements 
show a significant positive correlation with Al and Fe 
(r = 0.92, n = 89, P = 0.05; Table 2). The observed rela-
tionship between Fe and the trace elements may be on  
account of the extent to which the precipitation or disso-
lution of Fe-oxides/hydroxides occur, since the scaveng-
ing or releasing effects of Fe-oxides/hydroxides act as 
significant ‘sinks’ or ‘sources’ of trace elements. The 
positive correlation between the trace elements and Al 
could be related to the abundance of clays32. Also the 
higher concentration of Mn during early Holocene period 
 
Table 1. AMS radiocarbon dates and calibrated ages of core  
  AAS9/19 taken from Naik et al.29  

Core depth (cm)  Measured age (yrs BP)  Calibrated age (yrs BP)  
 

0   1,680  25     115 
140   7,340  40   7,678 
215  10,795  45 12,035 
275  10,960  45 12,335 

could be due to an oxic sediment deposition environment. 
While the decrease in concentration of biogenic elements 
(Figure 3 c) could be due to relatively less intense surface 
productivity during this period. These observations sug-
gest a significant increase in precipitation-derived  
terrigenous supply during the early Holocene period. 
Thus, the present study precisely shows the intensifica-
tion of early Holocene Indian monsoon31,33.  
 All the major elements in the samples during the mid-
dle Holocene period show a decrease in concentration 
relative to samples of the early Holocene period. The 
relatively lower concentration of Mg, Fe and Al during 
the middle Holocene period compared to the early Holo-
cene period indicates the low input of clay minerals from 
terrigenous sources compared to the early Holocene  
period. It is reported that the variation of Mg is affected 
by the substitution of Mg2+ for Fe2+ in Fe-rich minerals20. 
Also, the distribution of trace elements during this period 
depends on the trace element scavenging capacity of clay 
from sea water32,34. The lower concentration of Ca and 
TOC could be due to a decreased biological productivity 
during middle Holocene. The elemental records (Fe, K, 
Mg and Al) from our studies also reveal a significant 
weakening of the Indian monsoon during the middle 
Holocene period31. The archaeological and other land re-
cords in the Indian subcontinent also support a substantial 
weakening of the SW monsoon during this period35.  
 During the late Holocene period, it is seen that the ave-
rage concentration of major elements varies in the order: 
Ca > Mg > Fe > Al > Sr > K. TOC concentration is also 
relatively high compared to the other two periods. The 
higher concentration of Ca, Sr and TOC in the late Holo-
cene sediments can be considered as reflective of 
 
 

 
 

Figure 2. Down-core variation of sand, silt and clay fraction. 
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Figure 3. Down-core variation of (a) elements associated with terrigenous sources, (b) redox-sensitive elements and (c) elements associated with 
biogenic sources.  
 
 
increased surface productivity during this period. Since 
the input of organic matter (TOC) to the marine realm 
occurs significantly through primary production in the 
photic zone, variation in TOC profile can indicate the 
changes in primary productivity during the particular 
time interval. Also, studies on organic carbon or biogenic 
element distribution in the sediments from the Arabian 
Sea suggest that primary productivity is the major con-
trolling factor36. The general distribution pattern of 
CaCO3 in the Arabian Sea sediments tends to corroborate 
this argument33,37. Furthermore, the strong covariance ex-
hibited by Ca and Sr (r = 0.82, n = 89, P = 0.05; Table 2) 
in the present study can also be considered as a suppor-
tive of this argument. It is established that Sr is present 
mainly in the calcareous tests of organisms. Acantharid 
skeletons made up of celestite (SrSO4) are also important 
contributors of Sr to marine sediments19. Because the pre-

sent study area is characterized by strong seasonal up-
welling, the inferred higher productivity in the surface 
waters during late Holocene period can be attributed to a 
phase of enhanced upwelling11. A factor to be considered 
in the above context is the relative role of detrital carbon-
ates in the observed concentration of Ca and Sr. Micro-
scopic observations of the coarse fraction, however, tend 
to discount this possibility. The relatively low concentra-
tion of K, Fe and Al in the late Holocene sediments com-
pared to the other two periods indicates a phase of 
reduced terrigenous influx during the times of deposition 
of late Holocene sediments. Also, the sand and clay frac-
tion is lower in late Holocene period compared to other 
two periods. It indicates the reduced freshwater run-off 
during this period attributed to the weakening of mon-
soon24,38. Therefore, the lower terrigenous input during 
this period could result in decrease in terrigenous dilution 
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Table 2. Correlation coefficient for different elements 

 Fe  Al  K  Ca  Sr  Co  Ni  Cu  Mn  Zn  
 

Fe  1  
Al   0.92  1  
K   0.94   0.98  1  
Ca  –0.95  –0.93  –0.95  1  
Sr  –0.82  –0.84  –0.84   0.82  1  
Co   0.81   0.75   0.75  –0.81  –0.63  1  
Ni   0.93   0.94   0.93  –0.95  –0.77   0.79  1  
Cu   0.82   0.83   0.85  –0.85  –0.66   0.76   0.87  1  
Mn   0.95   0.97   0.99  –0.97  –0.83   0.79   0.95   0.86  1  
Zn  –0.25  –0.19  –0.17   0.17   0.06  –0.22  –0.20  –0.22  –0.21  1  

n = 89; P = 0.05; Confidence level = 95%. 
 

 

 
 
Figure 4. Factor analysis plot showing variation of elements with fac-
tors F1 and F2. 
 
 

Table 3. Factor loadings for different elements 

Element  F1  F2  
 

Mg   0.048   0.786  
Fe   0.969   0.061  
Al   0.969   0.099  
K   0.982   0.083  
Ca  –0.978   0.056  
Sr  –0.834  –0.168  
Co   0.813  –0.117  
Ni   0.964  –0.121  
Cu   0.878  –0.264  
Mn   0.992   0.054  
Zn  –0.211  –0.145  

 
 
of carbonate sources. In the present study, redox-sensitive 
element Mn showed a reduced concentration during late 
Holocene period. The reduced concentration of Mn in the 
late Holocene period indicates the intensification of OMZ 
during this period39, since variation in the surface produc-

tivity can induce changes in oxygen level of sediment–
water interface due to organic matter degradation. This 
productivity-induced oxic condition variation of water 
column affects the concentration profile of redox-sensitive 
element such as Mn. Therefore, in the present study area 
Mn profile is attributed to productivity-induced reduction 
of oxygen level during the late Holocene period.  
 For better understanding of the observed geochemical 
variations of elements, factor analysis was carried out. 
There are two important factors that can explain the  
observed variations and distribution of elements in  
the sediments. The factors with eigen value greater than 1 
are considered as significant. The factor 1 explains 71.6% 
variance of the observations with eigen value 7.877 and 
factor 2 of 7% of variance with eigen value 1. According 
to the factor loadings, it is clear that factor 1 has a sig-
nificant positive factor loading with the elements Fe, K, 
Al, Co, Ni, Cu and Mn, whereas a negative factor loading 
is observed with Ca and Sr (Table 3). According to ele-
mental data, the input of Fe, K and Al is significantly 
through terrigenous sources during early Holocene and 
middle Holocene periods. Also, the higher concentration 
of trace elements such as Co, Ni, Cu and Mn is associated 
with adsorption capacity of Fe-oxides/hydroxides or 
scavenging capacity of clays. It indicates that the sources 
of these elements are similar in this region. Factor analy-
ses results support these observations by forming a clus-
ter of these elements (Fe, K, Mg, Al, Mn, Co, Ni and Cu; 
Figure 4). From these observations, factor 1 can be as-
signed to terrigenous input. As already discussed from 
geochemical data, the factor controlling the Ca distribu-
tion is from biogenic sources. From the factor analysis 
results, it is clear that factor 2 has positive factor loadings 
with Ca. Also, factor 2 has not shown any significant 
loadings with Fe, K and Al. Due to the positive factor 
loading with Ca, factor 2 is considered as biological con-
tribution.  
 The sedimentary record of the concentration distribu-
tion and possible sources of selected major and trace ele-
ments, and TOC from the southeastern Arabian Sea 
reveals the importance of geochemical processes and the  
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possible environmental factors that influence their distri-
bution. The enrichment of Fe, K, Mg and Al during the 
early Holocene period in the sediment core reflects an 
enhanced input of terrigenous material to the study area 
through fluvial sources. Also, reduced concentration of 
Ca and TOC during this period indicates a decrease in 
surface productivity during the period of deposition. The 
gradual decrease in the major elemental concentration in 
the middle Holocene period suggests a weakening of the 
SW monsoon relative to early Holocene to middle Holo-
cene. The higher concentration of Ca, Sr and TOC in the 
late Holocene sediments reveals an enhanced productivity 
due to upwelling during this time interval. The distri-
bution pattern of redox-sensitive metals (Mn, Ni, Cu and 
Co) indicates that the terrigenous sources as well as the 
scavenging or releasing effects of Fe-oxides/hydroxides, 
and clays have played a major role in the observed varia-
tions of these elements. Specifically, the variation of Mn 
concentration from early Holocene to late Holocene sug-
gests that oxic conditions prevailed during early Holo-
cene period and reduced oxygen level was prevalent 
during late Holocene. Our study indicates that major fac-
tors controlling the biogeochemical cycling of elements 
in the east coast of the Arabian Sea are fluvial input  
during monsoonal period and coastal upwelling-related 
productivity.  
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Microlithic industries, a technology associated with 
modern humans, as defined by the production of  
microblades have been found in different parts of the 
Indian subcontinent with the earliest date being 48 ka. 
The present communication reports on recent archa-
eological excavations of these industries from a collu-
vial context located in the pediment surface of 
Precambrian hills in Purulia, West Bengal. These are 
dated to 34–25 ka by optically stimulated lumines-
cence dating and are the earliest dates for microlithic 
industries in eastern India. To our knowledge such 
dating does not exist for any prehistoric site in Bengal. 
The context of the sites – hill-slope colluvium – is also 
unique and a rarity in the subcontinent. These find-
ings add additional inputs to the knowledge of these 
industries, providing supporting evidence to their  
antiquity. 
 
Keywords: Colluvium, excavation, microlihic indus-
tries, modern humans.  
 
MICROLITHIC industries are defined by systematic micro-
blade and/or backed artefact production associated with 
modern humans, found in different parts of the world at 
different timescales. Microblades are defined as blades (a 
blade is a flake with more or less parallel sides and length 
equal to twice its breadth) with a maximum dimension of 
4 cm (ref. 1). Backed artefacts or microliths made on  
microblades are composite tools that were hafted on  
arrows or spears to hunt. Microlithic technologies have 
been invariably linked with modern human origins, dis-
persals and emergence of more complex human behav-
iour2–4. The antiquity of these cultures in the Indian sub-
continent has been pushed back to 48,000 BP in Metak-
heri, Madhya Pradesh5 and 35,000 BP in Jwalapuram, 
southern India1, throwing new light on technological  
diversity, ecological situations and human behaviour in 
the Late Pleistocene. In this communication the discovery 
of microlithic industries of 42  4 ka from Kana and 
34  3–25  3 ka from Mahadebbera is discussed. Both 
are located on colluvium covered pediment surface in the 
foothills region of the Ayodhya hills in Purulia district, 


