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A remote sensing and GIS based landslide susceptibi-
lity zonation (LSZ) of the Tehri reservoir rim region 
has been presented here. Landslide causal factors such 
as land use/land cover, photo-lineaments, landslide  
incidences, drainage, slope, aspect, relative relief, topog-
raphic wetness index and stream power index were 
derived from remote sensing data. Ancillary data in-
cluded published geological map, soil map and topo-
graphic map. Correlation between factor classes and 
landslides was computed using binary logistic regres-
sion model and a probability estimate of landslide  
occurrence on cell-by-cell basis for the entire study 
area was obtained. The probability map was further 
classified into very low, low, moderate, high and very 
high susceptible zones using statistical class break 
technique. Accuracy assessment of the model was per-
formed using ROC curve technique, which in turn 
gave acceptable 80.2% accuracy. LSZ indicates that 
the area immediate to the reservoir side slope is highly 
prone to landslides. 
 
Keywords: Logistic regression, landslide susceptibility 
zonation, remote sensing, reservoir rim. 
 
SCIENTIFIC research regarding the process involved, prior 
planning and mitigation strategies for natural hazard pheno-
menon is given much emphasis nowadays. This is attrib-
uted to the fact that there is a substantial increase in the 
frequency of natural hazards and consequent fatalities. 
Such fatalities are directly related to the human interfer-
ence in natural processes. Some glaring examples of the 
same are the 2012 Japan tsunami and 2013 Kedarnath 
floods in Uttarakhand, India. Among the different types 
of natural hazards, landslides are the most dominant and 
consistent hazardous phenomena in mountainous regions. 
Particularly in the Himalayan terrain which is geody-
namically active, problems have been substantiated with 
increasing anthropogenic activities. 
 Tehri dam (260.5 m high) is built at the confluence of 
the Bhagirathi and Vilangana rivers in the Lesser Hima-
laya. A 67 km long, huge reservoir is present on the up-
stream side of the dam. Several studies have indicated 

that the reservoir has induced negative impact on the geo-
environmental system of the rim area1. A number of  
villages are situated all around the rim of the reservoir. 
Due to readjustment of slopes during drawdown conditions 
of the reservoir, the slopes on which villages are located 
have been rendered unstable in many areas in addition to 
loss of huge areas of farmland. Geo-environmental factors 
such as slope, relative relief, hydrogeological condition, 
lithology and structural discontinuity are responsible for 
slope instability in the hilly region2,3. Characterization of 
landslide causative factors and comprehensive landslide 
probability mapping are the most important planning 
strategies for mitigation. 
 A landslide susceptibility zonation (LSZ) map is pre-
pared in advance to facilitate mitigation strategies in the 
wake of any landslide hazard in future. It provides prior 
knowledge of probable landslide zones on the basis of a 
set of geo-environmental factors suitable for landslide  
locally. LSZ is based on the analogy that future land-
slides are expected at those locations which have the 
same set of geo-environmental conditions as those of past 
and present landslide locations2,4,5. Choice of factors  
depends upon the exhaustive field work, data availability 
and professional experience. Advent of machine learning, 
fast computation packages, easy data availability and GIS 
have propelled the landslide hazard research to a new 
high. The outcome can be seen in terms of the quantum 
of literature regarding landslide hazard owing to different 
methodologies available at present. Broadly, landslide 
susceptibility methods can be classified into qualitative, 
semi-quantitative and quantitative. Qualitative methods 
are based on weights and scores of casual factors synthe-
sized from professional knowledge and are subjective in 
nature. For regional analysis of landslide susceptibility, 
qualitative method is suitable6. Semi-quantitative meth-
ods assume weight and score of factors/classes computed 
from logical tools, such as analytical hierarchy process 
(AHP), weighted linear combination (WLC), etc. These 
methods are partially subjective and feasible in LSZ at 
both small scale and large scale7–9. Quantitative methods 
are based on statistical correlation between factors and 
landslide inventory and are of two types – bivariate and 
multivariate. Bivariate statistical methods are based on 
correlation between factors/classes and the landslide  
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densities present in them. Weights/ratings of each factor 
class are determined on the basis of presence/absence of 
landslides in each factor class. On the other hand, multi-
variate statistical methods assume relative contribution of 
each factor class on the landslide. Based on the relative 
contribution, a map showing probability of landslide  
occurrences spatially is derived. Another type of quantita-
tive method is the deterministic slope stability assess-
ment. It is based on the geotechnical properties of the 
local slopes and gives susceptibility information in terms 
of factor of safety. Recent advances in computation capa-
bilities have paved the way for inclusion of process-based 
techniques in landslide susceptibility studies such as arti-
ficial neural network and neuro-fuzzy approach10,11.  
Detailed review of the above-mentioned methodologies 
can be found in the literature5,6,12–14. 
 In the present study, landslide susceptibility was esti-
mated on the basis of binary logistic regression (BLR) 
model, which is a multivariate model. A number of multi-
variate statistical methods such as linear regression, dis-
criminant analysis and logistic regression are available 
for landslide susceptibility analysis15–17. Linear regression 
model was not found fit for landslide susceptibility study, 
because the coefficient varies from – to +. Discrimi-
nant analysis can only be performed on continuous raster 
data, whereas in the case of logistic regression, continu-
ous, categorical or combination of both can be used at 
any scale as an independent variable. This kind of statis-
tical analysis utilizes dependent variables (landslides) in 
binary form. Another advantage of logistic regression is 
the omission of those factors which have no significance 
towards the degree of susceptibility16,18. In the Himalayan 
region, several researchers have applied logistic regres-
sion technique for the identification of landslide suscepti-
ble zones16–20, and have suggested robustness and better 
prediction capabilities of this model. Application of the 
BLR model includes characterization of the selected fac-
tors, computation of the relative contribution of classes 
towards landslide occurrence, omission of insignificant 
classes and probability estimation on grid-by-grid basis. 

Study area 

The area falls under central longitude/latitude of 78.5E 
and 30.5N respectively (Figure 1) in Tehri Garhwal dis-
trict, Uttarakhand, India. It is covered in the Survey of 
India topographic sheet no. 53J/7 NW of 1 : 25,000 scale. 
Physiographically the area is occupied by highly undulat-
ing Lesser Himalaya terrain and is represented by high 
ridges/spurs, deep valleys and abrupt/sharp slopes. In 
general, ridges have thick/dense to open forest on the 
northern side, while the southern face is mostly covered 
by agricultural land. Complex network of numerous 
streams making sub-parallel to sub-dendritic pattern is 
present in the area. Two major streams, Bhagirathi and 
Bhilangana, confluence at a place where the 260.5 m high 

Tehri dam became operational in the first decade of this 
century. The construction of the dam has resulted in the 
formation of a huge reservoir (67 km long) in the Bhagi-
rathi and Bhilangana valley. Maximum reservoir level 
(MRL) is 830 m and dead storage level (DSL) is 740 m. 
The reservoir water fluctuates between MRL and DSL 
during monsoon and dry season respectively. During the 
peak monsoon season when the reservoir is at maximum 
level, it saturates the valley slopes. When the water level 
goes down, saturated valley slopes often become unstable 
in a number of places. The instability problem varies 
from place to place because of the following reasons: (a) 
type of slope material, (b) geometry of rock slope, (c) 
vegetation cover and (d) human interference at the rim of 
the reservoir. The drawdown condition of the reservoir 
has a distinctly adverse impact on the stability of the res-
ervoir rim area, which is manifested in the form of land-
slides. These are called reservoir-induced slope failures. 
Their dimensions vary in the range 25 sq. m to 2500 sq. m. 
During field observations, it was found that these land-
slides gradually spread on the upper reaches of the side 
slopes where a number of villages are situated. Network 
of roads is present all along the reservoir boundary  
(Figure 2 f–h). Steep cut slopes of the road networks  
combined with reservoir-induced slope failures are now a 
major environmental problem in this region. The land-
slides caused within the reservoir rim have affected civil 
structures – houses, schools, government offices and other 
such structures located in the area. 

Landslide inventory of the Tehri reservoir rim  
region 

A total of 150 landslide locations (varying more or less 
between 25 and 3000 sq. m) were mapped through field  
 
 

 
 

Figure 1. Study area. 
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Figure 2. Slope failures observed around the rim of the Tehri reservoir. a, b and e, Talus slope failure 
due to the reservoir level fluctuation between maximum reservoir level (MRL) and dead storage level 
(DSL). c, d, Slope failure affecting settlement and farm land respectively. f–h, Slope failure along the 
road network at the rim of the reservoir. i, Plane failure and j, Drainage-induced failure. 
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observations, image interpretation and historical informa-
tion. Among these, a substantial number of landslides 
was found to be related to reservoir drawdown phenome-
non, which makes a typical actuate-shaped scar (Figure 
2 e). These kinds of landslides were found to occur pre-
dominantly in talus slopes, which are in contact with the 
reservoir. In addition, terraces occupied by debris or 
river-borne materials (RBM) are also affected, causing a 
series of landslides (Figure 2 h). 
 Progressive nature of these landslides has become a 
major threat to the population settled at the upper reaches 
of the slopes (Figure 2 c). Sizable number of landslides 
was observed all along the road networks present in the 
area. Roads are present all along the reservoir rim, but 
some sections of the road have sunk into the reservoir. 
Roads were made by cutting the slope faces and were left  
untreated after construction. During monsoon season, 
these cut slopes fail and disrupt logistic operations and 
sometimes cause fatalities. They were found to be occur-
ring in rocks as well as debris (Figure 2 f and g). Most 
part of the reservoir rim area is represented by weathered 
phyllite and quartzite. Typical plane failures were obser-
ved in these rocks (Figure 2 i). 
 Another group of landslides was observed associated 
with photo-lineaments such as faults, thrusts, joints, 
ridges and spurs. Photo-lineaments are a type of linear 
discontinuities observed in imageries. The area is repre-
sented by a complex network of streams, which are 
deeply dissecting and are the major cause of landslides. It 
affects the terrain made up of rocks and overburden. Dur-
ing rainy season, when stream (owing to steep gradients) 
flows are at a peak, they erode the banks rapidly. Irre-
spective of slope materials, eroded section of the river 
bank becomes a site of progressive landslide (Figure 2 j). 
Apart from these, several landslides were observed in 
places with less vegetation, settlement areas and barren 
lands. 
 In general, the landslides in the Tehri reservoir rim  
region belong to three categories, namely rotational fail-
ure, plane failure and talus failure. More than 50% of the 
landslides are rotational failures and are observed along 
the reservoir boundary, road networks and ridges/cliffs. 
Talus slope failure is also prominent in this region, and is 
mostly observed along the reservoir boundary. Talus fail-
ures are shallow failures affecting debris materials lying 
above the rock surface. They generally affect debris of 
thickness less than 5 m and slide down along the slope 
deforming the rock surface. Plane failure is mostly  
observed in phyllitic rocks and it occurs along the folia-
tion or joint planes. 

Data preparation 

Twelve causative factors were chosen for susceptibility 
analysis of the region complying with the field observa-

tions and literature review. Derivation of landslide causa-
tive factors was carried out using a variety of data 
sources. Table 1 shows the data used in the present study. 
ASTER multispectral data of visible near infrared 
(VNIR) range (15 m spatial resolution) and WorldVew-2 
panchromatic band data of 0.5 m spatial resolution were 
used for extraction of important factors. Raw remote 
sensing (ASTER) multispectral data were processed with 
ENVI 4.5 software. Different bands were extracted and 
geo-referenced according to UTM WGS 1984 Zone 44. 
VNIR bands were selected for further study. WorldView-
2 data were acquired in corrected form and used exclu-
sively for landslide inventory mapping and land use land 
cover (LULC) mapping. WorldView-2 images covered 
only 40% of the study area; hence they were not used ex-
tensively. ASTER GDEM (30 m spatial resolution, ver-
sion-2, 2011 release) and Cartosat-1 DEM were subjected 
to DEM enhancement techniques such as DEM fill and 
sink removal for further analysis. Ancillary data such as 
landslide inventory, geological map, soil map and topog-
raphic map were acquired from different sources. Proc-
essing of ancillary data involved rasterization according 
to the unit grid size of 25 m  25 m selected for the pre-
sent study. Co-registration of the remote sensing and an-
cillary data was carried out to prepare a base map of the 
study area. According to the base map, 12 categorical 
factor maps were prepared in raster grid form. Remote 
sensing data were used to acquire landslide inventory, 
LULC and photo-lineament by applying digital image 
processing techniques such as NDVI, supervised classifi-
cation, band rationing, etc. Onscreen visualization based 
on colour, tone, texture, pattern, shape and shadow was 
also performed for the identification of LULC boundary 
and photo-lineament21. Five categories of LULC, namely 
dense forest, open/scrub forest, agricultural land, settle-
ment/barren land and water body were derived from the 
combination of topographic map and satellite imageries 
(Figure 3). Photo-lineament layer was prepared by apply-
ing edge detection method on DEM and calibrated by  
onscreen visualization. Distance to lineament is a fair 
measure of prediction of landslide occurrence and is con-
sidered an indispensible input in susceptibility model by 
a number of authors21–24. Complying with field observa-
tions, distance to lineament map was prepared covering 
0–50 m, 50–100 m, 100–150 m, 150–200 m and >200 m 
distances. Geological map was prepared on the basis of 
the published map of Valdiya25. Seven geological forma-
tions, namely Nagthat Formation, Chandpur Formation, 
Mandhali Formation, Deoban Formation, Rautgara For-
mation, Krol Formation and Berinag Formation are repre-
sented in the area25,26. Table 2 shows the detailed 
stratigraphy and litho types present in each formation. 
Geological map was prepared covering each formation 
(Figure 4). These geological units inherit distinctive 
litho-structural properties, which accordingly influence 
landslide phenomenon. A regional soil map was prepared
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Table 1. Data used for the present study 

Data type Sensor Scale Data derivative 
 

Image data ASTER 15 m  15 m grid LULC 
    Photo-lineament 
DEM WorldView-2 0.5 m  0.5 m grid Landslide inventory 
 Cartosat 1 2.5 m  2.5 m grid Slope 
  ASTER GDEM 30 m  30 m grid Aspect 
   Relative relief curvature  
    TWI 
    SPI 
   Drainage map 
 
Ancillary data Geology map 1 : 50,000 Geology map 
 Soil map 1 : 50,000 Soil map 
  Topographic map 1 : 25,000 Base map of the area 
   Drainage map 
   Vegetation cover 
   Road map 

 
 

Table 2. Stratigraphic succession and rock types represented in Tehri reservoir rim region 

  Formations 
 

  Inner Lesser Outer Lesser 
Group Himalaya Himalaya Age Rock type 
 

Mussoorie  Krol Cambrian Limestone intercalated with slates and siltstone  
  Blaini Neoproterozoic Quartzite, limestone, slates, phyllites and conglomerate 
Jaunsar Berinag Nagthat Mesoproterozoic Weathered quartzite intercalated with slate 
  Chandpur Mesoproterozoic Low-grade lustrous phyllites 
Tejam Deoban  Mesoproterozoic Dolomitic limestone with phyllitic intercalations 
Damtha Rautgara  Mesoproterozoic (>1300 my) Quartzite, slate, metavolcanic rocks 

 
 

 
 

Figure 3. Land-use/land-cover map of the Tehri reservoir rim region. 
 
on the basis of the published report of Watershed Man-
agement Directorate, Dehradun. The following three 
categories: alluvial sandy loam, sandy loam and forest/ 
black soil are represented in the area. ASTER GDEM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Geological formations represented in the Tehri reservoir 
rim region. 
 
was used for the extraction of topographic attributes, 
namely slope, aspect, relative relief, topographic wetness 
index and stream power index. Literature review suggests 
that slope angle substantially impacts the occurrence of 
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landslides27–29. Slope map was prepared covering five 
classes: very low/flat (0–8 slope), low (8–18), moderate 
(18–30), high (30–42) and very high (>42). Aspect is 
also an important factor for landslide susceptibility map-
ping30–32. Aspect is the direction a slope faces with re-
spect to north. It determines the effect of solar heating, 
soil moisture and dryness of air33,34. Aspect map of the 
area was prepared on the basis of DEM manifesting nine 
classes, namely flat (–1), north (0–22.5 and 337.5–
360), northeast (22.5–67.5), east (67.5–112.5), south-
east (112.5–157.5), south (157.5–202.5), southwest 
(202.5–247.5), west (247.5–292.5) and northwest 
(292.5–337.5). Relative relief is the difference between 
maximum and minimum elevation point within a facet or 
area, and it is widely used in the susceptibility model21,22,32. 
In this area, relative relief was found to vary between 0 
and 367 m. The following five classes of relative relief: 
very low relief (0–30 m), low relief (30–60 m), moderate 
relief (60–100 m), high relief (100–150 m) and very high 
relief (>150 m) were considered for landslide susceptibi-
lity study. Two secondary topographic factors, topogra-
phic wetness index (TWI) and stream power index (SPI), 
which have not been employed for the landslide suscepti-
bility study in the Uttarakhand Himalaya region, were 
used as an input in this model. TWI considers catchment 
area and slope gradient. It can be calculated using the 
formula 
 

 CATWI ln ,
tan slp

  (1) 

 
where CA is the catchment area and slp the slope gradi-
ent. TWI is associated with the flow accumulation in the 
given terrain. It is effectively used to understand the soil 
moisture condition and other related phenomena35,36. TWI 
was computed in Arc GIS 10.1 software. The resulting 
values of TWI and SPI were represented on the log scale. 
Range of TWI was found to be between 5 and 19. TWI 
map was divided into four classes. SPI was calculated  
using the formula: 
 
 SPI ln(CA tan slp).   (2) 
 
SPI represents the erosive power of the streams in a  
terrain35,36. It was found to be between 1.5 and 15. Five 
classes of SPI were achieved using natural break classi-
fier. Unplanned road construction has led to a number of 
cut-slope failures in the Himalayan region (Figure 2 f ). 
Cut slopes are generally kept intact after the road con-
struction, which often fails during the monsoon season 
(Figure 2 f–h). Accordingly, a distance to road map was 
prepared for 0–50 m, 50–100 m, 100–150 m, 150–200 m 
and >200 m distances. Field observations have provided 
insight about the frequency of landslide occurrences 
along the reservoir rim; accordingly distance to reservoir 

map (100, 200, 300, 400 and 500 m) was prepared. The 
rugged terrain of the Himalaya is prone to drainage- 
induced landslides21. Distance to drainage map was pre-
pared containing 0–50, 50–100, 100–150, 150–200 and 
>200 m distances. External factors such as rainfall, earth-
quake and temperature variation were not used in this 
model because of their temporal nature28. Most of the 
landslides are triggered during monsoon period, which 
has uniform frequency throughout the region; hence it 
was not found suitable in susceptibility study. For BLR 
analysis, all the continuous data such as distance to 
photo-lineament, slope, relative relief, TWI, SPI, distance 
to road, distance to drainage and distance to reservoir 
were coded as categorical data. 

Methodology 

In this study, BLR model was used for the identification 
of LSZ. The procedure started with the training phase 
which included identification of the landslide incidents 
and non-landslide incidents. For LSZ, the BLR model  
assumes landslide data as binary dependent variables and 
geo-environmental factors as independent variables  
(factors/classes). A total of 150 landslide incidences were 
covered in point vector format throughout the area, out of 
which 115 were considered for the BLR model and the 
rest for validation purpose (Figure 5). Most of the land-
slides were found to be shallow in nature and their  
dimensions more or less similar to the grids (25 m  
25 m) are chosen for this study; hence point vectors were 
appropriate for the BLR model. The binary landslide data 
consist of equal number of landslide occasions and non-
landslide occasions. Accordingly, spatial data consisting 
of 115 landslide occasions and 115 non-landslide occa-
sions coded with 1 and 0 respectively, were prepared and 
 

 
 

Figure 5. Map showing training and testing landslide locations. 
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arranged along with independent variables. All the train-
ing points were rasterized to 25 m  25 m grid. For the 
330 training locations, each factor class value was  
retrieved and arranged spatially in the coded form, which 
completed the training phase. BLR utilizes maximum 
likelihood estimation from the logit variable (transformed 
from the dependent variable) to model the probability. 
The BLR model is a generalized linear regression model 
in which positive outcome of dependent variables is  
determined on the basis of significant independent vari-
ables and linking a function of range (0, 1) to linear  
regression model. For LSZ, an important benefit of the 
BLR model compared to other multivariate statistical 
techniques is that probability values lie between 0 and 1 
(ref. 37). 
 Independent variables/factor classes (X1, X2, 
X3, …, Xn) can be continuous, categorical or a combina-
tion of both to be used in the BLR model. BLR can be 
quantified using the formula 
 

 1 ,
1 e ZP





 (3) 

 
where P is the probability of landslide occurrence based 
on significant independent variables; Z is the linear com-
bination which has a range of – to +, where – to 0 
indicates negative influence and 0 to + shows positive 
influence of independent variables towards landslide  
occurrence. Z can be written as 
 

 
1

,
n

i i
i

Z X 


   (4) 

 
where  is a constant which refers to the intercept of the 
model and i is the coefficient of the independent vari-
able Xi. On the basis of the presence of dependent vari-
ables in the independent variables, the BLR model 
calculates the regression parameters  and i (refs 16–
18). Finding the best fit function and consequently com-
putation of  and i are an indispensible part of the BLR 
model. The model produces coefficients () which are 
used in the probability estimates of the concerned area on 
cell-by-cell basis. 

Analytical results and discussion 

In this study, SPSS software was used to perform the stati-
stical analysis. It offers several methods for the stepwise 
selection of the best predictors to be included in the 
model16. In the present study, maximum likelihood 
method was used for the stepwise selection of the signifi-
cant predictors. From the base model which contains only 
the constant, the variables have been added in successive 
steps such that they cause significant changes in  

–2log-likelihood16,38. A total of 64 independent variables 
belonging to 12 different classes were considered in the 
analysis. Forward stepwise process was initiated with no 
variables out of 64 and terminated at the seventh step  
retaining 25 variables. Insignificant variables owe to the 
significance threshold 0.05. At each successive step, vari-
ables owing to significance threshold <0.05 were retained 
and >0.05 were terminated. Statistical computation 
achieved i value for each retained variable, which was 
statistically different from 0 (Table 3). To test the  
hypothesis i = 0, Wald chi-square (2) value at 5%  
significance level referring to the respective degree of 
freedom (df ) was used16–18. Equation (3) refers to Wald 
chi-square test 
 

 
2

2 ,
SE

i    
 

 (5) 

 
where SE is the standard error which can be given as 
SE ( / ),s n  where s is the standard deviation of the 
samples used for the input and n refers to sample size in 
the input data. The BLR model achieved 89.7% predic-
tion accuracy in classifying binary training data (Table 
4). Based on the above-mentioned statistical results, a  
logistic regression equation was obtained (eq. (6)) 
 
 Z – 0.353 + (1.409*Flat aspect) – (2.504*north  
 
  aspect) + (0.697*northeast aspect) +  
 
  (1.763*east espect)(2.8*southeast aspect) +  
 
  (0.557*south aspect) + (0.550*southwest aspect) +  
 
  (0.169*west aspect) – (0.724*>500 m DTR) +  
 
  (3.32*100 DTR) + (3.963*200 DTR) +  
 
  (2.461*300 DTR)1(2.098*400 DTR) +  
 
  (6.808*vlr) + (0.413*low relief) –  
 
  (0.389*moderate relief) + (0.305*high relief) –  
 
  (1.9*alluvial soil) + (0.250*>200 m DTRO) +  
 
  (4.301*50 m DTRO) + (0.88*100 m DTRO) –  
 
  (4.35*VLS) – (3.14*LS) – (3.04*MS) –  
 
  (1.05*HS), (6) 
 
where DTR is the distance to reservoir, DTRO the distance 
to road, vlr the very low relief, VLS the very low slope, 
LS the low slope, MS the moderate slope and HS is the 
high slope category. BLR statistics has given constant/
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Table 3. Significant independent variables retained in binary logistic regression (BLR) model and their  
  coefficients 

Variables  SE Wald d f Sig. Exp () 
 

Flat aspect 1.409 1.569 0.807 1 0.369 4.092 
North aspect –2.504 1.419 3.111 1 0.078 0.082 
Northeast aspect 0.697 1.498 0.216 1 0.642 2.007 
East aspect 1.763 1.210 2.124 1 0.145 5.829 
Southeast aspect 2.801 1.235 5.143 1 0.023 16.467 
South aspect 0.557 1.164 0.229 1 0.632 1.745 
Southwest aspect 0.550 1.402 0.154 1 0.695 1.734 
West aspect 0.169 1.297 0.017 1 0.897 1.184 
Distance to reservoir >500 m –0.724 0.866 0.699 1 0.403 0.485 
Distance to reservoir 100 m 3.323 1.021 10.586 1 0.001 27.737 
Distance to reservoir 200 m 3.963 1.106 12.831 1 0.000 52.615 
Distance to reservoir 300 m 2.461 1.107 4.940 1 0.026 11.715 
Distance to reservoir 400 m –2.098 1.546 1.841 1 0.175 0.123 
Very low relief 6.808 2.505 7.384 1 0.007 905.107 
Low relief 0.413 1.512 0.075 1 0.785 1.512 
Moderate relief –0.389 1.364 0.081 1 0.775 0.677 
High relief 0.305 1.402 0.047 1 0.828 1.357 
Alluvial sandy soil –1.905 0.762 6.253 1 0.012 0.149 
Distance to road > 200 m 0.250 0.816 0.094 1 0.759 1.284 
Distance to road 50 m 4.301 1.094 15.453 1 0.000 73.752 
Distance to road 100 m 0.880 1.037 0.719 1 0.396 2.410 
Very low slope –4.355 1.206 13.042 1 0.000 0.013 
Low slope –3.142 1.074 8.553 1 0.003 0.043 
Moderate slope –1.042 0.958 10.082 1 0.001 0.048 
High slope 1.005 0.881 1.302 1 0.254 0.366 
Constant –0.353 1.955 0.033 1 0.857 0.703 

, Coefficients; SE, Standard error; Wald, Wald chi-square; d f, Degree of freedom; Sig., Significance 
level; Exp (), Exponential of  value. 

 
Table 4. Contingency table referring to the accuracy of estimates 

 Predicted Classification 
 

Observed Non-landslide (0) Landslide (1) 
Non-landslide (0) 103 13 88.8 
Observed landslide (1) 11 105 90.5 
 Overall percentage   89.7 

 
 
intercept and the coefficients of the independent vari-
ables. Positive coefficient indicates that the independent 
variable enhances the likelihood of a landslide and the 
negative values reflect that the probability of landslides is 
negatively associated17,39. Using eqs (3) and (6) landslide 
probability estimate of the entire study area was com-
puted, in which probability values were found to be in the 
range 0 to 1. Further, the probability map was divided 
into the following categories: very low susceptible, low 
susceptible, moderate susceptible, high susceptible and 
very high susceptible zones on the basis of Jenk’s natural 
break classification40. Figure 6 depicts the LSZ map of 
the Tehri reservoir rim region. 
 Coefficients values (i) have suggested the significance 
of independent variables towards the degree of landslide 
susceptibility. As mentioned in the previous section, posi-
tive and negative i values influence landslide probability 
accordingly, whereas insignificant independent values do 

not result in i values. In this study BLR has produced 
positive  for flat aspect, northeast aspect, east aspect, 
southeast aspect, south aspect, southwest aspect and west 
aspect categories. High positive coefficient values have 
been observed for east, southeast and south aspect. It 
matches with the ground conditions as the southern  
aspect of this region receives high precipitation and hence 
high probability of landslides. High positive  values are 
observed for the reservoir distance 100, 200 and 300 m 
respectively, and this coincides with the reservoir-induced 
slope failure phenomenon mentioned earlier. Reservoir 
distance >300 m gives negative  values. Within the rela-
tive relief classes, very high positive  value is observed 
for the very low relative relief class; low relief and high 
relief result in low positive  value, whereas negative  is 
observed for moderate relief class. Overall relative cate-
gories have suggested mixed resemblance with ground 
conditions. Alluvial sandy soil class gives negative  
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value, which can be attributed to the fact that this kind of 
soil is found in the flatter topography of the area. Dis-
tance to road categories is also found to be a significant 
contributor. Very high  value is observed for distances 
up to 50 m and it reflects the contribution of fragile cut 
slopes left intact after the road construction. Positive  
value is also reflected for 100 and >200 m distances to 
the road. It gives an idea about the progressive slope fail-
ure phenomenon due to road cut-slopes. Within the slope 
classes, positive  value is observed for high slope class 
whereas very low, low and moderate classes have 
 
 

 
 

Figure 6. Landslide susceptibility zonation map of Tehri reservoir 
rim region. 
 
 

 
 

Figure 7. ROC curve showing prediction capability of the BLR 
model. 

resulted in negative  value. All other independent vari-
ables were not found to be significant in the BLR model. 

Model validation 

Validation of LSZ maps is mainly based on the confusion 
matrix or contingency table41. Confusion matrix consists 
of the calculation of overlap areas between the two binary 
maps. For the confusion matrix, continuous susceptibility 
maps are compared with the landslide inventory map. 
There are two types of error found in LSZ: (1) landslides 
may occur in areas that are predicted to be stable, and (2) 
landslides may actually not occur in areas that are pre-
dicted to be unstable42. LSZ was validated on the basis of 
ROC curve for the present study (Figure 7). The ROC 
curve technique is based on plotting model sensitivity: 
true positive fraction values calculated for different 
threshold values versus model specificity: true negative 
fraction values on a graph43. Model sensitivity – 
true positive fraction is the ratio between correctly classi-
fied presence data and all presence data, while model 
specificity – true negative fraction is the ratio between 
correctly classified grid cells without landslides and all 
grid cells without landslides44. Area under the ROC curve 
has peak value of 1 for perfect prediction, whereas value 
near 0.5 suggests failure of the model. The ROC curve in 
the present case is found to be 0.802, with a prediction 
accuracy of 80.2%. 

Conclusion 

The Tehri reservoir rim is going through a reservoir side 
slope readjustment process. Most of the talus slopes 
which are generally made up of thickly compacted debris 
are subjected to the reservoir fluctuation-related land-
slides. Progressive nature of these slides is a major cause 
of concern for the settlements surrounding them. The pre-
sent article provides insight regarding the significance of 
the independent variables used for LSZ and the capability 
of BLR model in predicting landslide susceptible zones in 
the Tehri reservoir rim region. Sixty-four independent 
variables belonging to 12 different classes subjected to 
BLR analysis have reflected the significance of variables 
in landslide occurrences. Twenty-five variables are found 
to be significant, whereas the rest are terminated. Based 
on these significant variables, the LSZ map was prepared. 
This map has provided critical evaluation of the regions 
surrounding the reservoir in view of the slope instability. 
High susceptible zone has been observed all around the 
fringes of the reservoir rim. Road network and other in-
frastructure are observed along the reservoir rim boundary. 
Combination of unplanned infrastructure development 
around the reservoir rim region and reservoir side slope 
adjustment process has resulted in a number of landslides 
during the monsoon season, which is reflected in the LSZ 
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map. Forested regions are observed in low susceptibility 
zone. Validation was performed using ROC curve techni-
que and it gave an acceptable prediction accuracy of 80.1%. 
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