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In 3D gravity modelling, a right rectangular paral-
lelepiped with either constant density or variable den-
sity functions in spatial and spectral domains enjoys 
wide popularity. However, better unit models are 
needed to meet the large variety of geological scenar-
ios. Here, we present an analytical expression for the 
gravity effect of a vertical pyramid model with depth- 
wise linear density variation. Initially, we validate our 
analytic expression against the gravity effect of a right 
rectangular parallelepiped and provide two synthetic 
examples and a case study for illustrating the effec-
tiveness of our pyramid model in gravity modelling. 
The included case study of Los Angeles basin, Califor-
nia, USA, demonstrates the comparative advantages of 
our pyramid model over the conventional right rec-
tangular vertical prism model. Thus, our pyramid 

model could be quiet effective as a building block for 
evaluating the gravity effect of an arbitrarily-shaped 
3D or 2.5D source(s). 
 
Keywords: Gravitational attraction, linear density varia-
tion, right rectangular, parallelepiped model, vertical 
pyramid model. 
 
THE evaluation of theoretical gravity response of 3D  
targets is an involved process requiring considerable 
theoretical and computational efforts. Several authors 
have addressed this problem in both spatial1–4 and spec-
tral domains5,6. The polygonal lamina model4, the right 
rectangular prism model with constant density contrast1,3, 
and the right rectangular prism model with parabolic den-
sity variation depth-wise2 have enjoyed wide popularity. 
However, for real geological applications, one needs  
better 3D unit models. 
 Starostenko7 has proposed an inhomogeneous vertical 
pyramid model with flat top and bottom and sloping sides 
possessing a linear density variation depth-wise. How-
ever, he was unable to derive a complete analytical  
expression for its gravity effect. 
 Here, we derive the complete gravity expression for the 
same pyramid model and illustrate its effectiveness 
through two synthetic examples after customary valida-
tion check of our forward problem solution. 
 Consider an isolated regular pyramid model 
ABCDEFGH with flat top ABCD and bottom surface, 
EFGH (Figure 1 a). The gravity effect of such a model at 
any arbitrary point (x, y, z) in free space7 is given by 
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where σ is constant density (g/cm3), k the linear coeffi-
cient (g/cm3/km), γ the universal gravitational constant, 
h1 and h2 are the depth of the top and bottom surfaces of 
pyramid respectively, and ζ refers to depth below h1. 
A(ξ1, η1, h1), B(ξ1, η2, h1), C(ξ2, η2, h1), D(ξ2, η1, h1), 
E(ξ3, η3, h2), F(ξ3, η4, h2), G(ξ4, η4, h2) and  H(ξ3, η3,h2) 
are the corners of the pyramid (Figure 1 a). By changing 
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Figure 1. 3D pyramid models and their geometries with depth-wise linear density variation and their gravity  
effects. The pyramid model parameters are as follows: (a) ξ1 = 10, ξ2 = 14, ξ3 = 8, ξ4 = 16, η1 = 10, η2 = 14, 
η3 = 8, η4 = 16; (b) ξ1 = 8, ξ2 = 16, ξ3 = 10, ξ4 = 14, η1 = 8, η2 = 16, η3 = 10, η4 = 14, and (c) ξ1 = 6, ξ2 = 12, 
ξ3 = 15, ξ4 = 21, η1 = 8, η2 = 14, η3 = 8, η4 = 14. Parameters σ = –0.5206 g/cm3, k = 0.0403 g/cm3/km, h1 = 0.5, 
h2 = 5 and z = 0 remain the same for all three models. All length parameters and station distances are expressed in 
kilometres. 

 
 
the variables on the right hand side (RHS) in eqs (1) and 
(2) i.e. 
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Equation (3) shows the mathematical expression for 
pyramid model in integral form. Supplementary Informa-
tion contains the final analytical expression (forward 
problem solution) with relevant mathematical details. 
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Table 1. Linear density models and error estimates of gravity forward modelling 

   RMS error between NRMS error between RMS error between NRMS error between 
Linear   observed and computed observed and computed observed and computed observed and computed 
density σ k (in the present study) (in the present study) (by Chakravarthi et al.2) (by Chakravarthi et al.2) 
model (g/cm3)  (g/cm3/km) gravity anomaly (mgal) gravity anomaly gravity anomaly (mgal) gravity anomaly 
 

Model 1 –0.5206 0.0510 8.6287 0.1095   
Model 2 –0.5206 0.0403 9.8926 0.1147 12.0919 0.1778 
Model 3 –0.4100 0.0400 10.9660 0.1763   
Model 4 –0.4653 0.04015 8.3788 0.1129   

 

 
 

Figure 2. Validation of our forward problem solution (eq. (A6), see Supplementary Information online) through com-
parison of gravity response with that of right rectangular parallelepiped1. a, Geometry and gravity anomaly plot of right 
rectangular parallelepiped1. The parameters are as follows: x1 = 10, x2 = 15, y1 = 8, y2 = 18, z1 = 0.5, z2 = 5 and  
ρ = –0.5206 g/cm3. b, Geometry and gravity anomaly plot of our pyramid model. The pyramid model parameters are as 
follows: ξ1 = 10, ξ2 = 15, ξ3 = 10, ξ4 = 15, η1 = 8, η2 = 18, η3 = 8, η4 = 18, h1 = 0.5, h2 = 5, σ = –0.5206 g/cm3 and  
k = 0. All length parameters and station distances are expressed in kilometres. 

 
 
The integral evaluations on the RHS of eq. (3) were un-
dertaken using Wolfram Mathematica 9.0.1. Drafting of  
illustrations was implemented through MATLAB 2013b. 
 Figure 1 shows the geometry and gravity anomaly plot 
for a single pyramid model and it serves as an initial  
example. 
 To validate our gravity forward problem solution (see 
eq. A6, Supplementary Information online) for a pyramid 
model, we have considered a single right rectangular par-
allelepiped with constant density1, whose gravity effect at 
the origin (Figure 2 a) is given by 
 

 2 2 2(0,0,0) ln( )zg x y x y zγρ
⎡
⎢= + + +
⎢
⎣

 

  2 2 2ln( )y x x y z+ + + +  

  

2
2

2

1
1

1

1
2 2 2

tan

zyx

x y z

xyz
z x y z

−
⎤
⎥−
⎥+ + ⎦

, (5) 

 
where γ is the universal gravitational constant and ρ is the 
constant density of the prism (g/cm3). 
 Our analytical expression for the pyramid (eq. A6, See 
Supplementary Information online) gets reduced to that 
of eq. (5) for the linear coefficient k = 0 and by adjusting 
coordinates of pyramid vertices (Figure 1). 
 Accordingly, Figure 2 a corresponds to the gravity effect 
of a right rectangular parallelepiped1, while Figure 2 b to 
that of the present model. Our model response matches 
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Figure 3. a, Four linear density models for a parabolic density function opted by Chakravarthi et al.2. The values of constant density (σ) at the 
surface and linear coefficient (k) are given in Table 1. b, Basement topography of the Los Angeles basin, California, USA8. c, Residual gravity 
anomaly map of Los Angeles basin8. d, Computed gravity anomaly map of Los Angeles basin, using 3D vertical prism with parabolic density func-
tion2. 
 

 

 
 

Figure 4. Computed gravity anomaly map of Los Angeles basin using vertical pyramid model with linear density function (a) for model 1  
(σ = –0.5206 and k = 0.0510); (b) for model 2 (σ = –0.5206 and k = 0.0403); (c) for model 3 (σ = –0.410 and k = 0.0400); (d) for model 4 (σ = –
0.4653 and k = 0.04015). 

 
 
well with that of the right rectangular parallelepiped (root 
mean square (RMS) error = 1.210 × 10–4 and normalized 
root mean square (NRMS) error = 2.816 × 10–6). 
 For illustration purpose, we have included two syn-
thetic pyramid models and their computed gravity effects 
in Figure 1 b and c, based on eq. A6 (see Supplementary 
Information online). 
 The case study concerns gravity modelling of the Los 
Angeles Basin, California, USA2,8. 

 The logic for generating these linear density models 
from parabolic density model2 is illustrating in Figure 3 a 
and relevant details are included in Table 1. By consider-
ing the basement surface contour map (Figure 3 b) of the 
Los Angeles basin as input8, we have carried out forward 
modelling for four different linear density models  
(Figures 3 a and 4). We have digitized the basement topo-
graphic map8 (Figure 3 b) for forward modelling, residual 
gravity anomaly map8 (Figure 3 c) and theoretical gravity 
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Figure 5. Schematic demonstration of model discretization for approximating arbitrary geometry of gravity anomaly 
source using (a) conventional vertical prism model and (b) Vertical pyramid model. 

 
 
anomaly map2 (Figure 3 d) of Los Angeles basin on 
2 × 2 km2 grid for comparison purpose. 
 We have carried out forward modelling for all four  
linear density model (Table 1) and their results are  
included in Figure 4. Table 1 also contains error esti-
mates of our forward modelling efforts relative to that of 
Chakravarthi et al.2. 
 Our theoretical gravity expression for a pyramid model 
with sloping sides is validated against that of a right  
rectangular parallelepiped model1. It may be noted that at 
validation stage, to avoid numerical difficulties, we have 
perturbed the coordinates of bottom surface vertices of 
the model by a small amount (10–4 km in our case). 
 In our case study, as the parabolic density model of 
Chakravarthi et al.2 needs to be accommodated by a 
proper linear density model, necessary care has been 
taken by devising four independent linear density models 
(Figure 3 a and Table 1). Figure 3 b–d respectively, out-
lines the case study of Chakravarthi et al.2. The criterion 
for proper choice of linear density model is judged by 
RMS and NRMS error estimates. By considering the  
procedure of Chakravarthi et al.2, one needs a minimum 
of 209 3D vertical prisms for modelling the Los Angeles 
basin. However, using our pyramid model, only 10 indi-
vidual pyramids are needed to achieve better accuracy. 
Table 1 and Figure 4 illustrate that higher accuracy is 
achieved in the case of linear density model 4 (Figure 
4 d). 
 Our pyramid model (Figure 1 a) offers better approxi-
mation and ease in implementing gravity forward model-
ling for both 3D and 2.5D cases. For present-day computer 
infrastructure, complicated analytic expressions such as 
eqs (5) and (A6; Supplementary Information) do not pose 
any computational problem (CPU time). Figure 5 sche-
matically illustrates that our model discretization scores 
over that of Chakravarthi et al.2. 
 A theoretical gravity anomaly expression is devised for 
a 3D vertical pyramid model with linear density variation 
with depth. Our theoretical gravity expression for a pyramid 
model with sloping sides is validated against that of the 
right rectangular parallelepiped model1. We have also 
implemented two synthetic experiments and one case 
study, which demonstrate the utility of our forward pro-
blem solution. 

 The proposed pyramid model and its gravity response 
are quiet effective as a building block for computing the 
gravity effect of an arbitrarily-shaped 3D or 2.5D source(s) 
in comparison to that of conventional rectangular paral-
lelepiped model. 
 The relevant derivations of tensorial gravity compo-
nents and magnetic anomaly expressions for the pyramid 
model are underway. 
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