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Modelling of growth trend and improvement in fore-
casting techniques for vehicular population has always 
been and will continue to be of paramount importance 
for any major infrastructure development initiatives 
in the transportation engineering sector. Although 
many traditional as well as some advanced methods 
are in vogue for this process of estimation, there has 
been a continuous quest for improving on the accuracy 
of different methods. Time-series (TS) analysis tech-
nique has been in use for short-term forecasting in the 
fields of finance and economics, and has been investi-
gated here for its prospective use in traffic engineer-
ing. Towards this end, results obtained from two other 
traditional approaches, namely trend line analysis and 
econometric analysis, have also been collated, under-
lining the better results obtained from TS analysis.  
A regression model has been developed for predicting  
fatality rate and its results have been compared with 
those from TS analysis. Based on the incentive provided 
by reduced errors obtained from using increasing num-
ber of data points for model-building, forecasting has 
been done for the year 2021 using time-series modelling. 
With most of the datasets used and locations analysed 
for forecasting, the TS analysis technique has been 
found to be a useful tool for prediction, resulting in low-
er estimation errors for almost all the cases considered. 
It has also been inferred that the proximity of the  
forecasting window to the sample dataset has a notice-
able effect on the accuracy of time-series forecasting, 
in addition to the amount of data used for analysis. 
 
Keywords: Regression model, time-series analysis, 
traffic forecasting, transportation engineering. 

Traffic forecasting 

IN essence, traffic volume forecasting is the process of 
estimating the number of vehicles or people likely to use 
different transportation facilities in the future. For  
instance, a forecast may estimate the number of vehicles 
on a planned road or bridge, the expected ridership on a 

railway/metro line, the number of passengers visiting an 
airport, or the expected future traffic levels for the whole 
country. This process begins with the collection of data 
on current traffic. Depending upon the specific require-
ment of analysis, the traffic data are combined with other 
known data, such as population and economic growth 
rates, employment rate, trip rates, travel costs, etc. to  
develop a traffic demand model for the current situation. 
Combining this with predicted data for population,  
employment, etc. results in estimates of future traffic,  
typically estimated for each segment of the transportation 
infrastructure in question, e.g. for each roadway stretch or 
railway station that falls under the scope of facility. 

Need for traffic forecasting 

Knowledge of future traffic flow is an essential input in 
the planning, implementation and development of a 
transportation system. It also helps in its operation, man-
agement and control1. It is required to start the planning 
and/or development phase of any major transportation 
project initiatives. Being the first step in defining the 
scope and geometry of such projects, sometimes forecast-
ing even helps us know whether a project is needed at all. 
Forecasting is necessary for doing relevant economic 
analysis2. It can also be used for other purposes such as 
corridor planning, systems planning, air quality analysis, 
safety analysis and other such special projects. Inaccura-
cies in traffic volume forecasts are responsible for the  
additional costs associated with over and under design3. 
The costs associated with an under-designed project arise 
when an additional project must satisfy the original  
inadequacies. Extra materials, labour and additional right-
of-way attainment add to the cost of an over-designed 
project. Efficiency of traffic forecasting depends mainly 
on the size of average daily traffic. In general, the smaller 
the average daily traffic, the larger is the error in traffic 
forecasting. The major reasons for these errors can be: 
 
• The changing traffic patterns in future, specifically 

induced demand effect4,5 and rebound effect6. 
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• Traffic impacts due to development, majorly due to 
change in land-use patterns7. 

• Unforeseen and unaccounted socio-economic changes8. 
• Construction of new roads, diversions, etc. 

Literature review 

The literature review for this work comprises of the study 
of available literature on the methods previously used for 
traffic forecasting, their challenges, scope for improve-
ment and then the study of more recent, contemporary 
approaches to forecasting, especially with reference to 
time-series (TS) analysis. In the Indian context, the past 
research work has mainly concentrated on trend line 
analysis9,10. Here the traffic volume levels for the country 
have been predicted using a linear relationship between 
the GNP of a country and the total vehicular population. 
On the same lines, a project feasibility report11 on six-
laning of NH-2 from Delhi to Agra prepared by CES for 
NHDP, India, elaborates a combination of trip generation 
models and trend line analysis using NSDP instead of 
GNP for different corridors lying in the scope of this pro-
ject (see Appendix 1 for abbreviations used). Study of 
more contemporary areas of research focuses mainly on 
the TS analysis. While Bhar and Sharma12 deal with the 
applications and nuances of TS analysis (exemplified 
with the use of the SPSS software, Nihan and Holme-
sland13 stress on the basics of TS modelling. Approximate 
nearest neighbor nonparametric regression method has 
been discussed by Oswald et al.14. 
 Time-series models have been extensively used in traf-
fic forecasting for their simplicity and strong potential for 
on-line implementation (see, for example, refs 13, 15–
26). ARIMA is a variant of regression modelling used  
to work with time-series data in statistics and economet-
rics. This technique and its elements are discussed in de-
tail in the ‘methodology’ section. Levin and Tsao16 used 
an ARIMA (0, 1, 1) model, which is essentially the same 
as exponential smoothing model. Their comparison with 
an ARIMA (0, 1, 0), or the random walk model, showed 
that the ARIMA (0, 1, 1) model performed better. Ahmed 
and Cook17 proposed an ARIMA (0, 1, 3) model. They 
compared the results with those obtained by other models 
like double exponential smoothing, simple moving aver-
age and exponential smoothing with adaptive response. 
The authors found that ARIMA (0, 1, 3) gave better fore-
casts than the other three models. Nihan and Holme-
sland13, and Moorthy and Ratcliffe19 also applied the 
Box–Jenkins method to produce the short-term forecasts 
of daily flows. Hamed et al.21 investigated the use of 
time-series models for predicting arterial traffic flow. The 
data consisted of 1 min traffic flow for morning peak 
hours (6 : 30–8 : 15 a.m.). They fitted several ARIMA 
models after using first-order ordinary differencing.  
Results showed that the ARIMA (0, 1, 1) model best de-

scribed the data. Tang and Lam27 applied the Box–
Jenkins ARIMA model using historical and current-year 
partial daily flow developed for short-term prediction of 
daily flows using Hong Kong data. A study by Smith et 
al.28 compared parametric and nonparametric models for 
traffic flow forecasting. The study showed that prediction 
under seasonal ARIMA, a parametric modelling approach 
to time series, outperforms other nonparametric approaches 
like regression based on heuristically improved forecast 
generation. However, the results did indicate that in cases 
when the implementation requirements of seasonal 
ARIMA models cannot be met, using nonparametric  
regression coupled with heuristic forecast generation 
methods is preferred. 
 Tang et al.29 adapted time-series, neural network, non-
parametric regression, and Gaussian maximum likelihood 
methods to develop models for predicting traffic volumes 
by day of the week, month and AADT for the entire year. 
Analysis was conducted based on historical traffic data 
Hong Kong from 1994 to 1998. The daily flows estimated 
by the four models were used to calculate the AADT for 
the year of 1999. The results from the four models were 
compared and the Gaussian maximum likelihood model 
appeared to be the most promising and robust among 
them for extensive applications to provide short-term 
traffic forecasting database for the whole territory of 
Hong Kong. Chandra and Al-Deek30 found that the past 
values of upstream as well as downstream stations influ-
ence the future values at a station and therefore can be 
used for prediction. Further, it was also found that a vec-
tor autoregressive model is appropriate and better than 
the traditional ARIMA model for prediction at these sta-
tions. Although a number of methods can be adopted for 
traffic volume forecasting depending on the specific situ-
ation at hand, for the present analysis one of the more  
recent approaches, i.e. TS analysis was chosen for com-
parison with other traditional methods. 

Objective and scope 

This article attempts to highlights the usefulness of TS 
analysis in traffic forecasting by underlining the lower 
values of estimation errors found with this method when 
compared to two other methods – trend line analysis and 
econometric regression analysis cited from a previous 
work31. The results of analyses with increasing data 
points have been compared for relative levels of accu-
racy. Moreover, a regression equation has been arrived at 
for predicting fatality rate (number of persons killed in 
road accidents) in India and results from this equation 
have been compared with those from TS analysis to 
check for relative accuracies. 
 This exercise is only the first step in developing an  
insight into the choice of the best-suited method to esti-
mate future traffic levels in a country which, as has been
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Table 1. Data for total vehicular population and other variables (1971–2006) 

 Vehicular population Persons Population  Vehicular population Persons Population 
Year (in ‘000) killed (D) (million) (P) Year (in ‘000) killed (D) (millions) (P) 
 

1971 1865 15,000 560.2675 1989 16,920 50,700 832.535 
1972 2045 16,100 573.1299 1990 19,152 54,100 849.515 
1973 2109 17,600 586.2198 1991 21,374 56,400 866.53 
1974 2327 17,300 599.6427 1992 23,507 57,200 882.821 
1975 2472 16,900 613.459 1993 25,299 60,700 899.329 
1976 2700 17,800 627.6324 1994 26,464 64,000 915.697 
1977 3260 20,100 642.1336 1995 30,125 70,600 932.18 
1978 3614 21,800 656.9406 1996 33,786 74,600 948.7589 
1979 4059 22,600 672.0209 1997 37,332 77,000 965.4282 
1980 4521 24,600 687.332 1998 41,368 79,900 982.1825 
1981 5391 28,400 702.8212 1999 44,875 82,000 999.016 
1982 6055 30,700 718.4256 2000 48,857 78,900 1015.923 
1983 6973 32,800 734.072 2001 54,991 80,900 1032.473 
1984 7949 35,100 749.6769 2002 58,924 84,600 1048.641 
1985 9170 39,200 765.147 2003 67,007 85,900 1064.399 
1986 10,577 40,000 781.893 2004 72,718 92,600 1079.721 
1987 12,618 44,400 798.68 2005 81,501 94,900 1094.583 
1988 14,818 46,600 815.59 2006 89,618 105,700 1109.811 

Source: Ministry of Road Transport & Highways, Government of India (www.morth.nic.in). 
 
 
discussed, is imperative from many aspects. Due to data 
availability constraints the present analysis has been done 
for total vehicular population in India to enable the 
choice of appropriate methods for estimation at specific 
project level also. The primary data used have been cited 
from the MoRTH, Government of India (www.morth.nic. 
in). This has been reproduced in Table 1 for ready refer-
ence. To gauge the extent of data requirement of the TS 
method, the analysis was carried out with 22, 26, 30, and 
35 years vehicular population data and respective errors 
in estimation were calculated. 
 Encouraged by the improvement in results obtained as 
more and more data were used for model creation and  
validation, and as we moved closer to the forecasting 
window, which is reflected in the constantly diminishing 
values of RMSE calculated by comparing predicted val-
ues with actual figures for the entire dataset, forecasting 
has been done for the year 2021 for total vehicular popu-
lation and fatality rate in India. As suggested by Box and 
Jenkins32, ideally at least 50 observations are required for 
performing TS analysis. Taking this into account, TS 
analysis was done on AADT data sourced from Perform-
ance Measurement System (PeMS)33, California, USA, 
for a location in district 7 on Interstate-10(W) (Table 2). 
This analysis further establishes the potential of TS anal-
ysis as a promising alternative to traditional methods of 
forecasting. Overall, the article attempts to gauge the 
suitability of TS forecasting technique for traffic volume 
prediction. Given rich and varied data availability, the 
analysis can be extended to produce better understanding 
of this method and its application to project-level studies 
as well. Further, multivariate TS modelling can be  
explored for even better results if data availability meets 
the high requirements of TS analysis. 

Methodology of analysis 

Methods adopted 

This work deals mainly with the TS analysis for forecast-
ing. At the same time, for a similar dataset, the results  
obtained after analysis by this method have been com-
pared with those obtained from two other methods – trend 
line analysis, where future traffic volume is predicted 
based on a linear relationship between traffic population 
and GNP; and econometric regression analysis, where 
traffic demand is seen as being dependent on chosen eco-
nomic/demographic variables, as proposed by Jha et al.31. 
This method has also been used to compare with results 
for number of fatalities in road accidents from a regres-
sion analysis between fatality rate and vehicle ownership 
rate. A brief description of the TS method is given below: 
 
Time series analysis: Time series is a set of observa-
tions ordered in time. This analysis deals with observa-
tions that are collected over equally spaced, discrete time 
intervals. As in this case, when observations are made for 
only one variable over time, it is called a univariate time 
series. The fundamental assumption for any TS analysis 
is that some aspects of past pattern will continue to affect 
the future values. Values of variables occurring prior to 
the current observation are called lag values. The primary 
difference between TS models and other types of models 
is that lag values of the target variable are used as pre-
dictor variables, whereas traditional models use other  
variables as predictors, and the concept of a lag value 
does not apply because the observations do not represent 
a chronological sequence. A time series is deterministic if 
its future behaviour can be exactly predicted from its past
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Table 2. Monthly AADT data for location ‘Lark Ellen’ on I-10(W), California, USA 

 Mainline (ML)  Mainline (ML)  Mainline (ML) 
Month AADT Month AADT Month AADT 
 

July 2000 117,018 February 2004 120,744 September 2007 116,075 
August 2000 117,170 March 2004 120,914 October 2007 116,076 
September 2000 117,113 April 2004 120,896 November 2007 115,953 
October 2000 117,099 May 2004 120,710 December 2007 115,650 
November 2000 117,339 June 2004 120,672 January 2008 115,364 
December 2000 117,462 July 2004 120,258 February 2008 115,341 
January 2001 117,725 August 2004 119,920 March 2008 115,093 
February 2001 118,230 September 2004 119,160 April 2008 115,009 
March 2001 118,441 October 2004 118,394 May 2008 115,176 
April 2001 118,147 November 2004 118,376 June 2008 115,351 
May 2001 118,070 December 2004 121,533 July 2008 115,630 
June 2001 118,020 January 2005 124,428 August 2008 115,670 
July 2001 117,952 February 2005 125,687 September 2008 115,698 
August 2001 118,524 March 2005 125,992 October 2008 115,596 
September 2001 119,371 April 2005 126,534 November 2008 115,441 
October 2001 119,828 May 2005 126,209 December 2008 115,472 
November 2001 119,624 June 2005 126,098 January 2009 115,743 
December 2001 119,469 July 2005 125,727 February 2009 116,064 
January 2002 119,249 August 2005 125,454 March 2009 116,292 
February 2002 118,846 September 2005 125,454 April 2009 116,346 
March 2002 118,790 October 2005 125,431 May 2009 116,031 
April 2002 118,425 November 2005 125,496 June 2009 115,870 
May 2002 118,615 December 2005 125,283 July 2009 115,563 
June 2002 118,910 January 2006 125,427 August 2009 115,462 
July 2002 119,169 February 2006 125,349 September 2009 115,122 
August 2002 119,426 March 2006 125,197 October 2009 115,156 
September 2002 119,412 April 2006 124,803 November 2009 115,486 
October 2002 119,364 May 2006 124,623 December 2009 115,616 
November 2002 119,450 June 2006 123,341 January 2010 114,961 
December 2002 119,397 July 2006 122,467 February 2010 114,377 
January 2003 119,689 August 2006 121,037 March 2010 114,107 
February 2003 119,904 September 2006 120,781 April 2010 113,668 
March 2003 120,019 October 2006 120,445 May 2010 113,356 
April 2003 120,451 November 2006 119,571 June 2010 112,959 
May 2003 120,665 December 2006 118,978 July 2010 112,688 
June 2003 120,594 January 2007 118,558 August 2010 112,579 
July 2003 120,750 February 2007 117,770 September 2010 112,617 
August 2003 120,717 March 2007 117,690 October 2010 112,282 
September 2003 120,831 April 2007 117,817 November 2010 111,810 
October 2003 121,107 May 2007 117,860 December 2010 111,340 
November 2003 120,832 June 2007 117,484 January 2011 111,574 
December 2003 120,931 July 2007 116,822 February 2011 111,668 
January 2004 120,731 August 2007 116,424 March 2011 111,834 

Source: http://www.pems.dot.ca.gov (PeMS, Caltrans; accessed on 2 April 2012). 
 
 
behaviour. Otherwise the time series is statistical. The  
future behaviour of a statistical time series can be pre-
dicted only in probabilistic terms. 
 TS techniques can be used to develop highly accurate 
and inexpensive short-term forecasts. The Box and Jen-
kins methodology has been adopted and analysis has been 
done using the ARIMA approach34. The main rationale 
behind using the Box and Jenkins technique is that it has 
been shown to produce relatively accurate forecasts. The 
results from comparative studies conducted by Naylor et 
al.35, and Nelson36 showed that the Box and Jenkins  
model, albeit simpler, was more effective than other such 
contemporary econometric models. The basic limitation 

of this approach is its high data requirement. In case of  
traffic forecasting, it demands rich, reasonably accurate 
data spanning over a long time-frame so that there may 
be sufficient number of data points to model the situation  
appropriately. Because this is not always possible in the 
Indian context, there is scope for improvement if this  
approach is to be used to good effect in the future. 

Analysis 

As has been remarked before, there are two sets of TS 
analysis that have been performed here. Both are dis-
cussed sequentially hereafter. 
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Figure 1. (a) Non-stationary data and (b) stationary data. 
 
 

 
Analysis with MoRTH data: For the first case, the data 
used have been cited from MoRTH (Table 1). For uni-
variate TS analysis, data from years 1971 to 2005 (35 
years) have been used. The estimation has been done for 
the target year 2006. The Box and Jenkins methodology 
has been used and ARIMA technique has been adopted 
for analysis. The modelling has been performed on 
STATA. The following brief definitions will enable a bet-
ter understanding of the TS analysis, and reasons behind 
selection of particular models for the same. 
 
Box and Jenkins methodology: The original Box–
Jenkins modelling procedure involved an iterative three-
stage process of model selection, parameter estimation 
and model checking. The five broad steps include the  
following: 
 
Checking for stationarity and transforming the dataset 
such that assumption of stationarity is reasonable: A sta-
tionary process is a stochastic process whose joint prob-
ability distribution does not change when shifted in time 
or space. Consequently, parameters such as the mean and 
variance, if they exist, also do not change over time or 
position (Figure 1). Dickey Fuller and Philip Perron tests 
are performed to confirm stationarity of data used. A sta-
tionary series is relatively easy to predict because it is 
predicted that its statistical properties will be the same in 
the future as they have been in the past. The predictions 
for the stationary series can then be untransformed by  
reversing whatever mathematical transformations were 
previously used, to obtain predictions for the original  
series. Another reason for trying to stationarize a time  
series is to be able to obtain meaningful sample statistics 
such as means, variances and correlations with other  
variables. Such statistics is useful as descriptors of future 
behaviour only if the series is stationary. For example, if 
the series is consistently increasing over time, the sample 
mean and variance will grow with the size of the sample, 
and they will always underestimate the mean and  

variance in future periods. And if the mean and variance 
of a series are not well-defined, so are its correlations 
with other variables. 
 
Identification of the parameters of the model: ARIMA. 
Lags of the differenced series appearing in the forecasting 
equation are called ‘auto-regressive’ terms, lags of the 
forecast errors are called ‘moving average’ terms, and a 
time series which needs to be differenced to be made sta-
tionary is said to be an ‘integrated’ version of a stationary 
series. An ARMA model predicts the value of the target 
variable as a linear function of lag values (this is the  
auto-regressive (AR) part) plus an effect from recent ran-
dom shock values (this is the moving average (MA) part). 
To get the order of AR and MA process, ACF and PACF 
are studied. 
 An autoregressive process is a function of lagged de-
pendent variables and a moving average process a func-
tion of lagged error terms. An autocorrelation is the 
correlation between the target variable and lag values for 
the same variable. Correlation values range from –1 to 
+1. A value of +1 indicates that the two variables move 
together perfectly; a value of –1 indicates that they move 
in opposite directions. When building a TS model, it is 
important to include lag values that have large, positive 
autocorrelation values. Sometimes it is also useful to  
include those that have large negative autocorrelations. 
The partial autocorrelation is the autocorrelation of TS 
observations separated by a lag of time units with the  
effects of the intervening observations eliminated. The 
grey regions in the ACF and PACF plots in Figure 2 
show points within two standard deviations (an approxi-
mate 95% confidence interval) from zero. If the autocor-
relation/partial autocorrelation bar is longer than the 
marker (that is, it covers it), then the correlation should 
be considered significant. 
 
Estimation of the parameters: There are two different 
ways in which a model can be estimated-maximum
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Figure 2. (a) ACF plot and (b) PACF plot. 
 
 
likelihood estimation, and conditional maximum likeli-
hood estimation. The first one uses numerical optimiza-
tion techniques for estimation purpose and the latter is 
OLS regression. This analysis follows full maximum 
likelihood estimation. Based on minimum AIC and BIC 
which determine the parsimony of the model, the best 
models are selected. A parsimonious model is desirable 
because including irrelevant lags in the model increases 
the coefficient standard errors and therefore reduces the t-
statistics. 
 
Performing diagnostic checks: If the model is correctly 
specified, the residuals of the model should be uncorre-
lated. In other words, there should be a white noise. One 
way to test this is to get a Portmanteau test statistic. This 
is also called the white noise test. It indicates the absence 
of serial correlation or predictability. If the computed Q 
exceeds the value from the χ 2 table for some specified 
significance level, the null hypothesis that the series of 
autocorrelations represents a random series is rejected at 
that level. The P-value gives the probability of exceeding 
the computed Q, given a random series of residuals. Thus 
random residuals give small Q and high P-value. Results 
are considered better when the value of this probability is 
closer to 1. 
 Hence, following the above methodology, all models 
tested here have been qualified on the basis of the criteria 
mentioned below (in the same order): (i) The number of 
significant spikes as given by the ACF and PACF plots, 
(ii) High probability for white noise (non-auto-correlation 
of residuals), (iii) Low RMSE to ensure optimum accuracy 
and (iv) Among the models that gave favourable  
results for the above, further narrowing down was done 
for selection based on parsimony indicated by low AIC 
and BIC. 
 To assess the extent of data requirement for TS analy-
sis, traffic population data for increasing number of years 
were first tried out. In all these cases, estimation has been 
done for the target year 2006. The respective observa-
tions for all these have been compiled as follows: 

Table 3. TS test statistics for various prospective models with 30  
 years data 

Model P (white noise) AIC BIC RMSE 
 

ARIMA (0, 2, 0) 0.858 435.31 437.97 4086.56 
ARIMA (6, 2, 0) 0.994 438.79 449.45 4183.30 
ARIMA (7, 2, 0) 0.999 438.10 449.99 4549.73 

 
 
With 15 years data (1971–85): No significant spikes were 
observed from the ACF and PACF plots. All the points 
were located well inside the grey region for both the 
plots. This indicated that the available data was insuffi-
cient to carry out TS analysis. 
 
With 22 years data (1971–92): Although no significant 
spikes were observed for the ACF plot, the PACF plot 
showed some spikes going outside the grey region. 
ARIMA (0, 2, 0) and (7, 2, 0) models could be investi-
gated during analysis. Both of these resulted in low pro-
bability for white noise and high RMSE, thus being 
insufficiently conclusive. 
 
With 26 years data (1971–96): Both the ACF and 
PACF plots showed data consistency in terms of signifi-
cance of spikes. ARIMA (2, 2, 0), (3, 2, 0) and (6, 2, 0) 
models were investigated during analysis. ARIMA (2, 2, 
0) was selected for forecasting because it results in low 
values of AIC, BIC and RMSE and passes the white noise 
test favourably. 
 
With 30 years data (1971–2000): Table 3 shows the 
various prospective models selected for analysis in this 
case along with relevant parameters. We observe that the 
results for the white noise test improve significantly and 
RMSE values reduce with respect to the previous sets of 
data used for 15, 22 and 26 years. 
 As discussed, the RMSE values in Table 3 have been 
calculated based on the error (deviation) between the  
actual and predicted total vehicular population in the period
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Table 4. Component statistics for ARIMA (6, 2, 0) using 30 years data 

ARIMA regression Number of obs. = 28 
Sample: 1973–2000  Wald chi2 (6) = 8.32 
Log likelihood = –211.3953 Prob > chi2 = 0.2153 
 

D2.TVP*  OPG z P > |z| (95% conf. interval) 
TVP Coef. Std. Err. 
_cons 137.0784 63.29741 2.17 0.030 13.0178 261.1391 
 

ARMA, ar 
 L1. –0.4126212 0.1997691 –2.07 0.039 –0.8041616 –0.0210809 
 L2. –0.3930978 0.3802716 –1.03 0.301 –1.138416 0.3522208 
 L3. –0.2361988 0.3605105 –0.66 0.512 –0.9427865 0.4703889 
 L4. –0.4007741 0.8033748 –0.50 0.618 –1.97536 1.173812 
 L5. –0.175019 0.4453681 –0.39 0.694 –1.047924 0.6978864 
 L6. –0.4357381 0.507881 –0.86 0.391 –1.431167 0.5596905 
 σ 445.4789 49.55745 8.99 0.000 348.348 542.6097 

*Di. X refers to the ith consecutive difference for series of X; hence in the table, second difference of  
total vehicular population (TVP). Cons, Constant’ Coef., Coefficient; Std. err., Standard error; Conf.  
interval, Confidence interval. 

 

2001–06, which is the forecasting window. This applies 
to Tables 5 and 7 of the same nature also. Though the 
values of RMSE appear high in magnitude, the average 
RMSE is about 0.035% of the average base values for 
AADT. Also, the RMSE values increase as we move  
towards the extreme ends (left and right) of the dataset. In 
the middle portion, they remain at relatively lower levels. 
On the basis of the results obtained, ARIMA (6, 2, 0) was 
considered best suited for estimation based on high white 
noise, low AIC, BIC and RMSE values. 
 Table 4 shows significant test statistics for the ARIMA 
(6, 2, 0) model. A few key observations have been dis-
cussed to have a better interpretation of the descriptive 
statistics. The estimated coefficients (column 2 in Table 
4) should be significantly different (distant) from zero. 
Significance of the AR and MA coefficients can be eva-
luated by comparing estimated parameters with the stan-
dard errors (column 3). The value (magnitude-wise) of 
the standard error should be less than that of the coeffi-
cient itself. In this case, except for lag 1 of AR compo-
nent, the parameters could not be found to be significant 
at 5% level of significance, as the 95% confidence inter-
val (last two columns in Table 4) included the point 0. 
 As the confidence interval was lowered, some other 
lags were found to be significant at 75% confidence in-
terval. This could have been caused due to the less than 
adequate data, the extent of veracity of data source and 
method of data collection adopted for the data used for 
TS analysis in this case. Figure 3 shows the result of  
forecasting performed for the year 2006 using 30 years 
data. The dashed line in the plot shows the predicted  
values, while the solid line marks the actual values  
for total vehicular population for each corresponding 
year. The gap between these two, which is more apparent 
in the final time range (2000–06), indicates underestima-
tion as the predicted values are lower than the actual 
ones. 

Table 5. TS test statistics for various prospective models with 35  
 years data 

Model P (white noise) AIC BIC RMSE 
 

ARIMA (0, 2, 0) 0.003 565.97 568.96 1436.01 
ARIMA (1, 2, 0) 0.958 540.33 544.82 866.39 
ARIMA (1, 2, 1) 0.958 542.33 548.32 865.86 

 
 

 
 

Figure 3. Actual and predicted values for ARIMA (6, 2, 0) using data 
for 30 years. 
 
 
With 35 years data (1971–2005): The available data 
had to be differenced twice to achieve stationarity (a  
pre-requisite for TS analysis), as shown in Figure 1. The 
Dickey Fuller and Philip Perron tests were conducted to 
confirm stationarity. Table 5 provides the statistical  
results obtained for various models using this set of data. 
We observe that the RMSE values fall noticeably com-
pared to the previous cases. This may have been caused 
due to two significant factors: (i) increase in the amount
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Table 6. ARIMA (1, 2, 0) regression parameters 

ARIMA regression Number of obs = 33 
Sample: 1973–2005 Wald chi2 (1) = 85.31 
Log likelihood = –267.1671 Prob > chi2 = 0.0000 
 

D2.TVP  OPG z P > |z| (95% conf. interval) 
TVP Coef. Std. Err. 
_cons 226.9305 113.9699 1.99 0.046 3.553639 450.3074 
 

ARMA 
 ar, L1. –0.8030058 0.0869377 –9.24 0.000 –0.9734006 –0.6326109 
 σ 781.6101 114.2785 6.84 0.000 557.6283 1005.592 

 
 

 
 

Figure 4. ACF plot for residuals of the model ARIMA (1, 2, 0). 
 
 

 
 

Figure 5. Actual and predicted values for ARIMA (1, 2, 0) using data 
for 35 years. 
 
 
of data used for modelling, and (ii) Increase in the prox-
imity of the forecasting window (year 2006) to the sam-
ple data used (1971–05) compared to cases taken up 
earlier. 
 Table 6 shows the ARIMA regression parameters for 
ARIMA (1, 2, 0) model. Portmanteau test for white noise 
gave Portmanteau (Q) statistic as 6.326, which is less 
than the critical value of 23.7 at 5% level of significance. 
Also, probability >χ2 (14) is 0.9583, which is very close 
to 1. The plot of ACF for the residuals of this model also 

suggests that they are non-auto-correlated, as none of the 
spikes goes beyond the 2σ region (Figure 4). Considering 
these results and their relative significance, for this case 
ARIMA (1, 2, 0) was considered as the best suited for 
modelling. Figure 5 shows the plot for actual and predicted 
values obtained for ARIMA (1, 2, 0) using data for 35 
years (1971–2005). Keen observation shows that the gap 
which was evident in case of 30 years data has closed in 
as the forecasting window moves closer to the sample data. 
This may have been caused due to the fact that data in the 
window 2000–05 were used for modelling itself and the 
forecasting window consisted of the year 2006 only. 
 In order to ascertain whether it is the quantity (volume) 
of data used for the analysis or the proximity of dataset to 
the forecasting window that reflects on the accuracy of 
results from the analysis, the TS analysis was done on the 
same dataset, this time using data till 2005, but for 25 and 
30 years respectively, for forecasting figures for the year 
2006. Thus for both these datasets, the forecasting win-
dow is equally close to the dataset, while the amount of 
data (number of data points) used differs. The following 
is the description of the analyses done: 
 
With 25 years data (1981–2005): ARIMA(1,2,0) was 
chosen out of four prospective models for forecasting 
based on high white noise probability, low AIC, BIC and 
RMSE values. 
 
With 30 years data (1976–2005): ARIMA (1, 2, 0) was 
chosen out of four prospective models for forecasting 
based on high white noise probability, low AIC, BIC and 
RMSE values. 
 
Also, forecasting was done for the year 2021 using data 
from 1971 to 2006. ARIMA (0, 2, 0), (0, 2, 1), (1, 2, 0), 
(1, 2, 1) and (1, 2, 2) models were investigated for model-
ling and based on the results for relevant statistics for 
these models, ARIMA (1, 2, 1) was considered the best. 
The value for total vehicular population predicted by this 
model for the year 2021 is 236,269,000. 
 To further exhibit the potential of TS modelling, a 
comparative analysis has been done between results from 
two methods – regression and TS analysis. Both these 
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analyses use the same dataset to enable suggestive com-
parison of the results. As suggested by Vishwas et al.37, a 
regression model has been built between number of 
deaths (D) per 10,000 vehicles (N) and vehicle ownership 
(number of vehicles in 10,000 per million population), 
that is D/N versus N/P using data from 1971 to 2000 for 
predicting future fatality rate. Table 1 shows the relevant 
data. While Figure 6 shows the best-fit curve. The equa-
tion that emerges from such a regression analysis is: 
 

 
0.564

243.858 ( 0.993).D N R
N P

−
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 
Using the same dataset (1971–2000), TS models were 
created and forecasting was done for the number of per-
sons killed for the year 2006. The actual figures were 
compared with predicted figures during the forecasting 
window of 2001–06. Based on the results, ARIMA (7, 2, 
0) has been used for estimation for the year 2006. Figure 7 
shows the TS plot for forecasting till 2006. We can  
infer that the TS model performs reasonably well, sup-
ported statistically by high white noise and low RMSE 
value. 
 

 
 

Figure 6. Best-fit curve for accident rate versus vehicle ownership 
rate. 
 

 
 

Figure 7. Actual and predicted TS plot of persons killed (D) till 2006. 

 In order to gauge the relative accuracies of the two  
methods explained above, the values for variables N, D 
and P were substituted in the regression equation, and  
D was calculated for the year 2006. This value of D was 
compared with the one obtained for 2006 from TS analy-
sis of the same data. After comparison, the results from 
TS analysis were found to be more accurate and going a 
step further, forecasting was done for total number of 
persons killed for the year in 2021 using data from 1971 
to 2006. ARIMA (2, 1, 0) was found out to be best suited 
for forecasting based on high white noise probability, and 
low AIC and BIC values. 
 
Analysis with PeMS data: PeMS is an archived data  
user service that provides over ten years of data for  
historical analysis. In the raw AADT data available on 
the PeMS website, the column ‘Arithmetic Mean’ is the  
average of all daily flows. Each row shows this value for 
a year; so if the row starts at 4/1/2009 (in mm-dd-yyyy 
format), the value being shown is the arithmetic mean 
(the simple average) of daily traffic volumes from 
4/1/2009 to 3/31/2010. The next row that starts at 
5/1/2009 shows the arithmetic mean from 5/1/2009 to 
4/30/2010 and so on. Study of these data for Lark Ellen 
(34.4 miles along I-10W) has been done. Table 2 gives 
the AADT data for this location. The choice of location is 
based on the following three different criteria: (i) The  
location should fall somewhere midway along the length 
of I-10, which itself is 46.8 miles long in District 7. (ii)  
Preferably, mainline data should be considered for analy-
sis. (iii) That location should be selected for which data 
are available for the longest duration. 
 For this set of analysis, monthly AADT data from July 
2000 to December 2008 were taken to estimate the 
AADT for March 2011 (27 data points ahead in future), 
the most recent point of time for which data were avail-
able. Table 7 shows important parameters for some pro-
spective models. Almost all the models investigated have 
similar values for AIC and BIC, and thus we depend on 
high white noise and low RMSE for choosing the best 
model. 
 Table 8 shows statistics for ARIMA (2, 1, 2), which 
has been found to be best suited for modelling this case 
based on the results represented in Table 7. As can be  
noticed from the last two columns in Table 8, lag 1 for 
AR and both lags 1 and 2 for MA are significant at 5% 
level of significance, because the 95% confidence inter-
val for these lags is far from zero. Portmanteau test for 
 

Table 7. TS Parameters for prospective models for Lark Ellen 

Model P (white noise) AIC BIC RMSE 
 

ARIMA (1, 1, 1) 0.703 1523.31 1533.77 948.004 
ARIMA (1, 1, 2) 0.847 1523.86 1536.94 953.260 
ARIMA (2, 1, 2) 0.846 1523.05 1538.74 948.004 
ARIMA (2, 1, 1) 0.825 1524.07 1537.15 956.340 
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Table 8. Regression parameters for ARIMA (2, 1, 2) 

ARIMA regression Number of obs = 101 
Sample: Sample: 2000m8–2008m12 Wald chi2 (4) = 133.68 
Log likelihood = –755.5266 Prob > chi2 = 0.0000 
 

D2.TVP  OPG z P > |z| (95% conf. interval) 
TVP Coef. Std. Err. 
_cons –11.0944 126.6279 –0.09 0.930 –259.2806 237.0918 
 

ARMA 
 ar L1. –0.5027332 0.215281 –2.34 0.020 –0.9246762 –0.0807903 
 L2. 0.2845574 0.216591 1.31 0.189 –0.1399531 0.7090679 
 ma L1. 1.308261 0.2071327 6.32 0.000 0.9022883 1.714234 
 L2. 0.4858782 0.1615852 3.01 0.003 0.169177 0.8025794 
 σ 427.2118 15.14778 28.20 0.000 397.5227 456.9009 

 
 

 
 

Figure 8. Actual and predicted AADT for Lark Ellen. 
 
 
white noise gives Portmanteau (Q) statistic as 30.9877, 
which is less than the critical value of 55.76 at 5% level 
of significance. Probability >χ 2 (40) is 0.8459. Figure 8 
shows the actual and predicted AADT values for Lark  
Ellen after analysis with ARIMA (2, 1, 2). 
 As done with the previous set of analysis, in order to 
investigate the effect of proximity of dataset to the fore-
casting window, analysis was done for Lark Ellen with 
the same dataset, but this time using data from July 2002 
to December 2008 to approximate figure for March 2011, 
thus using only 78 data points for model-building as  
opposed to 102 in the previous case. For this analysis, 
ARIMA (2, 1, 2) was chosen out of six prospective  
models for forecasting. 

Results 

Table 9 gives the results of the analyses carried out using 
MoRTH data for varying (and increasing) number of 
years. The estimated and actual values are for the target 
year 2006. As discussed earlier, data used for 15 and 22 
years could not be found sufficient enough for appropri-

ate analysis. Results for other sets of data have been dis-
cussed subsequently. 
 A negative error signifies underestimation, i.e. the  
actual vehicular population is greater than the one pre-
dicted. A positive error shows that the value predicted by 
analysis is more than the actual value. As can be noted, 
TS analysis was possible only with data for 22 years and 
more (analysis with 15 and 20 years data could not be run 
due to data insufficiency). Further, the efficacy of TS 
analysis improved with increasing number of years. In 
case of predicting the fatality rate for the target year 2006 
using two different approaches, the values obtained from 
regression and TS analysis were found to be 121,020 and 
105,201 respectively, against the actual value of 105,700 
for 2006, giving a percentage error of 14.49 and 0.47  
respectively. Also, the average percentage error during 
the forecasting window (period 2001–06) was 17.67 for 
regression and 5.31 for TS analysis. 
 Moreover, it was observed that the error for forecasting 
for the year 2006 remained almost at the same if data till 
2005 were used for model-building, irrespective of the 
amount of data used. This is substantiated by the results 
obtained from analyses done on data from 1981 to 2005 
(25 years), 1976 to 2005 (30 years), and 1971 to 2005 (35 
years), where their respective errors remained 2.24%, 
2.44%, and 2.48%. It can also be observed that for the 
same amount of data, the dataset closer to the forecasting 
window gives better results compared to one with equal 
amount of data but farther from the forecasting window 
(for example, with 30 years dataset, the period 1976–
2005 gives more accurate results than the period 1971–
2000). This corroborates that accuracy of TS analysis  
improves with proximity to the forecasting window. 
 For the analysis carried out with AADT data from 
PeMS, DoT, California, ARIMA (2, 1, 2) predicts an 
AADT value of 114,959 for March 2011 while the actual 
value is 111,834, resulting in an overestimation error of 
2.794%. In terms of numbers, these are noticeably lower 
than the ones obtained in the results for the Indian data. 
This highlights the fact that the efficiency of estimation 
by TS analysis improves drastically with increasing
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Table 9. Results obtained with different sets of data from MoRTH 

  Predicted figure Actual figure Absolute Error  
Data used Model for 2006 (in ‘000) for 2006 (in ‘000) Error (–ve; %) 
 

1971–1996 (26 years) ARIMA (3, 2, 0) 67,443 89,618 22,175 24.75 
1971–2000 (30 years) ARIMA (6, 2, 0) 73,152 89,618 16,466 18.37 
1971–2005 (35 years) ARIMA (1, 2, 0) 87,319 89,618 2299 2.48 
1981–2005 (25 years) ARIMA (1, 2, 0) 87,610 89,618 2008 2.24 
1976–2005 (30 years) ARIMA (1, 2, 0) 87,436 89,618 2182 2.44 

 
 
amount (richness) of data available. Also, when analysis 
was done using data from July 2002 to December 2008 
(thus using 24 data points lesser than the previous case) 
to predict for March 2011, ARIMA (2, 1, 2) resulted in a 
figure of 114,174, thereby showing an overestimation of 
2.09%. Thus, as in the case of analysis with MoRTH  
data, the effect of proximity of sample data to the fore-
casting window seems to have a large bearing on the  
accuracy of TS forecasting, irrespective of the amount of 
data used. 
 For a similar data set sourced from the Indian Roads 
Congress (IRC), the error resulting from estimation of to-
tal vehicular population for the year 1996 using data for 
years 1951–85 (35 years) was 1.49%. The corresponding 
values of error obtained from the other two approaches – 
trend line analysis and econometric regression analysis 
were found to be 93.57% and 6.202% respectively31. 
Thus the error level of the results obtained from TS ana-
lysis is considerably lower than that from the other two 
methods, underlining its usefulness as a forecasting tech-
nique in the future. 

Conclusion 

Identification, investigation and implementation of  
appropriate traffic forecasting techniques are imperative 
to meaningful and sustainable allocation of scarce re-
sources like land, labour and fund for developing nations. 
TS analysis can be a promising alternative to the problem 
of overestimation of future traffic levels, a trend gene-
rally observed when forecasting with other traditional 
techniques. The error in estimation for TS analysis was 
found lower in most of the cases considered. While the 
regression model for predicting fatality rate had a high R2 
value (0.993), the results from TS analysis showed better 
accuracy with lower average errors (5.31% and 17.67% 
for TS and regression analyses respectively). In a previ-
ous work, even for analysis done with IRC data using 
trend line and econometric approaches in addition to TS 
analysis, the error with TS modelling was considerably 
lower than the other two models (1.49% for TS, 6.202% 
for econometric and 93.57% for trend line analyses). 
 It can also be concluded that while as with other types 
of regression and statistical analyses, the more the quan-
tity of data used (sample data), the better the analysis in 
terms of validating the models, their statistical coeffi-

cients and outputs, the results of TS analysis are heavily 
influenced by the proximity of the forecasting window to 
the sample data used for model building. Even with larger 
volume of data, the error levels for prediction remain 
constant enough as long as the forecasting window  
remains as close in all the cases. This tends to strongly 
suggest that TS models can be effective in short-term  
forecasting, underlining their potential use in fields that 
depend heavily on accurate short-term forecasts. 
 TS models have been found to be robust and work well 
with data for Indian as well as US locations. Although 
this approach requires rich data for variables used in 
modelling, it has the capability of accurate predictions  
using lesser number of explanatory variables than some 
other traditional approaches; thus the high data require-
ment for some variables is offset by requirement of lesser 
number of variables altogether. The time-frame for accu-
rate forecasts using this method (which in this study is 15 
years into the future) can be further investigated. As has 
been realized during this analysis, at least 30 data points 
are required for acceptable results from forecasting. If the 
limitation of high and rich data requirement for this  
method is overcome by implementation of proper techno-
logy then, in agreement with the findings of other res-
earchers, it should contribute favourably towards accurate 
traffic forecasting (especially short-term forecasting) in 
the times to come. 
 It can be established that use of TS models can be  
effective in short-term forecasts in the range 5–10 data 
points ahead. This opens up vast avenues for its use in  
installation of facilities like ITS, traffic management and 
other congestion mitigation measures because these faci-
lities majorly require short-term forecasts for traffic  
volume. Seasonal ARIMA (SARIMA) models are used in 
conjunction with Kalman filters for short-term traffic  
volume forecasting. Inter alia accurate forecasts for  
volume (flow) will result in better forecasts for speed, 
area occupancy and other useful derived parameters. 
Moreover, it is noticed that the TS method relies exclu-
sively on historical trend and is not behavioural in nature, 
i.e. it does not take into account other explanatory vari-
ables that usually affect travel demand. 
 These models may also be used for predicting travel 
time and density in real-time traffic situations to predict 
the bottleneck traffic conditions and take traffic manage-
ment measures, both for private and public transport. This
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Appendix 1. Abbreviations used in the article 

Abbreviation Expanded form Definition 
 

AADT Annual Average daily traffic It is the average daily traffic for a year, i.e. the average daily traffic over a 365-day period. 
 

ACF Auto-correlation factor It is the function representing correlation between the target variable and lag values for the  
    same variable in a time series. 
 

AIC Akaike information criterion For a given set of data, it is a measure of the relative quality of a statistical model; deals  
    with the trade-off between the complexity and the goodness-of-fit of the model. 
 

ARIMA Auto-regressive integrated A variant of regression used to work with time-series data in statistics and econometrics. 
   moving average 
 

BIC Bayesian information criterion Analogous to AIC, it resolves the problem of overfitting caused due to addition of  
    parameters by introducing a penalty term for additional parameters used in the model. 
 

CES Consulting Engineering Services – 
 

DoT Department of Transportation – 
 

GARCH Generalized auto-regressive ARMA models that account for characteristic size or variance of error terms and volatility 
   conditional heteroskedasticity  of error; model error terms as a function of size of error terms previous time periods. 
 

GNP Gross national product It is the market value of all the products and services produced in one year by labour and  
    property supplied by the residents of a country. 
 

ITS Intelligent transportation systems Advanced engineering applications aimed at providing innovative services related to modes  
    of transport and traffic management. 
 

MoRTH Ministry of Road Transport and  – 
   Highways, Government of India 
 

NHDP National highways development A project to upgrade, rehabilitate and widen major highways in India to a higher standard;  
   project  implemented in 1998 by National Highways Authority of India. 
 

NSDP Net state domestic product Equals the gross domestic product minus depreciation on the capital goods of a state;  
    accounts for capital that has been consumed over the year in the form of housing, vehicle  
    or machinery deterioration. 
 

OLS Ordinary least squares A method for estimating the unknown parameters in alinear regression model; minimizes  
    the sum of squared vertical distances between the observed responses in the data set and  
    the responses predicted by the linear approximation. 
 

PACF Partial auto-correlation factor It is a function representing the autocorrelation of time-series observations separated by a  
    lag of time units with the effects of the intervening observations eliminated. 
 

RMSE Root mean square error A measure of the difference between values predicted by a model and those actually  
    observed from the environment that is being modelled. These individual differences are  
    also called residuals, and the RMSE serves to aggregate them into a single measure of  
    predictive power. 
 

TS Time series A sequence of observations ordered with respect to time, typically at uniformly spaced time  
    intervals. 

 
may be possible with fusion of time-series data. On the 
other hand, regression models, while taking into account 
the dependency of travel demand on exogenous influencing 
variables, ignore the historical growth trend. A combination 
of these two approaches that makes use of exogenous ex-
planatory variables in conjunction with seasonal/historical 
variations can be expected to result in better forecasts than 
either of these two approaches employed alone, especially 
with regard to long-term prediction. This warrants the use 
of multivariate TS methods like GARCH and ARCH proc-
esses, incorporating factors like change in land-use pat-
terns and a few relevant economic indicators which 
should produce even more accurate results. 
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