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Importance of soil organic carbon (SOC) in maintain-
ing soil productivity and natural ecosystem has been a 
major concern throughout the globe. SOC in the  
humid tropical climate becomes more important in view 
of undulating hilly terrain in the northeastern region 
of India. The major concern in such landscape is soil 
erosion and the necessary conservation practices.  
In the present study, we discuss the technique of  
pedometric mapping to link SOC and soil loss. The 
best-fit semi-variogram model for SOC was found to 
be exponential model (R2 = 0.90). The best fit semi-
variogram models for soil and SOC losses are spheri-
cal (R2 = 0.95) and exponential (R2 = 0.77) respec-
tively. The spatial distribution of SOC, soil and SOC 
loss was found to be related with topography and dif-
ferent land-use types and showed moderate spatial 
dependence. With the help of 196 grid observations, 
the present study shows a threshold limit of 150 kg ha–1 

year–1 SOC loss above which the areas are to be con-
sidered as susceptible demanding immediate conserva-
tion measures. Pedometric mapping using SOC and 
soil loss can, thus, be a tool to prioritize areas in  
humid tropical climate for conservation agriculture. 
 
Keywords: Conservation agriculture, pedometric map-
ping, soil erosion, soil organic carbon. 
 
TRADITIONALLY, soil management and land-use planning 
have been the main broad aims of soil survey at all scales. 
However, with increasing concern on environmental  
issues, it has moved from its traditional subjective conjec-
ture to more quantitative modelling with accompanying 
accuracy and uncertainty issues1. Effective soil manage-
ment requires an understanding of soil distribution pat-
terns within the landscape. Spatial and temporal variability 
of the soil environment is its inherent and unavoidable 
feature. In recent years, special attention has been given 
to variability in various soil parameters, viz. soil organic 
carbon (SOC) and its relation to soil health and environ-
ment. This variability is related to the spatial and tempo-
ral variation of soil-forming factors, and human activity2. 
The intensity of erosion and deposition of eroded materi-

als may also affect the temporal and spatial variation of 
soil properties3. The fact of the matter is that the natural 
and anthropogenic components of the soil are not suffi-
ciently identified and, so far, are the least known2. 
 For the last few decades, several quantitative methods 
are being used to describe, classify and study the spatial 
distribution patterns of soil in a more objective way. The 
methods are collectively categorized in the emerging 
field of soil science as pedometrics1. Geostatistics is one 
of the most popular tools of pedometrics as well as of 
digital soil mapping. Pedometrics addresses the issues  
related to the application of mathematical and statistical 
methods for the study of the distribution and genesis of 
soils. Geostatistics is defined as the creation and the 
population of geographically referenced soil database 
generated at a given spatial resolution using field and 
laboratory observations coupled with environmental data 
through quantitative relationship. Several studies have 
shown that combining soil maps and soil information 
from point observations can improve spatial prediction 
than using soil maps alone4–9. The true soil type, typically 
unknown, thus can be represented with a probability 
model. When a probability model is available, this may be 
used for spatial prediction of the soil property. Probability 
distribution of soil type can be obtained from soil maps us-
ing pedometric methods such as indicator krigging6,9. Soil 
survey reports accompanying traditional soil maps often 
provide areal estimates of soil type occurring within the 
map units10. Such information may be used to define a 
frequency distribution for each map unit, which can again 
serve as a probability distribution of any map unit. 
 In recent years, statistics and geostatistics have been 
used widely to quantify the spatial distribution patterns of 
SOC11–13 and also its distribution in different bio-climatic 
and ecological regions14. Soil organic carbon refers to the 
carbon associated with organic matter (OM) present in 
the soils. It is the organic fraction of the soil with decom-
posed plant and animal materials as well as microbial  
organisms15. Soil organic carbon is important for all aspects 
of soil fertility, namely chemical, physical and biological 
fertility (Table 1) and thus, it is an most important indica-
tor for soil health and agricultural sustainability15. The 
amount of SOC, at any time, is dependent on a complex
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Table 1. Effects of soil organic carbon (SOC) on soil fertility 

Soil fertility Effects of SOC 
 

Chemical fertility 
 Provides nutrients available to plants Microbial decomposition of SOC releases nitrogen, phosphorus and a 

range of other nutrients for use by plant roots. 
 

Physical fertility 
 Improves soil structure and water-holding capacity In the process of decomposition, microbes produce resins and gums that 

help bind soil particles together into stable aggregates. The improved 
soil structure holds more water available to plants, allows water, air 
and plant roots to move easily through the soil, and makes them easier 
to cultivate. 

 

Biological fertility 
 Provides food for soil organisms Organic carbon is a food source for soil organisms and microorganisms. 

Its availability controls the number and type of soil inhabitants and 
their activities, which include recycling nutrients, improving soil struc-
ture and suppressing crop diseases. 

 

 Buffers toxic and harmful substances SOC can reduce the effect of harmful substances such as toxins and heavy 
metals by sorption, and assist degradation of harmful pesticides 

Source: Chan15. 
 
 
set of interactions among physical, chemical and biologi-
cal processes. The role of SOC has recently received in-
creased attention because of its potential to improve soil 
quality through carbon sequestration14 and its strong  
influence on the persistence and degradation of pesticides 
and organic wastes in soils16,17. Excluding carbonate 
rocks, soils represent the largest terrestrial stock of C, 
holding between 1400 Pg and 1500 Pg C (1 Pg = 1015 g)18. 
Thus changes in terrestrial SOC stocks can be of global 
significance and may either mitigate or worsen climate 
change. However, due to various forms of soil degrada-
tion SOC loss has been reported from various parts of the 
world19–22. Soil erosion is the most widespread form of 
soil degradation and significant amounts of carbon are  
either relocated in soils at lower elevations, water bodies 
and sediments or degraded to CO2 during soil erosion23. 
Soil erosion has long been recognized as an important 
factor in reducing the productivity of many soils. Decline 
in SOC with degree of erosion is reported for all soils, 
except Vertisols in Alabama19, piedmont soils in Geor-
gia20, loess soils (Mollisols and Alfisols) in Illinois21, and 
Alfisols in Ohio22. Decline in SOC was also observed in 
the Ap horizon of two moderately eroded Kentucky 
soils24. The range of SOC lost by erosion in the top 25 cm 
of moderately and severely eroded soils can be as much 
as 19–51% for Mollisols and 15–65% for Alfisols25.  
Estimation of the spatial distribution of the loss of soil  
organic carbon is also essential in view of its impact upon 
the bulk density, aggregate stability, compaction and fer-
tility of the soil. The production of digital soil maps, as 
opposed to digitized (existing) soil maps, is moving  
inexorably from research phase to production of maps at 
the sub-country and country level. Since 1960s, there has 
been an emphasis on what might be called geographic or 
purely spatial approaches, to enable prediction of soil  

attributes from spatial position largely by interpolating 
soil and observation locations. 
 To study loss of soil and SOC by erosion, ideal study 
areas could be tropical hills with agriculture, degraded 
forests and other marginal lands. Tripura, in northeast India, 
would be a model area for such study in Southeast Asia. 
In view of this, an attempt has been made to predict spa-
tial distribution of SOC vis-à-vis soil erosion in Tripura 
as a case study using geostatistics technique. This will 
not only help in better understanding of the spatial vari-
ability of SOC and sustainable land-use, but may also 
serve as a model for understanding similar areas in other 
parts of the world. 

Materials and methods 

Study area 

Tripura is situated between 2257 and 2432 N and 
9109 and 9220E. It covers an area of 10,49,100 ha. 
The state is bounded by Bangladesh in the south, north, 
west and southeast, Mizoram in the east and Assam in the 
northeastern part of India (Figure 1). The climate of the 
state is humid subtropical characterized by high rainfall 
with annual rainfall of 2000–3000 mm. 
 Out of the total geographical area of about 1 m ha of 
the state, 58% is occupied by forest followed by net area 
sown (NAS) with 26%. The area sown more than once is 
65% of NAS26. The valley land (lungas) is well suited for 
common agricultural crops, whereas the high lands (til-
las) are fit for plantation crops but often used for shifting 
cultivation called jhum by the tribals. Rice occupies 58% 
of the total cropped area, leaving 2% for cash crops  
like rubber (21,000 ha) and tea (5,780 ha). Sugarcane,
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Figure 1. Location of the study area. 
 
potato, groundnut, ginger and turmeric are also cultivated 
on the tilla and lunga lands. Double cropping is practised 
in areas where irrigation is available. Tropical and sub-
tropical fruits like pineapple, jack fruit, orange, litchi, 
and banana are successfully grown on tillas. 
 Tripura was surveyed for the expansion of rubber culti-
vation with financial assistance from World Bank through 
Rubber Board of India, Kottayam, Kerala and with the as-
sistance of the Departments of Agriculture and Horticul-
ture, Tripura26–31. The entire state was surveyed at 1 : 50,000 
scale at soil series association level (Figure 2). This is con-
trary to the approach adopted for the bigger states, where 
the soil survey was carried out at 1 : 250,000 scale. For 
the larger states, the grid point observations were taken as 
mini-pits (soil profile of 0–50 cm depth followed by the 
auger holes up to 150 cm depth or depth of the rock 
strata, whichever is less). Tripura being a small state, we 
took the grid point observations at 5 km intervals to in-
crease the frequency of the observations for better repre-
sentation of soils in different physiographic units. During 
that study the soil organic values were generated for dif-
ferent grid points as well as benchmark spots. 
 The soils of Tripura have been developed on many 
rock formations. These soils are classified into two broad 

groups, viz. alluvial and red soils, of which the former 
occupies about 77% area of the state. The soils belong to 
4 orders, 7 suborders, 9 great-groups and 19 subgroups 
according to the US soil taxonomy32. Paddy soils are, by 
and large, grouped into Inceptisols with aquic moisture 
regime and are taxonomically grouped as Aquepts. About 
62% of the state is subject to moderate soil erosion26. 

Estimation of soil and organic carbon loss 

The spatial distribution of soil erosion in Tripura was 
studied and mapped by the National Bureau of Soil Sur-
vey and Land Use Planning (NBSS&LUP) of the Indian 
Council of Agricultural Research (ICAR) based on uni-
versal soil loss equation (USLE)33. NBSS&LUP has been 
engaged in estimating soil loss at various scales of map-
ping34,35. It may be mentioned that loss of crop producti-
vity due to loss of topsoil may be compensated by the use 
of manures and fertilizers. At the same time, the loss of 
top soil by soil erosion is also compensated by the forma-
tion of fresh soil through pedogenesis34,36. The FAO 
model used for this study confirmed the concurrence of 
the reverse phenomenon of soil formation and erosion to 
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actuate soil loss estimation. Soil erosion in Tripura was 
estimated from data collected from fixed location in 
modes of a grid and mapped (200 grid observations of 
5  5 km size, except the inaccessible areas)34,37. From a 
comparative study of the two contrary processes, viz. soil 
loss and its formation, it was estimated that Tripura could 
tolerate a loss of 29 Mg ha–1 year–1 of soils27. USLE is a 
widely accepted model equation for prediction of long-
term average annual soil loss from a specified field area 
in specified cover under a known set of management 
practices. The equation predicts soil loss due to sheet or 
rill erosion. It computes soil loss for a site as a product of 
five erosion factors as expressed 
 
 A = R  K  LS  C  P, (1) 
 
Where A is the annual soil loss (t ha–1), R the rainfall ero-
sivity factor to account for the erosive power of rain and 
related to the amount and intensity of rainfall over the 
year; K the soil erodibility factor, which depends on the 
soil particle distribution, organic matter and permeability;  
 
 

 
 

Figure 2. Soil series association map of Tripura (source: Bhat-
tacharyya et al.27). 

LS a combined factor to account for the length and steep-
ness of the slope; C a combined factor to account for the 
effects of vegetation cover and management techniques 
influencing the rate of the soil loss, and P is the physical 
protection factor related to soil conservation measures 
such as terracing and strip cropping. 

Estimation of USLE parameters 

Rainfall erosivity factor: The rainfall erosivity factor 
(R) is determined from the annual total of erosion index 
(EI) (product of kinetic energy and the 30 min rainfall  
intensity) value, which is also referred as the rainfall ero-
sion index. For the present study, the rainfall intensity for 
30 min was not available; the R factor was computed for 
all grid points in Tripura using the following linear equa-
tion38 
 
 EI (or R) = 79 + 0.363X, (2) 
 
where X is the annual rainfall (mm). 
 
Soil erodibilty factor (K): The soil erodibility factor re-
lates to the rate at which the soil particles get detached 
and transported by the raindrops. This factor depends on 
the topographic position, slope steepness and the amount 
of disturbance created by man; however, the soil proper-
ties are the most important influencing factors. K factor 
varies with soil texture, aggregate stability, soil  
permeability and infiltration, organic matter and soil min-
eralogy38. 
 For the present study, the K factors for each grid point 
in Tripura have been determined using the empirical 
equation 
 
100K = 2.1M1.4 (10–4) (12 – a) + 3.25 (b – 2) + 2.5 (c – 3), 
 (3) 
 

where M = % silt  (100 – % clay), a is the organic matter 
(%), b the soil structure code used in soil classification 
that varies from 1 to 2 in all the soils of Tripura, and c is 
the profile permeability code, which varies from 1 to 5 in 
all the soils of Tripura. 
 
Topographic factor (LS): This accounts both the length 
(L) and steepness (gradient) of slope (S) that affect soil  
erosion by water in a landscape. This is one of the main 
factors for soil loss predictions in the USLE. It is gener-
ally accepted that erosion increases with increasing slope 
length, as the greater accumulation of run-off on longer 
slopes increases its detachment and transport capacities38. 
LS can be obtained from the equation 
 
 LS = (/22.13)m(65.41 sin2 A + 4.56 sin A + 0.065), (4) 
 
where  is the slope length (m), A the slope steepness 
(degrees), and m is a factor ranging from 0.2 to 0.9. In the 
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present study, m values of 0.2, 0.3, 0.4 and 0.5 were used 
for slope gradients less than 1%, 1–3%, 3.5–4.5% and 5% 
or greater respectively33. 
 Equation (4) has been used to estimate LS factor for all 
the grid points in Tripura. 
 
Land cover and management factor: The land cover and 
management factor (C) reflects the combined effect of 
cover, crop sequence, productivity level and length of 
growing period, tillage practices, residue management and 
the expected time distribution of erosive rainstorm with 
respect to seeding and harvesting date in the locality. 
Several authors have studied soils with various types of 
covers to find the C factor38. For Tripura, however, the C 
factor for each grid point was selected on the basis of the 
main crop grown in that grid point (Table 2). 
 
Conservation practice factor: The conservation practice 
factor (P) in the USLE takes into account the impact of 
conservation practices on soil loss. The most important of 
these conservation practices are contour cultivation, strip 
cropping, terrace system and field bunding used for effec-
tively minimizing the soil loss. It has been found that the 
P factor varies with the type of conservation practices 
adopted (Table 3). 
 The major in-built limitation of the USLE model is that 
it neglects certain interactions between factors in order to 
distinguish more easily the individual effect of each  
factor39. In the present study, we used the soil informa-
tion generated for the grid points at an interval of 
5 km  5 km. Therefore, we could estimate the parame-
ters of the USLE for each grid point at this grid interval 
and thus obtained only one set of values of the USLE  
parameters for an area of 2500 ha. This results into the 
average estimates of the soil and SOC losses for an area 
of 2500 ha. 
 
 

Table 2. C factor values used in assessing soil erosion of Tripura 

Cover and management (C) C-factor value 
 

Forest and grasslands 0.01 
Degraded forest/wasteland 0.14 
Croplands 0.20–0.43 
Degraded (waste) lands 0.50 
Fallow lands 1.00 

Source: Singh et al.38. 
 
 

Table 3. P factor values used in assessing soil erosion of Tripura 

Conservation practice (P) P-factor value 
 

Terracing 0.10 
Contour bunding 0.20 
Contour cultivation 0.28 
Field bunding 0.30 
Cultivated fallow 1.00 

Source: Singh et al.38. 

 Five-kilometre grid point observations showing differ-
ent attributes like rainfall erosivity (R), soil erodibility 
(K), length and steepness (LS), crop (C), conservation (P) 
and soil loss factors were utilized for all the grid points 
(Figure 3). 
 For estimating soil organic carbon loss for Tripura, the 
data of grid point observation with respect to soil organic 
carbon (%) and soil loss (t ha–1 year–1) were tabulated. 
Grid-wise datasets have the advantage of being spatially 
explicit. From the values of organic carbon and soil loss 
(t ha–1 year–1), soil organic carbon loss (t ha–1 year–1) for 
the grid points was estimated. Figure 4 shows the sche-
matic diagram for estimating soil carbon loss from land 
resource inventory (LRI) of Tripura40,41. 

Statistical and geostatistical analysis 

The statistical analyses were carried out for some impor-
tant parameters indicating the central tendency and 
spread of the estimated SOC, soil loss and SOC loss in 
Microsoft Excel 2007 and SPSS (version 18.0). These in-
clude mean, standard deviation, coefficient of variation 
(CV) and extreme maximum and minimum values. The 
coefficient of skewness and kurtosis were also deter-
mined to test the normality of the datasets. Geostatistics 
 
 

 
 

Figure 3. Study area showing grid point observations (5 km interval; 
Source: Bhattacharyya et al.27). 
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uses the semivariance analysis to measure the spatial 
variability of a regionalized variable, and provides the  
input parameters for the spatial interpolation of krigging. 
Semivariance, (h), is defined as the half average squared 
difference of values separated by a distance h between 
the components of data pairs. Semivariance is calculated 
as follows 
 

 
( )
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where N(h) is the number of data pairs, Z(xi) and Z(xi + h) 
are the values at positions xi and xi + h respectively. In 
the present study, a geostatistical tool GS+ (version 5.1) 
was used to evaluate several semi-variogram functions 
for SOC and soil loss in Tripura. Semivariograms were 
calculated both isotropically and anisotropically. The ani-
sotropic calculations were performed in four directions 
(0, 45, 90 and 135) with a tolerance of 22.5 to  
determine whether semi-variogram functions depended 
on sampling orientation and direction (i.e. they were ani-
sotropic) or not (i.e. they were isotropic). Also, 0 corre-
sponds to E–W and 90 to the N–S direction. Spherical, 
exponential, linear, Gaussian and pure nugget models 
were fitted to the experimental semi-variograms. The 
model parameters, viz. nugget semivariance, range, and 
sill or total semivariance were determined. Ratio of nug-
get semivariance to the total semivariance (sill semivari-
ance) was used to define different classes of spatial 
dependency42. If the ratio was less than 25%, the variable 
was considered to be strongly spatially dependent, or 
strongly distributed in patches. If the ratio was between 
25% and 75%, the variable was of moderate spatial  
 
 

 
 

Figure 4. Schematic diagram for estimating soil C loss from the land 
resource inventory. 

dependency; if the ratio was greater than 75%, the vari-
able had weak spatial dependency43. However, if the ratio 
was 100%, or the slope of the semi-variogram was close 
to zero, the variable was considered to be non-spatially 
correlated (pure nugget). Semi-variogram models were 
cross-validated to check their validity and compare  
values estimated from them with the actual values44–46. 
Differences between estimated and experimental values 
are summarized using the crossvalidation statistics: mean  
error (ME, eq. (6)), root mean squared error (RMSE, eq. 
(7)), average standard error (ASE, eq. (8)), mean stan-
dardized prediction error (MSPE, eq. (9)) and root mean 
square standardized prediction error (RMSPE, eq. (10)). 
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where ˆ( )iz x  is the predicted value, z(xi) the observed 
(known) value, N the number of values in the dataset and 
2 is the kriging variance for location xi (refs 4, 47–49). 
 For an unbiased semi-variogram model, the mean error 
should be zero. The calculated ME, however, is a weak 
diagnostic for krigging as it is insensitive to inaccuracies 
in the semi-variogram model. The value of ME also  
depends on the scale of the data, and is standardized from 
its division by the krigging variance to obtain the MSPE. 
An accurate semi-variogram model should have a MSPE 
close to zero. For a semi-variogram model that provides 
accurate prediction of variability, the values of RMSE 
and ASE should be as small as possible. The value of 
RMSPE should be equal to 1 (in this case RMSPE equals 
the krigging variance) for an accurate variogram model. 
However, if RMSPE is greater than 1, then the model will  
under-predict the variability and if it is less than 1, the 
model will over-predict the variability. Similarly, if the 
average krigging standard errors are greater than the root 
mean square errors, the variability is overestimated, if the 
average krigging standard errors are less than the root 
mean square errors, then the variability is underesti-
mated47,48. 
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Results and discussion 

Soil loss and its evaluation 

It has been reported that the loss of topsoil by erosion is 
compensated by the formation of fresh soil through pe-
dogenesis34,36. It is, therefore, interesting to observe that 
the processes of soil formation and soil erosion occur si-
multaneously in nature. To estimate effective loss of top-
soil, it is, therefore, necessary to consider and quantify 
the formation of regenerated soil. Since soil formation is 
governed by climate as one of the parameters50, its forma-
tion varies from less than 0.25 mm year–1 in dry and cold 
environments to greater than 1.5 mm year–1 in humid and 
warm environments36. Topsoil formation at the rate of 
1 mm year–1 is equivalent to annual addition of 13.3 t ha–1 
year–1, taking an account of the weight of a hectare fur-
row slice (15 cm depth) soil as 2.2  106 kg. Since Tripura 
represents a humid climate, the limit of 2.0 mm year–1 
soil formation should be around 29 t ha–1 year–1 (2.2  
103/150)  2.0 = 29 t ha–1 year–1 soil). The rate of topsoil 
formation was given due consideration in assessing soils 
at various grid points. In terms of susceptibility, in an ear-
lier study, the soil loss assessed27 was used to determine the 
spatial variability as shown in the revised soil loss map of 
Tripura. Assuming soil loss of 29 t ha–1 year–1 as the toler-
able limit, we find nearly 61% and 39% areas under  
tolerable and susceptible to soil erosion respectively. 

Statistics and semi-variogram models 

Statistics: A summary of descriptive statistics of SOC, 
soil loss and SOC loss of 196 grid points, analysed for 
Tripura is presented in Table 1. SOC varies more or less 
uniformly in the entire state with a mean value of 0.95% 
and CV of 41%, which is also supported by the trend 
analysis (Figure 5 a) and histogram plotting of SOC (Fig-
ure 6 a). The spatial distribution of SOC followed a sec-
ond-order global trend, with higher values in the 
northeast and eastern parts of the state. The histogram of 
SOC indicates that its spatial distribution followed  
approximately a normal probability distribution (skew-
ness of 0.684; Table 4), suggesting no need for any trans-
formation. There were wide spatial variations in the soil 
loss and SOC loss across the state with 199% and 223% 
respectively (Table 4). The soil loss followed a second-
order global trend (Figure 5 b) in the spatial distribution 
with higher values in northeast and eastern parts of the 
state dominated by the hilly terrain25. Similar trend was 
also observed in the spatial distribution of SOC loss  
(Figure 5 c). The histogram plots of soil loss and SOC 
loss (Figure 6 b and c) indicate that the spatial distribu-
tion of these parameters did not follow the normality with 
skewness values of more than 1 (Table 4), which necessi-
tated the log transformation of soil and SOC losses  
(Figure 6 b and c). 

Semi-variogram models: The semi-variogram models 
and best-fit model parameters for the SOC, soil loss and 
SOC loss are presented in Table 5 and Figure 7. All  
the semi-variogram models show positive nugget, which  
can be due to sampling error, short-range variability,  
and random and inherent variability. The best-fit semi-
variogram model for SOC was found to be exponential 
model with a R2 value of 0.90 (Table 5). For soil and 
SOC losses (after log transformation), the best-fit semi-
variogram models are spherical and exponential models 
with R2 values of 0.95 and 0.77 respectively. The nugget-to-
sill ratio of SOC, soil loss (log transformed) and SOC 
 
 

 
 

Figure 5. Trend analysis: (a) soil organic carbon, (b) soil loss and  
(c) soil organic carbon loss in Tripura. 
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Figure 6. Histogram of non-transformed and transformed (natural log): (a) SOC, (b) soil loss and (c) SOC loss. 
 
 

Table 4. Descriptive statistics of SOC, soil loss and SOC loss in the study area 

Soil parameter Mean SD CV (%) Skewness Kurtosis Minimum Maximum 
 

SOC (%) 0.95 0.391 41.2 0.684 –0.047 0.29 2.14 
ln SOC (%) –0.14 0.423 314.3 –0.182 –0.553 –1.24 0.76 
Soil loss (t ha–1 year–1) 23.60 46.936 198.9 3.496 13.289 0.09 305.67 
ln Soil loss (t ha–1 year–1) 1.86 1.728 92.9 –0.133 –0.223 –2.41 5.72 
SOC loss (t ha–1 year–1) 0.23 0.514 223.5 4.515 25.069 0.00 4.24 
ln SOC loss (t ha–1 year–1) –2.94 1.937 65.9 –0.757 2.571 –12.72 1.44 

 
 
loss (log-transformed) showed moderate spatial depend-
ence with values of 32.0, 45.1 and 31.0 respectively  
(Table 5). 
 The cross-validation results (Table 6) indicate that the 
mean error and mean standardized prediction error are 
close to zero for the best-fit (exponential) semivariogram 

model of SOC (exponential), suggesting unbiased predic-
tions. However, the average standard errors are less than 
the root mean square errors indicating that the model  
under-predicts the variability. The root mean square stan-
dardized prediction errors also suggests the same, since it 
is greater than 1. 
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Table 5. Parameters of semi-variogram models for SOC, soil loss and SOC loss in the study area 

      Spatial 
Soil parameter Model Nugget Sill Range (m) R2 dependency (%) 
 

SOC (%) Exponential 0.0517 0.1634  37,500 0.90 32.0 
ln SOC (%) Exponential 0.0722 0.2064  59,100 0.93 35.0 
Soil loss (t ha–1 year–1) Spherical 1506.0 3013.0 211,000 0.53 50.0 
ln Soil loss (t ha–1 year–1) Spherical 1.354 3.004  44,500 0.95 45.1 
SOC loss (t ha–1 year–1) Linear 0.2204 0.2204  57,761 0.20 100.0* 
ln SOC loss (t ha–1 year–1) Exponential 1.171 3.771  35,100 0.77 31 

*Pure nugget. 
 
 

 
 

Figure 7. Semi-variogram models of non-transformed and transformed (natural log): (a) SOC, (b) soil loss and (c) SOC loss. 
 

 The best-fit spherical model for soil loss (log-
transformed) had ME more than zero (1.9814) and MSPE 
close to zero. The ASE is more than RMSE and RMSPE 
is less than 1, suggesting that the semi-variogram model 
over-predicts the variability with some bias. 
 For SOC loss (log-transformed), the best-fit semi-
variogram model (exponential) is relatively unbiased with 

the values of ME and MSPE close to zero. However, ASE 
is more than RMSE, suggesting over-prediction of the 
variability, which is also substantiate by the RMSPE with 
a value less than 1. 
 The spatial distribution of SOC, soil loss and SOC loss 
(Figures 8 a–c), was in agreement with the topography 
and the different land-use types. In the western parts, the
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Figure 8. Spatial distribution of (a) soil organic carbon; (b) soil loss and (c) soil organic carbon loss in Tripura. 
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Table 6. Cross-validation of the results obtained using various models 

  Prediction errors 
 

Soil parameter Model ME RMSE ASE MSPE RMSPE 
 

SOC (%) Exponential –0.0026 0.3623 0.3229 –0.0041 1.1108 
Ln SOC (%) Exponential –0.0028 0.3583 0.3446 –0.0424 1.1544 
Soil loss (t ha–1 year–1) Spherical –0.1001 45.1767 40.9205 –0.0022 1.1007 
ln Soil loss (t ha–1 year–1) Spherical 1.9814 46.7751 89.0944 –0.0463 0.7785 
SOC loss (t ha–1 year–1) Linear –0.0081 0.4917 0.4744 –0.0170 1.0357 
ln SOC loss (t ha–1 year–1) Exponential 0.0839 0.5491 1.6603 0.0194 0.4691 

 
 

Table 7. Soil orders in Tripura and their susceptibility to SOC loss* 

Ranking Susceptibility to SOC loss 
 

 Most susceptible Intermediate susceptible Least susceptible 
Soil (>0.5 t ha–1 year–1) (0.15–0.5 t ha–1 year–1) (<0.15 t ha–1 year–1) 
 

Entisols Typic Udorthents (G11, G14, G43) Typic Udorthents Typic Udorthents 
  Lithic Udorthents (G15) (G36, G44, G58, G111, G245, G332) (12, 33, 121, 152, 292, 317, G354, G356, G360, G362) 
   Typic Udipsamments (G59) Aquic Udorthents (G54, G73, G346) 
    Aquic Udorthents (G324, G335) Typic Fluvaquents (G158, G299) 
    Typic Udifluvents (G254) 
 

Inceptisols Typic Haplustepts (G8, G29, G30, Typic Haplustepts Typic Haplustepts (G1, G9, G10, G16, G17, G18,  
   G31, G101, G131, G164, G166) (G3, G45,G61, G74, G100, G124, G28, G51, G68, G75, G93, G106, G110, G135,  
   G368, G211, G282, G334)  G162, G167, G172, G173, G208, G210, G233, 
  Humic Haplustepts (G186) Humic Haplustepts (G80, G81, G156)  G235, G244, G253, G255, G273, G286, 
  Aquic Haplustepts (G32, G79, Aquic Haplustepts  G290, G315, G321, G333, G339, G342, 
   G125, G168, G281) (G107, G112, G139)  G345, G349, G350, G352, G353, G355, 
   Fluventic Haplustepts (G140)  G357, G359, G361, G364, G365, G366, 
   Typic Epiaquepts (G149, G67, G252)  G367, G370, G372, G373, G374, G380, 
   Aeric Epiaquepts (G236)  G381, G385, G388) 
    Humic Haplustepts 
    (G26, G37, G39, G42, G94, G95, G104, 
     G118, G232, G296, G329, G330, G331) 
    Aquic Haplustepts 
    (G20, G133, G144, G155, G214, G215, 
     G269, G270, G271, G272, G274, G284, 
     G285, G294, G295, G314, G320, G326, 
     G340, G341, G369, G376) 
    Fluventic Haplustepts (G113, G176) 
    Typic Epiaquepts  
     (G41, G50, G52, G69, G70, G71, G84, G89, 
     G136, G137, G147, G148, G150, G153, 
     G212, G213, G257, G291, G300) 
    Lithic Haplustepts (G145) 
    Typic Endoaquepts 
    (G122, G375, G382, G383, G384, G386, G387, G390) 
Alfisols Typic Hapludalfs (G199) Typic Hapludalfs (G204) Typic Hapludalfs (G175, G209,G358)  
Ultisols Typic Hapludults (G203) Typic Hapludults (G138)  Typic Hapludults (G114, G174, G316) 

*Source: Bhattacharyya et al.27. 
 
 

slope gradient is very small compared to the eastern parts. 
Hence SOC and soil loss show an increasing trend  
towards the northeastern part of the state (Figures 5 a and 
b; 8 a and b). 

Pedometrically modelled soil organic carbon 

The spatial variability of SOC generated from the grid 
points was classified into five different ranges (Figure 4). 

Most of the areas in north–south (adjoining state of 
Mizoram), central and parts of western, central highlands 
and southern hills contain >1% SOC. According to the 
US soil taxonomy, Mollisols with the mollic epipedon, 
referred as brown forest soils, containing greater or to 1% 
SOC on the surface32 are considered to be the best quality 
soils in the world51 and have the capacity to sequester 
more organic carbon52. By this standard, nearly 48% area 
in Tripura has more than 1% SOC on the surface (Figure 
8 a). Subsequent studies on carbon in Tripura soils 
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Figure 9. Extent of SOC loss in different soil orders of Tripura. 
 
 
indicated that the total SOC stock is maintained at 
0.046 Pg m ha–1 (ref. 37), which is nearly double the all-
India average of 0.029 Pg m ha–1 SOC53. Using the 14 
agro-climatic zones (ACZs) concept of the Planning 
Commission, India, ACZ2 representing the entire north-
eastern region stored SOC at the rate of 0.064 Pg 
m ha–1 (ref. 14). Such threshold values of SOC stock 
ranging from 0.05 to 0.06 Pg m ha–1 should, therefore, be 
maintained in the green belt area to protect natural eco-
system37. In view of maintaining the natural ecosystem, 
we thought it prudent to bridge two sets of information on 
soil loss and soil organic carbon status to assess SOC loss 
in the state as detailed in the following paragraphs. 

Soil organic carbon loss 

As mentioned earlier, considering 29 t ha–1 year–1 soil 
loss as the tolerable limit and 0.5% SOC on the surface as 
the minimum value to maintain a threshold SOC stock of 
0.05–0.06 Pg m ha–1, we found 0.15 tonnes (~150 kg) 
SOC/ha/year (29  0.5/100 = 0.145 t ha–1 year–1) as the 
tolerable limit of SOC loss in Tripura. The spatial vari-
ability of SOC loss in the state indicates that most of  
the areas in the north, north–south extending further in 
the southern part are under threat for SOC loss beyond 
the tolerable limit (Figure 8 b). It may be mentioned that 

Tripura has an area of 20% under valleys and inter-hill  
basins. Most of these areas are used for agriculture (sub-
merged paddy). These soils are subjected to erosion 
within the tolerable SOC loss limit and are also character-
ized by high SOC build-up due to reduced moisture  
regime in the soil profile54 and thus fall under tolerable 
SOC loss. On the contrary, in the hills and the tilla lands, 
the situation is different. Hilly areas of Tripura in the 
north, central and southern parts have different eleva-
tions, mean annual rainfall and different types of vegeta-
tion. In the tilla lands, agriculture and horticulture are 
gradually dominating the land-use. Many such areas still 
remain under the category of degraded forest26, which are 
vulnerable to SOC loss. We find more number of grid 
points in the less susceptible class of SOC loss after 
grouping the soil mapping units (Table 7 and Figures 8 c 
and 9). Field information indicates that many such areas 
have flat slope and are under cultivation. These soils used 
for bunded paddy arrest SOC loss. Earlier, while explain-
ing carbon transfer model vis-à-vis management interven-
tions for chemically degraded lands, it was reported how 
conservation agriculture should form a part of manage-
ment technique in semiarid and arid bioclimates40. With 
the help of a threshold value of SOC stock of 0.03 Pg 
m ha–1, nearly 156 m ha was reportedly prioritized for 
conservation agriculture. Like SAT, humid tropic climate 
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requires conservation not only to protect soil erosion but 
also to prevent SOC loss for preserving soil fertility, as 
shown in this study. 

Conclusion 

A better understanding of the spatial variability of soil 
and SOC loss is useful for monitoring the soil quality and 
health. It helps in suggesting management options for 
sustainable agriculture, particularly for Tripura, as well as 
other parts of the northeastern region of India. Pedomet-
ric mapping of SOC loss can be used as a tool to priori-
tize areas for conservation agriculture in the northeastern 
region of India. Since the landscape of the study area  
resembles most of the Southeast Asian countries, such  
information could serve as a model for estimating toler-
able SOC loss in similar landscape elsewhere in the  
humid tropical climate for conservation agriculture. 
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