Random thoughts on the 100 most cited papers from 1925 to 2008

Sachi Sri Kantha

Critics not withstanding, citations seems to have gained a golden currency status in contemporary research. Among the 58 million items collected in the Thomson Reuters' Web of Science database, 100 of the most cited papers up to 7 October 2014 were presented in Nature last year. I present an analysis of the most cited papers such as: (1) how many of the 100 ranked papers were sole-authored or double-authored; (2) distribution pattern of these papers along the decades, between 1925 and 2008, and (3) cited number of references in 83 of the accessible ranked papers. Thirty-one among the 100 most cited papers were soleauthored. Nine science Nobel laureates (Frederick Sanger, Walter Kohn, Roger Tsien, Erwin Neher, Bert Sakmann, Kary Mullis, Oliver Smithies, Georges Kohler and Cesar Milstein) have authored eight of the most cited papers.

Eugene Garfield (b. 16 September 1925), apart from being a successful publisher of the now defunct *Current Content* weekly and businessman, is also an essayist and founder of bibliometrics and scientometrics¹. He is also identified as the pioneer in introducing provocative parameters (citation counting and impact factor) for quantitating scientific productivity^{2–5}.

Critics not withstanding^{6,7}, citations seems to have gained a golden currency status in contemporary research. Van Noorden et al.⁸ have presented a ranking of the top 100 research papers among all academic disciplines which had accumulated highest number of citations. This ranking was based on the 58 million items collected in Thomson Reuters' Web of Science database (http://apps. webofknowledge.com/). This four-page analysis⁸ appeared superficial and had ignored some vital aspects on scientific authorship such as: (1) how many of the 100 ranked papers were sole-authored or double-authored; (2) distribution pattern of these papers along the decades, between 1925 and 2008, and (3) cited number of references in each of the 100 papers ranked. I present an analysis of the most cited papers in this commentary.

Method

I made an attempt to check the originals of the top 100 most cited papers, to count the cited number of references in each of these papers. Due to lack of suitable access and available funds (to retrieve freely, pre-1995 papers held hostage by a few prominent commercial databases), I was able to collect only 83 among the 100 papers. For each omitted paper, these commercial databases charge in the range of US\$ 14.00–38.00.

Results

Table 1 provides a list of four vital details (first author, published journal, total number of citations received up to 7 October 2014, and cited number of references) for the 100 most cited papers. Science Nobel laureates who had authored most cited papers include Frederick Sanger⁹, Walter Kohn^{10,11}, Roger Tsien¹², Erwin Neher¹³, Bert Sakmann¹³, Kary Mullis¹⁴, Oliver Smithies¹⁵, Georges Kohler¹⁶ and Cesar Milstein¹⁶.

What is rather interesting is that, 31 among the 100 most cited papers were sole-authored. These are indicated with an asterisk in the second column of Table 1. Among the top 10 most cited papers in the list which had gathered >40,000 citations, three were sole-authored. Furthermore, 28 among the 100 most cited papers had double-authors. Roehr¹⁷ showed that one of the most cited statistics paper authored by Kaplan and Meier¹⁸ (ranked 11 in citation count, Table 1) was in fact two separate soleauthor papers when they were originally submitted. According to Roehr¹⁷, the collaboration of Kaplan and Meier was 'essentially a shotgun marriage arranged by an editor who did not want to publish two similar but somewhat conflicting papers. He told the pair to work it out and produce a single paper. It took four years of further refinements before the collaborative document was ready' and this paper was published in 1958.

Table 2 gives the decade-wise distribution of the 100 most cited papers. The oldest paper in the list, published in 1925, was the colorimetric determination of phosphorus by Fiske and Subbarow¹⁹. The most recent highly cited paper, authored by Sheldrick²⁰ on the history and development of SHELX system of computer programs appeared in 2008. The decade of 1981–90 has the highest number of most cited papers (25 altogether). However, papers with the largest number of citations (exceeding <65,000 and ranked 1 to 4) describing methods for protein determination^{21,22}, separating proteins based on electrophoretic mobility²³, and DNA sequencing⁹ appeared in 1951, 1976, 1970 and 1977 respectively.

If these 100 became the most cited papers in 2014, one may be curious to know how many citations they themselves carried individually. Among the 83 papers which I was able to check for the cited references in them (column 5, Table 1), 11 included only <10 citations. In this citation counting, I excluded vague categories such as 'unpublished data', 'to be published' and 'personal communication'. The dubious honour to carry the least number of citations (only one) was that of Max Hamilton (then affiliated to the University of Leeds, UK), who published a rating scale for depression²⁴.

Another interesting five-author paper (among whom there were two separate husband–wife couples) published in 1953 in the *Journal of Chemical Physics* with the title 'Equation of state calculations by fast computing machines' had only two citations²⁵. The most recognizable name in this paper was Edward Teller (Hungarian-born American theoretical physicist, prominently known as the 'father of the hydrogen bomb), then affiliated to the University of Chicago. Teller also makes another appearance as a

COMMENTARY

Citation rank	First author/ *sole author	Journal	Citations received up to 7 October 2014	Cited no. of references ⁺
1	Lowry, O. H. (c)	J. Biol. Chem., 1951, 193 , 265–275	305,148	25
2	*Laemmli, U. K.	<i>Nature</i> , 1970, 227 , 680–685	213,005	22
3	*Bradford, M. M.	Anal. Biochem., 1976, 72 , 248–254	155,530	24
4	Sanger, F. (c)	Proc. Natl. Acad. Sci. USA, 1977, 74 , 5463–5467	65,335	14
5	Chomczynski, P. (c)	Anal. Biochem., 1987, 162 , 156–159	60,397	15
6	Towbin, H. (c)	Proc. Natl. Acad. Sci. USA, 1979, 76 , 4350–4354	53,349	28
7	Lee, C.	Phys. Rev. B, 1988, 37 , 785–789	46,702	16
8	*Becke, A. D.	J. Chem. Phys., 1988, 98 , 5648–5652	46,145	18
9	Folch, J.	<i>J. Biol. Chem.</i> , 1957, 226 , 497–509	45,131	9
10	Thompson, J. D.	Nucleic Acids Res., 1994, 22 , 4673–4680	40,289	40
11	Kaplan, E. L. (c)	J. Am. Stat. Assoc., 1958, 53 , 457–481	38,600	OU
12	Altschul, S. F.	<i>J. Mol. Biol.</i> , 1990, 215 , 403–410	38,380	23
13	*Sheldrick, G. M.	Acta Crystallogr. A, 2008, 64 , 112–122	37,978	60
14	Altschul, S. F.	Nucleic Acids Res., 1997, 25 , 3389–3402	36,410	90
15	Murashige, T. (c)	Physiol. Plant., 1962, 15 , 473–497	36,132	OU
16	Perdew, J. P.	Phys. Rev. Lett., 1996, 77, 3865–3868	35,405	42
17	Folstein, M. F. (c)	<i>J. Psychiatr. Res.</i> , 1975, 12 , 189–198	34,532	OU
18	Bligh, E. G. (c)	Can. J. Biochem. Physiol., 1959, 37 , 911–917	32,131	OU
19	*Southern, E. M.	<i>J. Mol. Biol.</i> , 1975, 98 , 503–517	31,904	13
20	Saitou, N.	Mol. Biol. Evol., 1987, 4, 406–425	30,176	19
21	Livak, K. J.	Methods, 2001, 25 , 402–408	28,870	11
22	*Shannon, R. D.	Acta Crystallogr. A, 1976, 32 , 751–767	28,658	OU
23	Otwinowski, Z.	Methods Enzymol. A, 1997, 276, 307-326	28,647	OU
24	*Cox, D. R. (c)	J. R. Stat. Soc. B, 1972, 34, 187–220	28,439	26
25	*Becke, A. D.	Phys. Rev. A, 1988, 38 , 3098–3100	26,475	22
26	DuBois, M.	Anal. Chem., 1956, 28 , 350–356	25,735	54
27	*Reynolds, E. S. (c)	J. Cell Biol., 1963, 17 , 208–212	24,449	14
28	Thompson, J. D.	Nucleic Acids Res., 1997, 25 , 4876–4882	24,098	27
29	Bland, J. M. (c)	<i>Lancet</i> , 1986, 327 , 307–310	23,826	8
30	Weber, K.	<i>J. Biol. Chem.</i> , 1969, 244 , 4406	23,642	49
31	Chirgwin, J. M.	Biochemistry, 1979, 18 , 5294–5299	23,435	34
32	*Scatchard, G.	Ann. N.Y. Acad. Sci., 1949, 51, 660–672	23,421	OU
33	Baron, R. M.	J. Pers. Soc. Psychol., 1986, 51 , 1173–1182	23,356	46
34	Kohn, W.	<i>Phys. Rev.</i> , 1965, 140 , A1133–A1138	23,059	13
35	*Mosmann, T.	J. Immunol. Methods, 1983, 65 , 55–63	23,011	OU
36	*lijima, S.	<i>Nature</i> , 1991, 354 , 56–58	22,899	11
37	Fiske, C. H.	<i>J. Biol. Chem.</i> , 1925, 66 , 375–400	22,690	17
38	*Davis, B. J.	Ann. N.Y. Acad. Sci., 1964, 121 , 404–427	22,074	OU
39	Hohenberg, P.	<i>Phys. Rev.</i> , 1964, 136 , B864–B871	21,931	15
40	Feinberg, A. P. (c)	Anal. Biochem., 1983, 132 , 6–13	21,446	33
41	*Felsenstein, J.	Evolution, 1985, 39 , 783–791	21,373	12
42	Grynkiewicz, G.	<i>J. Biol. Chem.</i> , 1985, 260 , 3440–3450	19,561	36
43	Kresse, G.	Phys. Rev. B, 1996, 54 , 11169–11186	18,856	72
44	*O'Farrell, P. H. (c)	<i>J. Biol. Chem.</i> , 1975, 250 , 4007–4021	18,489	36
45	Tamura, K.	Mol. Biol. Evol., 2007, 24 , 1596–1599	18,286	9
46	*Zadeh, L. A. (c)	Inf. Control, 1965, 8 , 338–353	18,203	3
47	*Sheldrick, G. M.	Acta Crystallogr. A, 1990, 46 , 467–473	17,728	OU
48	McKhann, G.	Neurology, 1984, 34 , 939–944	17,220	31
49	Monkhorst, H. J.	Phys. Rev. B, 1976, 13 , 5188–5192	17,087	6
50	*Burton, K. (c)	<i>Biochem. J.</i> , 1956, 62 , 315–323	17,067	32
51	*Radloff, L. S.	Appl. Psychol. Meas., 1977, 1 , 385–401	17,055	OU
52	Hamill, O. P.	Pflug. Arch. Eur. J. Physiol., 1981, 391 , 85–100	17,025	23
53	*Hamilton, M. (c)	J. Neurol. Neurosurg. Psychiatry, 1960, 23, 56–62	16,734	1
54	Beck, A. T.	Arch. Gen. Psychiatry, 1961, 4 , 561–571	16,264	15
55	Kyte, J.	J. Mol. Biol., 1982, 157 , 105–132	16,059	70
56	Gornall, A. G. (c)	J. Biol. Chem., 1949, 177 , 751–766	16,009	18
57	Dempster, A. P.	J. Roy. Stat. Soc. B, 1977, 39 , 1–38	15,993	39
58	Metropolis, N.	J. Chem. Phys., 1953, 21 , 1087–1092	15,902	2
59	Benjamini, Y.	J. Roy. Stat. Soc. B, 1995, 57, 289–300	15,898	14
60	Smith, P. K.	Anal Biochem., 1985, 150 , 76–85	15,802	11
61	*Oldfield, R. C.	Neuropsychologia, 1971, 9 , 97–113	15,517	8

 Table 1.
 100 most cited papers (ISI database 7 October 2014; www.nature.com/top100)

(Contd)

Table 1. (Contd)

Citation rank	First author/ *sole author	Journal	Citations received up to 7 October 2014	Cited no. of references ⁺
62	Friedewald, W. T.	<i>Clin. Chem.</i> , 1972, 18 , 499–502	15,469	12
63	Saiki, R. K.	Science, 1988, 239 , 487–491	15,160	19
64	*Duncan, D. B. (c)	<i>Biometrics</i> , 1955, 11 , 1–42	15,047	25
65	Novoselov, K. S.	Science, 2004, 306 , 666–669	15,022	16
66	*Ellman, G. L.	Arch. Biochem. Biophys., 1959, 82 , 70–77	15,019	4
67	*Boyum, A. (c)	Scand. J. Clin. Lab. Invest., 1968, 21 , S77–S89	14,934	OU
68	Landis, J. R.	<i>Biometrics</i> , 1977, 33 , 159–174	14,903	OU
69	Brunger, A. T.	Acta Crystallogr. D, 1998, 54 , 905–921	14,898	61
70	*Dunning Jr, T. H.	J. Chem. Phys., 1989, 90, 1007–1023	14,617	52
71	Laskowski, R. A.	J. Appl. Crystallogr., 1993, 26, 283–291	14,462	OU
72	Ware, J. E.	Med. Care, 1992, 30 , 473–483	14,332	45
73	*Akaike, H. (c)	IEEE Trans. Autom. Control, 1974, 19 , 716–723	14,275	45
74	Yanisch-Perron, C.	Gene, 1985, 33 , 103–119	14,232	36
75	Devereux, J.	Nucleic Acids Res., 1984, 12 , 387–395	14,226	14
76	Posada, D.	<i>Bioinformatics</i> , 1998, 14 , 817–818	14,099	12
77	Kresse, G.	Phys. Rev. B, 1999, 59 , 1758–1775	14,049	51
78	Hsu, S. M. (c)	J. Histochem. Cytochem., 1981, 29, 577–580	13,881	12
79	Jorgensen, W. L.	J. Chem. Phys., 1983, 79 , 926–935	13,774	29
80	Dewar, M. J. S.	J. Am. Chem. Soc., 1985, 107 , 3902–3909	13,718	21
81	*Bartlett, G. R. (c)	<i>J. Biol. Chem.</i> , 1959, 234 , 466–468	13,523	7
82	*Kraulis, P. J.	J. Appl. Crystallogr., 1991, 24 , 946–950	13,496	OU
83	*Bondi, A.	J. Phys. Chem., 1964, 68 , 441–451	13,417	42
84	Ellman, G. L. (c)	Biochem. Pharmacol., 1961, 7, 88–95	13,332	13
85	*Blochl, P. E.	Phys. Rev. B, 1994, 50 , 17953–17979	13,330	67
86	Kirkpatrick, S.	Science, 1983, 220 , 671–680	13,293	30
87	Moncada, S.	Pharmacol. Rev., 1991, 43 , 109–142	13,267	404
88	*Marquardt, D. W. (c)	J. Soc. Ind. Appl. Math., 1963, 11 , 431–441	13,258	OU
89	Kresse, G.	Comput. Mater. Sci., 1996, 6 , 15–50	13,084	64
90	O'Regan, B.	<i>Nature</i> , 1991, 353 , 737–740	12,873	19
91	*Spurr, A. R. (c)	<i>J. Ultrastruct. Res.</i> , 1969, 26 , 31–43	12,807	18
92	Berman, H. M.	Nucleic Acids Res., 2000, 28 , 235–242	12,754	36
93	Perdew, J. P.	Phys. Rev. B, 1992, 45 , 13244–13249	12,748	26
94	Bimboim, H. C.	Nucleic Acids Res., 1979, 7, 1513–1523	12,721	23
95	Jones, T. A.	Acta Crystallogr. A, 1991, 47 , 110–119	12,649	OU
96	Vosko, S. H.	Can. J. Phys., 1980, 58 , 1200–1211	12,583	42
97	Kohler, G.	Nature, 1975, 256 , 495–497	12,391	14
98	Matthews, D. R.	<i>Diabetologia</i> , 1985, 28 , 412–419	12,257	22
99	Brunauer, S.	J. Am. Chem. Soc., 1938, 60 , 309–319	12,252	13
100	Ronquist, F.	Bioinformatics, 2003, 19 , 1572–1574	12,209	5

*Sole author status by asterisk. (c) Refers to the availability of 'citation classic' commentary by the author in Eugene Garfield's website (<u>http://garfield.library.upenn.edu/classics.html</u>; accessed on 14 August 2015).

tional theory and crystallography. But a

convincing answer to the question, 'Why

these 100 papers came to be most cited?' was not offered. Van Noorden *et al.*⁸

ended their survey with a left-handed

compliment offered by Yale University

chemist Peter Moore, 'If citations are

what you want, devising a method that

makes it possible for people to do the

Column prepared by S.S.K. after checking the original paper; OU, Original unchecked.

senior author in a 1938 paper entitled 'Adsorption of gases in multimolecular layers'²⁶. It carried 13 citations. While 28 among the 83 papers checked had 11–20 citations, 16 papers counted 21–30 citations, and 10 papers were enriched with 31–40 citations. The largest number of citations (404) appeared in a 1991 review paper on physiology, pathophysiology and pharmacology of nitric oxide²⁷.

Van Noorden *et al.*⁸ have emphasized the research areas or themes in which majority of the most cited papers had appeared. These are biological techniques (method papers), bioinformatics, phylogenetics, statistics, density func-

e oxide²⁷. experiments they want at all, or more easily, will get you a lot further than, say, discovering the secret of the Universe.' I, for one, feel that this is rather demeaning to the sincere efforts of scientists. Apart from the method papers, even conceptual papers like that of Lofti Zadeh²⁸ on fuzzy sets had received recognition in this top 100 list.

An answer to the posed question above, has been offered by naturalist Edward O. Wilson²⁹, who had listed five diagnostic features of science that distinguish it from pseudoscience. These diagnostic features are as follows:

Repeatability – the same phenomenon sought again, by independent investigation.

Economy – gather largest amount information with least amount of effort by simplest and esthetically most pleasing steps.

		Table 2. Decade-wise distribution of 100 most cited papers
Decade	No. of papers	Distribution according to citation rank number from ISI database
1921–30	1	37
1931–40	1	99
1941–50	2	32, 56
1951–60	12	1, 9, 11, 18, 26, 50, 53, 58, 64, 66, 81
1961–70	14	2, 15, 27, 30, 34, 38, 39, 46, 54, 67, 83, 84, 88, 91
1971–80	19	3, 4, 6, 17, 19, 22, 24, 31, 44, 49, 51, 57, 61, 62, 68, 73, 94, 96, 97
1981–90	25	5, 7, 12, 20, 25, 29, 33, 35, 40, 41, 42, 47, 48, 52, 55, 60, 63, 70, 74, 75, 78, 79, 80, 86, 98
1991–2000	21	8, 10, 14, 16, 23, 28, 36, 43, 59, 71, 72, 76, 77, 82, 85, 87, 89, 90, 92, 93, 95
2001–08	5	13, 21, 45, 65, 100

Mensuration – quantitation of by accepted scales that leads to unambiguous generalization.

Heuristics – offer opportunities to make new findings in unpredictable directions. Consilience – explanations that can be linked with already known phenomena and offer consistence with each other.

Recently, there have been a couple of cases of published data that bordered on sloppiness and overt hype (arsenicloving bacterium, published in Science³⁰⁻ ³²) as well as research fraud (Stimulus triggered acquisition of pluripotency cells, aka STAP cells, published in Na*ture*, only to be retracted later³³⁻³⁷). Incomplete description of the methods and zero reproducibility of reported results by other interested groups are the common denominators for these erroneous reports. According to the numerous method papers among the 100 most cited papers, the simple fact that the described methods were flawless and had withstood the test of time to offer good reproducibility can be considered as the secret for their extraordinary citedness.

The foresight of Garfield in soliciting short commentaries on the highly cited papers (which he called 'citation classics') to provide the human angle on the conducted research and writing the work for eventual publication emphasizing acceptance and rejection deserves commendation. He had made these 'citation classics' commentaries accessible in his website³⁸. I could locate at least 25 of these commentaries (column 2, Table 1) for the most cited top 100 papers analysed in this commentary.

1. Cronin, B. and Atkins, H. A. (eds), The Web of Knowledge: A Festschrift in Honor of Eugene Garfield, Information Today Inc, Medford, NJ, 2000.

- 2. Garfield, E., Science, 1955, **122**, 108-111.
- Garfield, E., J. Am. Med. Assoc., 1996, 295, 90-93.
- 4. Garfield, E., Libr. Q., 1996, 66, 449-458.
- Balaram, P., Curr. Sci., 2010, 99, 857– 858.
- 6. Siekevitz, P., FASEB J., 1991, 5, 139.
- Lawrence, P. A., Curr. Biol., 2007, 17(15), R583–R585.
- Van Noorden, R., Maher, B. and Nuzzo, R., *Nature*, 2014, **514**, 550–553.
- Sanger, F., Nicklen, S. and Coulson, A. R., Proc. Natl. Acad. Sci. USA, 1977, 74, 5463–5467.
- 10. Kohn, W. and Sham, L. J., *Phys. Rev.*, 1965, **140**, A1133–A1138.
- Hohenberg, P. and Kohn, W., *Phys. Rev.*, 1964, **136**, B864–B871.
- Grynkiewicz, G., Poenie, M. and Tsien, R. Y., J. Biol. Chem., 1985, 260, 3440– 3450.
- Hamill, P. O., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. J., *Pflug. Arch. Eur. J. Physiol.*, 1981, **391**, 85–100.
- 14. Saiki, R. K. et al., Science, 1988, 239, 487-491.
- Devereux, J., Haeberli, P. and Smithies, O., *Nucleic Acids Res.*, 1984, **12**, 387– 395.
- Kohler, G. and Milstein, C., *Nature*, 1975, **256**, 495–497.
- Roehr, B., Br. Med. J., 2011, 343, d5507.
 Kaplan, E. L. and Meier, P., J. Am. Stat. Assoc., 1958, 53, 457–481.
- Fiske, C. H. and Subbarow, Y., J. Biol. Chem., 1925, 66, 375–400.
- 20. Sheldrick, G. M., Acta. Crystallogr., 2008, A64, 112-122.
- Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., *J. Biol. Chem.*, 1951, **193**, 265–275.
- Bradford, M. M., Anal. Biochem., 1976, 72, 248–254.
- Laemmli, U. K., Nature, 1970, 227, 680– 685.

- 24. Hamilton, M., J. Neurol. Neurosurg. Psychiatr., 1960, 23, 56-62.
- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M. N., Teller, A. H. and Teller, E., *J. Chem. Phys.*, 1953, **21**, 1087–1092.
- Brunauer, S., Emmett, P. H. and Teller, E., J. Am. Chem. Soc., 1938, 60, 309– 319.
- Moncada, S., Palmer, R. M. and Higgs, E. A., *Pharmacol. Rev.*, 1991, **43**, 109– 142.
- Zadeh, L. A., Inf. Control, 1965, 8, 338– 353.
- 29. Wilson, E. O., Am. Sci., 1998, 86, 6-7.
- Pennisi, E., Science, 2010, 330, 1734– 1735.
- Wolfe-Simon, F. *et al.*, *Science*, 2011, 332, 1163–1166.
- Wolfe-Simon, F. *et al.*, *Science*, 2011, 332, 1149-j–1149-j.
- 33. Obokata, H. et al., Nature, 2014, 505, 641–647.
- 34. Obokata, H. et al., Nature, 2014, 505, 676–680.
- 35. Cyranoski, D., Nature, 2014, 507, 283.
- 36. Cyranoski, D., Nature, 2014, 508, 299.
- Cyranoski, D., *Nature*, 2014, **511**, 140– 143.
- <u>http://garfield.library.upenn.edu/classics.</u> <u>html</u> (accessed 14 August 2015).

ACKNOWLEDGEMENTS. I dedicate this commentary to Dr Eugene Garfield on his 90th birthday. For over 30 years, he has been one of my mentors in research on the history of science. A brief editorial commentary entitled, 'Most cited medical papers: a tangential view' authored by me, is currently in press for the *International Medical Journal* (Tokyo).

Sachi Sri Kantha is in the Center for General Education, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan. e-mail: srikanth@gifu-u.ac.jp