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Efficient detection strategies for genetically modified 
(GM) crops need to be in compliance with regulatory 
frameworks and address consumer concerns. The pre-
sent review describes widely employed DNA-based 
technologies for GM detection. Polymerase chain reac-
tion (PCR) and real-time PCR (qPCR) are the meth-
ods that can be used for qualitative and quantitative 
analysis of GM crops due to their specificity, sensitiv-
ity and robustness. With increase in number and com-
plexity of genetic elements in newly developed GM 
events, strategies based on matrix approach, real-time 
PCR-based multi-target system, loop-mediated iso-
thermal amplification, next generation sequencing, 
have emerged, which could facilitate cost-effective, 
rapid, on-site or high throughput GM detection. 
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GENETICALLY modified (GM) crops with desired traits 
are developed by introducing ‘gene or genetic construct 
of interest’ employing recombinant DNA tools. ‘Trans-
gene(s)’ being introduced in GM crops, either confer a 
new trait to the plant or enhance an already existing trait. 
More than 28 countries are commercially growing GM 
crops with highest cultivation area in the United States 
(40%), followed by Brazil (23%), Argentina (13%), India 
(6.4%) and Canada (6.4%). Soybean, maize, cotton and 
canola are major globally commercialized GM crops, 
with herbicide tolerance and insect resistance as pre-
dominant traits1. Stacked traits for both herbicide toler-
ance and insect resistance have also been deployed in 
cotton and maize.  
 GM crops are one of the most promising technologies 
in ensuring global food security and increased crop pro-
ductivity; however, before their release in the food and 
agricultural supply chain, consumers’ apprehensions need 
to be addressed effectively through appropriate risk as-
sessment and management.  
 The approval of GM crops and GM-derived products is 
regulated in different countries by respective regulatory 
bodies. GM crops approved in one country do not neces-
sarily have the same approval status in another country, 

which may have a considerable impact on international 
trade and transboundary movements. In some countries as 
in the United States, labelling of GM products is volun-
tary; whereas it is mandatory in several countries as in 
the European Union (EU)2. Several countries have im-
plemented labelling thresholds for unintentional presence 
of approved GM crops defined as 0.9% in the EU and 
Russia, 3% in Korea, 5% in Japan, Indonesia, Thailand 
and Taiwan, and 1% in Brazil3,4. So far, no labelling 
threshold has been implemented in India. The Department 
of Consumer Affairs, Food and Public Distribution, Min-
istry of Consumer Affairs, Government of India, in an ex-
traordinary gazette notification, made an amendment to 
enforce GM food labelling for selected food commodi-
ties5. The regulatory regime for GM crops/products in  
India has been reviewed extensively4,6,7. Regulatory 
framework has been introduced since 1989 under the pro-
visions of the Environment Protection (EP) Act, 1986, by 
the Ministry of Environment & Forests and Climate 
Change (MoEF&CC), Government of India. Under EP 
Act, ‘Rules for Manufacture/Use/Import/Export and Stor-
age of Hazardous Microorganisms, Genetically Engi-
neered Organisms or Cells’ were notified. In 2006, 
Director General of Foreign Trade (DGFT) notification 
no. 2 (RE-2006)/2004-2009, regarding import policy was 
published in an Extraordinary Gazette by the Ministry of 
Commerce and Industry, Government of India.  
 To implement the regulatory requirements effectively 
and for labelling purposes, reliable analytical methods for 
detection and quantification of GM content in seed lots or 
food commodities are required. DNA-based diagnostics 
can be employed for monitoring adventitious presence  
of transgenes and for ensuring post-release monitoring of 
GM events. To screen for a large number of GM crops/ 
events, it is necessary to develop user-friendly, cost-
effective and reliable GM detection strategies.  
 GM detection methods can target either the transgenic 
DNA or the novel recombinant protein(s) expressed in 
GM crops. Protein-based GM detection methods include 
immunoassays that are based on the specific binding bet-
ween an antigen and an antibody. Due to specific binding, 
immunoassays exhibit high level of specificity allowing 
detection of GM lines expressing the recombinant pro-
tein. Commonly employed immunoassays are enzyme-
linked immunosorbent assay (ELISA), lateral flow sticks 
and Western blot. Lateral flow strip tests are easy 
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Figure 1. Transgenic construct showing the genetic elements and targets for DNA-based GM detection. Primer positions are depicted by arrows. 

 
 
and rapid and do not require specialized staff and expen-
sive or sophisticated equipments, so can be employed  
on-site. Protein-based GM diagnostics have certain  
advantages and disadvantages, as reviewed thoroughly8. 
These methods are economical in terms of resources and 
equipment set-up required, relatively fast and simple as-
says requiring moderate sample preparation and less skill. 
However, the applicability of protein-based methods is 
limited to raw or partially processed products as the pro-
teins may be degraded in processed food. DNA-based 
methods are robust with higher specificity, sensitivity and 
wider applicability. Based on the target amplification, 
DNA-based detection methods can be categorized as: 
Target amplification methods to increase the amount of 
target DNA, as in polymerase chain reaction (PCR); and 
signal amplification methods to increase the signal of the 
target, as in real-time PCR (qPCR)9.  
 This study provides an overview of widely employed 
DNA-based GM detection methodologies, along with re-
cent advances in the area for cost/time efficiency and 
broad applicability.  

Polymerase chain reaction based GM detection 
methods 

With increasing number and complexity of GM events 
(single as well as stacked), testing for every GM event 
has become labour-intensive and costly10–12. A GM event 
with single trait can be tested using a simple method, 
whereas identification and quantification of multiple or 
stacked traits or GM events require use of combination of 
high-throughput technologies10. PCR, involving amplifi-
cation of transgenic elements, is a widely employed 
method for GM detection. A transgenic construct consti-
tutes various genetic elements: a promoter, which enables 
the expression of inserted gene; the inserted transgene 
conferring a specific trait to the host plant; a marker gene 
for selection of transformants; and the terminator, which 
acts as a stop signal. PCR-based GM detection methods 
are categorized on the basis of the level of specificity 

(Figure 1): screening methods; gene-specific methods; 
construct-specific methods and event-specific methods.  

Screening methods 

Screening methods, targeting most commonly employed 
genetic elements, including promoters and terminators, 
are employed to check the GM status of samples. If a 
sample is GM, only then further tests are required for 
identification of a particular GM event. If a sample is 
non-GM, based on screening results, there is no need for 
further analysis. Hence, preliminary screening reduces 
the number of test samples for further confirming the 
presence of specific GM event/trait. Since majority of 
plants have been transformed with Cauliflower Mosaic 
Virus (CaMV) 35S promoter (p35S) and Agrobacterium 
tumefaciens nopaline synthase terminator (Tnos), screen-
ing methods targeting these elements, can be efficiently 
employed to check the GM status13. In addition to these, 
other regulatory elements have also been employed such 
as A. tumefaciens nopaline synthase promoter (pNos), rice 
actin promoter (pAct), CaMV 35S terminator (t35S), Fig-
wort Mosaic Virus promoter (pFMV) and maize ubiquitin 
promoter (pUbiZm). Several PCR/qPCR-based screening 
strategies have been reported: hexaplex PCR targeting 
commonly used marker genes, i.e., aadA, bar, hpt, nptII, 
pat, uidA to check for GM status of a sample irrespective 
of crop and GM trait; duplex, triplex and pentaplex qPCR 
targeting p35S, Tnos, ctp2-cp4-epsps, bar and pat, qPCR 
assays targeting six promoter and four terminator ele-
ments, viz., pFMV, pNos, pSSuAra, pTa29, pUbi, pRice 
actin, t35S, tE9, tOCS and tg7; quadruplex qPCR target-
ing p35S, Tnos, nptII and an endogenous gene14–17.  

Gene-specific methods 

Gene-specific methods targeting specific transgenes  
expressed in a GM crop, are more specific than screening 
methods. Gene-specific PCR assays are more specific 
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Figure 2. Construct-specific PCR for detection of p35S-cry1Ac region in Bt rice. a, Transgene construct for Bt rice indicating the location of forward 
and reverse primers. b, Construct-specific PCR using forward primer of promoter and reverse primer of transgene, i.e. p35S-cf-3/cry1Ac-192-r:  
(1) Non-template control; (2) Sample of non-GM rice; (3–5) Replications of samples of Bt rice; (M) 1 kb DNA ladder. Source: ref. 33. 
 

 
than screening assays targeting most commonly em-
ployed promoters and terminators present in a large num-
ber of GM events, as they target transgene(s) specific  
to a particular trait being expressed in a GM event. For 
example, cry1Ac, cry2Ab genes for insect resistance in 
Bollgard® II (MON15985) event of cotton, and cp4-epsps 
for herbicide tolerance in Roundup Ready® cotton 
(MON1445) can be used for testing the presence of these 
events, after the screening tests targeting p35S and Tnos, 
present in both these events (MON15985 and 
MON1445). Gene-specific PCR/qPCR assays have been 
developed for cry1A.105, cry1A3, cry1Ac, cry2Ab2, 
cry9C, cry1Ab, epsps, pat, vip3A, AmA118–27. 

Construct-specific methods 

Construct-specific methods target the junction between 
two DNA elements, for instance, a region of the insert 
spanning junction between the promoter and transgene. 
Construct-specific PCR/qPCR assays have been reported, 
targeting junction regions of Tnos and dehydrofolate  
reductase (dfr) gene in GM linseed event FP967, signal 
peptide and phytase gene in GM maize line 
BVLA430101, cry1Ac-cry1Ab fusion gene and Tnos in 
GM rice28–30. Construct-specific assays, targeting ctp2-
cry2Ab2, ctp2-cp4epsps, p35S-cry1Ac, p35S-uidA, have 
also been reported31–34. Construct-specific PCR targeting 
the junction between p35S promoter and cry1Ac gene for 
detection of Bt rice is shown in Figure 2. 

Event-specific methods 

Event-specific methods, targeting junction region at the 
integration locus between recipient genome and inserted 

DNA, exhibit highest specificity for GM identification. 
Validated qPCR protocols for more than 50 GM events of 
different crops including maize, soybean, cotton and oil-
seed rape and one event each of potato, rice and sugar 
beet are available at GMOMETHODS, an European Un-
ion Database of Reference Methods for GMO analysis 
based on the Compendium of Reference Methods for 
GMO Analysis (http://gmo-crl.jrc.ec.europa.eu/). Event-
specific PCR and/or qPCR assays have been developed 
for event 55-1 of GM papaya, Bt63 (TT51-1) and Kefeng 
events of GM rice; event EE1 of GM eggplant, GM maize 
events LY038, MON810, Bt11, GA2135–40.  

Qualitative and quantitative PCR methods 

Qualitative PCR methods including singleplex/multiplex 
PCR and real-time PCR primarily involve identification 
of specific GM event(s) in the test samples, while quanti-
tative methods enable absolute quantification of particu-
lar GM event(s) employing real-time PCR. For a reliable 
PCR assay for GM detection, selection and validation of 
suitable endogenous reference gene to be used as an  
internal control, for a particular crop, is the pre-requisite, 
as the per cent GM content can be calculated by ratios of 
specific GM target sequence to species-specific endoge-
nous reference gene. The endogenous gene should be nu-
clear, having a stable, low copy number, taxon-specific 
and highly conserved among the species of a particular 
genus. Several endogenous reference genes for GM  
detection purposes have been reported/validated for vari-
ous crops (Table 1). 
 Multiplex PCR, a variant of conventional PCR,  
involves simultaneous amplification of multiple target 
sequences in a test sample. MPCR-based detection kit, 
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Table 1. List of endogenous reference genes employed for GM detection and quantification 

Crop        Genes Reference 
 

Maize Adh1 (alcohol deydrogenase 1) Zein Invertase  87 
Cotton SAH7 (IVS of the putative Sinapis, Arabidopsis Homolog 7) 88 
  Sad1 (stearoyl-ACP desaturase) 89 
Rice SPS (sucrose phosphate synthase) 90 
  PLD (phospholipase D alpha 2) 91 
Soybean Lectin 92 
Tomato LAT52 (late anther tomato) 93 
Potato UGPase (UDP-glucose pyrophosphorylase) 19 
  ST-LS1  94 
Oilseed rape BnC1 (cruciferin storage protein)  95 
Sugarbeet GS2 (glutamine synthetase) 96 
Solananceae (Eggplant, potato, pepper, tomato) β-fructosidase 52 
Brassicaceae (Cauliflower and other members) SRK (S-locus receptor kinase) 47 

 

 
which screens four herbicide-tolerant genes (cp4-epsps, 
m-epsps, pat, and bar) has been developed41. A multiplex 
nested PCR assay targeting four commonly employed 
transgenic elements, cp4-epsps, cry1Ab, bar, pat and an 
endogenous reference ribulose bisphosphate carboxy-
lase/oxygenase large subunit (RBCL) gene, has been  
developed for simultaneous detection of GM soybean, 
maize and rice in highly processed products42. A multi-
plex PCR assay coupled with capillary gel electrophoresis 
for amplicon identification by size and colour has been 
developed for simultaneous detection of five GM cotton 
events43. Multiplex PCR assay has also been employed  
to detect stacked GM maize events, Bt11 × GA21, 
MON810 × MON863, NK603 × MON863, and NK603 × 
MON810 × MON863, TC1507 × DAS59122 × NK603, 
MON810 × MON863 × NK603, MON810 × MON88017, 
MON810 × GA21, Bt11 × MIR604 × GA2144–46. 
 Multiplex PCR assays for detection of all commercial-
ized events of Bt cotton and GM crops/events under field 
trials or under different stages of testing in the country, 
viz, GM tomato for salinity and drought tolerance, GM 
potato with better protein quality, Bt crops, including Bt 
cauliflower, Bt eggplant. Bt okra, Bt potato, Bt rice have 
been reported20,33,34,38,47–51. 
 Qualitative/quantitative qPCR allows monitoring of 
products, by measuring fluorescence signal produced dur-
ing the progress of reaction. Fluorescent signals are  
detectable using DNA binding fluorescent dyes, for ex-
ample SYBR Green® or more specific fluorescent probes. 
qPCR assays for the differentiation of four members of 
Solanaceae, viz. potato (Solanum tuberosum), tomato 
(Solanum lycopersicum), eggplant (Solanum melongena), 
and pepper (Capsicum annuum) have been reported52. 
qPCR assays have been developed and validated for de-
tection of cry1A.105 and cry2Ab2 genes in GM maize18. 
For quantification of MON810 and GA21 in maize, qPCR 
assays were optimized with limits of detection (LOD) and 
quantification (LOQ) of 3 and 36 copies respectively53. 
Duplex qPCR method has been developed for identifica-
tion of four GM maize events, Bt11, Bt176, MON810 and 

T2554. Quadruplex qPCR assay targeting p35S, Tnos and 
nptII marker gene along with an endogenous gene has 
been developed for screening of GM tomatoes17.  

qPCR-based multi-target system for GM detection 

Taqman® qPCR-based ‘ready-to-use multi-target analyti-
cal system for detection of GMOs’ has been developed, 
which reduces the number of steps and minimizes han-
dling error and chances of cross-contamination. The sys-
tem consists of pre-spotted plates containing lyophilized 
primers and probes for the individual detection of targets, 
allowing simultaneous amplification of 39 European GM 
events of six crops, viz. maize, cotton, rice, oilseed rape, 
soybean, sugar beet and potato along with taxon-specific 
methods of target crops in a single run55. The applicabi-
lity of this system in processed maize matrices was  
reported56.  
 A multi-target TaqMan® qPCR-based system was de-
veloped for checking presence of authorized GM events 
in India57. The developed system consists of a 96-well 
pre-spotted plate with lyophilized primers and probes for 
a total of 47 assays in duplicate allowing simultaneous 
detection of GM events from corn, eggplant, rice, soy-
bean, and cotton; in particular, the system combines 21 
event-specific assays, 6 taxon-specific assays, 5 construct 
regions and 15 element-specific assays.  

Technological advancement for rapid and  
efficient GM detection 

Next generation sequencing 

Molecular characterization of GM event at the chromo-
some level includes the copies and localization of in-
serted transgenic construct, sequences of insert and its 
flanking genomic regions, which is essential for event-
specific detection58. For precise information on integrated 
transgenic construct and their flanking regions, PCR-
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based chromosomal or genome walking strategies are be-
ing commonly employed. Practical utility of advanced 
sequencing technologies and reduction in the cost of se-
quencing contributes to efficient event-specific detection, 
in case of genome sequences with complex/rearranged 
modifications. Next generation sequencing has emerged 
as an efficient tool for testing GM events without any se-
quence information available. Applicability of next gen-
eration sequencing and bioinformatics tools has been 
demonstrated for molecular characterization of GM soy 
and rice events59–61. A specific and sensitive qPCR assay 
has been developed for detection of vip3A gene in 
MIR162 event of GM maize and Cot102 event of GM 
cotton. Site finding PCR in combination with next gen-
eration sequencing targeting the flanking DNA sequence 
of the vip3Aa20 element in MIR162 has been reported26.  

Microarray technology based approaches 

Microarrays or DNA chips are high-throughput systems 
that allow the analysis of multiple targets in a single as-
say. Main advantages of microarrays are miniaturization, 
high sensitivity and screening throughput. Different DNA 
approaches coupled with multiplex PCR have been re-
ported: multiplex DNA array-based PCR for quantifica-
tion of GM maize; ligation detection reaction coupled 
with universal array technology for detection of GM 
maize event Bt11; peptide nucleic acid array approach for 
detection of five GM events and two plant species; multi-
plex DNA microarray chip for simultaneous identifica-
tion of nine GMOs, five plant species and three screening 
elements, namely, p35S, Tnos and nptII; an event-specific 
DNA microarray system to detect 19 GM events, two of 
soybean, thirteen of maize, three of canola and one of 
cotton, in processed foods62–66.  
 Novel multiplex quantitative DNA-based target ampli-
fication method, NASBA (nucleic acid sequence based 
amplification) Implemented Microarray Analysis 
(NAIMA), was developed for sensitive, specific and 
quantitative detection on microarray67,68. It involves the 
use of tailed primers allowing the multiplex synthesis of 
template DNA in a primer extension reaction, followed 
by transcription-based amplification using universal 
primers. The cRNA product is ligated to fluorescent dyes 
labelled dendrimers, allowing signal amplification and 
then hybridized on an oligonucleotide probe-based mi-
croarray for multiplex detection67. 

Matrix-based approach 

GM detection laboratories initially undertake PCR-based 
preliminary screenings followed by more specific identi-
fication and quantification, if required. As testing directly 
for each target is extremely labour-intensive and costly, 
use of initial screening targeting commonly employed 

transgenic elements can facilitate time- and cost-efficient 
discrimination of GM and non-GM samples10–12. Matrix-
based approach is an efficient and cost-effective strategy 
to check authorized GM events10,11,69,70. GMO matrix is 
represented in the form of a table, in which each row 
represents a GM event, whereas columns represent the 
analytical test methods or vice-versa (http://gmo-crl.jrc. 
ec.europa.eu/doc/2011-12-12%20ENGL%20UGM%20- 
WG%20Publication.pdf). While implementing the matrix 
approach for analysis of samples, the matrix is used as a 
reference. The results from application of selected screen-
ing modules on the sample are compared with the data 
tabulated in the matrix.  
 A matrix-based universal screening approach using 
combination of five target elements was developed for 81 
authorized/unauthorized GM events of EU69. Combina-
tory SYBR Green® real-time PCR screening (CoSYPS) is 
another matrix approach in which SYBR Green® qPCR 
analysis is based on four parameters, i.e. Ct and Tm val-
ues, and the LOD and LOQ of each method70. More com-
prehensive and user-friendly testing strategies based on 
integrated decision support system such as GMOtrack 
and GMOseek matrix reduce the cost of GM diagnos-
tics11,71. GMO track approach contains a data matrix on 
GM events on one hand and potential targets for detecting 
respective GM event on the other hand. While assisting in 
choosing the most cost-effective GMO testing strategy 
for a given sample, GMOtrack also supports the interpre-
tation of wet-laboratory results. The core algorithm is 
freely available on the webpage (http://kt.ijs.si/software/ 
GMOtrack/)11. GMOseek matrix has been developed as a 
comprehensive open-access tabulated database, with in-
formation of 328 GM events and 247 genetic elements71. 
 GMO screening matrix was developed to check for  
authorized GM events in India, for detection of 141 GM 
events of 21 crops based on the information of 106  
genetic elements72. Out of 106 genetic elements, 10 most 
frequently present targets were identified to screen these 
events. The matrix approach facilitates efficient, rapid 
and cost-effective screening by eliminating the need for 
development of specific testing methodologies for each 
individual GM event. 

Loop-mediated isothermal amplification 

Loop-mediated isothermal amplification (LAMP) is an 
isothermal nucleic acids amplification technique, in 
which amplification and detection of target genes are 
completed in a single step at a constant temperature73. 

LAMP is characterized by the use of four different prim-
ers, which recognize six distinct regions on the target. An 
inner primer pair containing sequences of sense and an-
tisense strands of the target DNA initiates LAMP reac-
tion, which proceeds at a constant temperature, followed 
by strand displacement DNA synthesis primed by an 
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Figure 3. DNA-based GMO detection technologies developed at ICAR-National Bureau of Plant Genetic Resources. 
 
 
outer primer pair73–75. Addition of ‘loop’ primers  
increases the specificity and time-efficiency of LAMP as-
says76.  
 LAMP products show ladder-like pattern on agarose 
gel or can be real-time monitored using turbidimetry or 
by measuring fluorescence using real-time LAMP77–79. 
The amplicons can alternatively be visualized after com-
pletion of the LAMP reactions using nucleic acid staining 
or fluorescent dyes such as SYBR® Green 1 (refs 80, 81). 
 LAMP assays have been employed in GM diagnostics 
in the recent years, due to their time-efficiency, robust-
ness and ease-of-use. A bioluminescent real-time reporter 
(BART) of LAMP, targeting p35S, Tnos and Zea mays 
alcohol dehydrogenase (Adh1) gene, has been used for 
screening of GM maize event MON810 (ref. 82). Event-
specific LAMP assays were developed for the two soy-

bean events, three GM rice events, and seven GM maize 
events80,81,83. LAMP-based visual and real-time screening 
assays targeting commonly used promoters, viz. p35S, 
pFMV and marker genes, viz. aadA, nptII and uidA were 
developed employing two chemistries (Bst polymerase 
and isothermal master mix), two detection methods (vis-
ual detection using SYBR Green I and real-time monitor-
ing based on fluorescent signals) and four systems 
(conventional heating block, thermal cycler, real-time 
PCR system and real-time isothermal system)79. LAMP 
assays employing two chemistries, namely, Bst poly-
merase and ready-to-use isothermal master mix were 
found specific and sensitive. However, assays performed 
on real-time isothermal system were faster and most sen-
sitive, detecting up to four copies of target within 35 min. 
Visual and real-time LAMP assays targeting three  



REVIEW ARTICLE 
 

CURRENT SCIENCE, VOL. 110, NO. 6, 25 MARCH 2016 1006 

commonly employed transgenes, namely, cry1Ac, 
cry2Ab2 and cp4-epesps were reported84. Event-specific 
visual and real-time LAMP assays for detection of two 
major commercialized Bt cotton events, viz., MON531 
and MON15985 were developed85. Event-specific visual 
and real-time LAMP assays for detection of six GM 
maize events were also reported86. The flexibility of these 
LAMP assays facilitates their applicability for reliable 
GM detection on-site, if combined with a fast DNA ex-
traction method. This approach would be useful for GMO 
screening by customs authorities to check the consign-
ments at ports of entry or by the field inspectors or farm-
ers in the fields. For on-site testing employing real-time 
LAMP, portable real-time isothermal system and rapid 
DNA extraction kits without involving centrifugation 
steps are required85.  
 Cost/time-efficient DNA-based GM detection tech-
nologies have been developed by GM detection labora-
tory at ICAR-National Bureau of Plant Genetic 
Resources, New Delhi, which are being employed rou-
tinely for testing transgenic planting material imported 
for research purposes (Figure 3).  

Conclusions 

In India, Bt cotton is commercially grown in an area of 
11.8 million hectares. More than two hundred consign-
ments of 15 GM crops have been imported for research 
purposes and several GM events with diversified traits 
were under field trials. With increase in number of GM 
events and diversification of traits, cost-effective GM  
diagnostics could facilitate effective risk assessment and 
management of GM crops and for their post-release 
monitoring, to ensure public confidence and solve legal 
disputes. In developing countries with limited resources, 
cost-efficient GM diagnostics would be helpful. Cost of 
an assay is determined on basis of the price of consum-
ables to perform a test and one-time cost of setting up of 
detection system in the laboratory. Cost-efficiency of dif-
ferent PCR and LAMP based GM detection assays have 
been compared by our group in a recently published arti-
cle, where visual LAMP was found to be cost-efficient85. 
PCR and qPCR-based assays are being widely employed 
for GM detection and quantification because of high 
specificity, sensitivity and robustness. However, due to 
involvement of cumbersome and time-consuming elec-
trophoretic analysis in conventional PCR and use of 
highly sophisticated equipments and TaqMan® probes in 
qPCR, their application in GMO testing is restricted to 
specialized laboratories with high availability resources 
and expertise. In LAMP assays for GMO testing, visual 
detection of products using SYBR® Green I and real-time 
analysis using portable equipments could facilitate 
rapid/cost-efficient GMO testing with on-site applica-
tions. Efficient strategies/technologies based on multi-

plex/real-time PCR, GMO matrix, LAMP and qPCR-
based multi-target system need to be utilized by GMO 
testing laboratories in the country, and further these tech-
nologies need to be validated by GMO testing laborato-
ries in an interlinking mode. 
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