Open Access Open Access  Restricted Access Subscription Access

Recent Advances in Perovskite-Based Solar Cells


Affiliations
1 Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Hyderabad 500 007, India
 

Organic-inorganic halide perovskites have a significant impact on photovoltaic devices and the solar-to-power conversion efficiency is considerably high (~20.1%) compared to the present existing organic solar cells (OSCs) and dye sensitized solar cells (DSSCs). For the past 3 years, there has been tremendous improvement in photovoltaic efficiency of perovskites, i.e. ~9.7% in 2012 to 20.1% in 2015. Meanwhile, several fabrication approaches, inorganic and organic hole transport materials and device concepts have been developed for high-performing devices. Nevertheless, some issues have to be addressed to commercialize the pervoskite solar cells. Particularly, stability of these cells is not well documented in the literature so far and this is the noteworthy concern. In this review, fundamental aspects of the perovskite device and recent developments are illustrated to provide high-performance perovskite solar cells with durability.

Keywords

Hole Transport Material, Perovskite, Photovoltaic Efficiency, Solar Cells.
User
Notifications
Font Size

  • Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D., Solar cell efficiency tables (version 39). Prog. Photovoltaics: Res. Appl., 2012, 20, 12–20.
  • O’Regan, B. and Grätzel, M., A low-cost, high-efficiency solar cell based dye-sensitized colloid TiO2 films. Nature, 1991, 353, 737–740.
  • Chung, I., Lee, B., He, J., Chang, R. P. H. and Kanatzidis, M. G., All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485, 486–489.
  • Huang, Y., Kramer, E. J., Heeger, A. J. and Bazan, G. C., Bulk heterojunction solar cells: morphology and performance relationships. Chem. Rev., 2014, 114, 7006–7043.
  • Park, N.-G., Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett., 2013, 4, 2423–2429.
  • Snaith, H. J., Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett., 2013, 4, 3623–3630.
  • Kim, H.-S., Im, S. H. and Park, N.-G., Organolead halide perovskite: new horizons in solar cell research. J. Phys. Chem. C, 2014, 118, 5615–5625.
  • Hodes, G. and Cahen, D., Photovoltaics: perovskite cells roll forward. Nature Photon., 2014, 8, 87–88.
  • Service, R. F., Perovskite solar cells keep on surging. Science, 2014, 344, 458.
  • Yang, W. S., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348, 1234–1237.
  • Li, C. et al., Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. B, 2008, 64, 702–707.
  • McKinnon, N. K., Reeves, D. C. and Akabas, M. H., 5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals. J. Gen. Physiol., 2011, 138, 453–466.
  • Cohen, B. N., Labarca, C., Davidson, N. and Lester, H. A., Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations. J. Gen. Physiol., 1992, 100, 373–400.
  • Im, J.-H., Chung, J., Kim, S.-J. and Park, N.-G., Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskitetype novel sensitizer (CH3CH2NH3)Pbl3. Nanoscale Res. Lett., 2012, 7, 353.
  • Koh, T. M. et al., Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C, 2014, 118, 16458–16462.
  • Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M. and Snaith, H. J., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci., 2014, 7, 982–988.
  • Pang, S. et al., NH2CH=NH2Pbl3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater., 2014, 26, 1485–1491.
  • Umari, P., Mosconi, E. and De Angelis, F., Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep., 2014, 4, 4467.
  • Topsöe, H., Krystallographisch-chemische untersuchungen homologer verbindungen. Z. Kristallogr., 1884, 8, 246–296.
  • Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. and Guloy, A. M., Conducting layered organic–inorganic halides containing <110>-oriented perovskite sheets. Science, 1995, 267, 1473–1476.
  • Green, M. A., Ho-Baillie, A. and Snaith, J., The emergence of pervoskite solar cells. Nature Photon., 2014, 8, 506–514.
  • Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131, 6050–6051.
  • Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. and Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3, 4088–4093.
  • Kim, H.-S. et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2, 591.
  • Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. and Snaith, H. J., Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science, 2012, 338, 643–647.
  • Heo, J. H. et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon., 2013, 7, 486–491.
  • Noh, J. H, Im, S. H., Heo, J. H., Mandal, T. N. and Seok, S. I., Chemical management for colorful, efficient, and stable inorganic– organic hybrid nanostructured solar cells. Nano Lett., 2013, 13, 1764–1769.
  • Zhang, W. et al., Ultrasmooth organic–inorganic perovskite thinfilm formation and crystallization for efficient planar heterojunction solar cells. Nature Commun., 2015, 6, 6142.
  • Im, J.-H., Kim, H.-S. and Park, N.-G., Morphology–photovoltaic property correlation in perovskite solar cells: one-step versus twostep deposition of CH3NH3PbI3. APL Mater., 2014, 2, 081510– 081517.
  • Burschka, J. et al., Sequential deposition as a route to highperformance perovskite-sensitized solar cells. Nature, 2013, 499, 316–319.
  • Liu, M., Johnston, M. B. and Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501, 395–398.
  • Jeon, N. J., Solvent engineering for high-performance inorganic– organic hybrid perovskite solar cells. Nature Mater., 2014, 13, 897–903.
  • Zhou, H. et al., Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542–546.
  • Yin, W.-J., Shi, T. and Yan, Y., Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater., 2014, 26, 4653–4658.
  • Ameen, S. et al., Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem., 2016, 9, 10–27.
  • Sweta, T. and Singh, S. P., Perovskite solar cells based on small molecule hole transporting materials. J. Mater. Chem. A, 2015, 3, 18329–18344.
  • Christians, A., Fung, R. C. M. and Kamat, P. V., An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc., 2014, 136, 758–764.
  • Ito, S., Tanaka, S., Vahlman, H., Nishino, H., Manabe, K. and Lund, P., Carbon‐double‐bond‐free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: structural control and photoaging effects. ChemPhysChem., 2014, 15, 1194–1200.
  • Qin, P. et al., Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Commun., 2014, 5, 3834–3836.
  • Li, L., Gibson, E. A., Qin, P., Boschloo, G., Gorlov, M., Hagfeldt, A. and Sun, L., Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Adv. Mater., 2010, 22, 1759–1762.
  • Odobel, F., Pleux, L. C. L., Pellegrin, Y. and Blart, E., New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Acc. Chem. Res., 2010, 43, 1063–1071.
  • Manders, J. R. et al., Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater., 2013, 23, 2993–3001.
  • Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. H. and Marks, T. J., p-Type semiconducting nickel oxide as an efficiencyenhancing anode interfacial layer in polymer bulkheterojunction solar cells. Proc. Natl. Acad. Sci., USA, 2008, 105, 2783–2787.
  • Shim, J. W., Fuentes-Hernandez, C., Dindar, A., Zhou, Y., Khan, T. M. and Kippelen, B., Polymer solar cells with NiO holecollecting interlayers processed by atomic layer deposition. Org. Electron., 2013, 14, 2802–2808.
  • Docampo, P., All, J. M. B., Darwich, M., Eperon, G. E. and Snaith, H. J., Efficient organometal trihalide perovskite planarheterojunction solar cells on flexible polymer substrates. Nature Commun., 2013, 4, 2761–2766.
  • Jeng, J. Y. et al., Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater., 2014, 26, 4107–4113.
  • Subbiah, A. S., Halder, A., Ghosh, S., Mahuli, N., Hodes, G. and Sarkar, S. K., Inorganic hole conducting layers for perovskitebased solar cells. J. Phys. Chem. Lett., 2014, 5, 1748–1753.
  • Ke, W. et al., Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc., 2015, 137, 6730–6733.
  • Yin, X., Chen, P., Que, M., Xing, Y., Que, W., Niu, C. and Shao, J., Highly efficient flexible perovskite solar cells using solutionderived NiOx hole contacts. ACS Nano, 2016, 10, 3630–3636.
  • Li, H., Fu, K., Hagfeldt, A., Grätzel, M., Mhaisalkar, S. G. and Grimsdale, A. C., A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. Angew. Chem. Int. Ed., Engl., 2014, 53, 4085–4088.
  • Jeon, N. J., Lee, J., Noh, J. H., Nazeeruddin, M. K., Grätzel, M. and Seok, S. I., Efficient inorganic–organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc., 2013, 135, 19087–19090.
  • Wang, J., Wang, S., Li, X., Zhu, L., Meng, Q., Xiao, Y. and Li, D., Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells. Chem. Commun., 2014, 50, 5829–5832.
  • Kwon, Y. S., Lim, J., Yun, H.-J., Kim, Y.-H. and Park, T., A diketopyrrolopyrrolecontaining hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite, Energy Environ. Sci., 2014, 7, 1454– 1460.
  • Suarez, B., Gonzalez-Pedro, V., Ripolles, T. S., Sanchez, R. S., Otero, L. and Mora-Sero, I., Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett., 2014, 5, 1628–1635.
  • Roiati, V., Colella, S., Lerario, G., De Marco, L., Rizzo, A., Listorti, A. and Gigli, G., Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells. Energy Environ. Sci., 2014, 7, 1889–1894.
  • Mei, A. et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345, 295– 298.
  • Berhe, T. A. et al., Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci., 2016, 9, 323–325.
  • Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. and Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photon., 2014, 8, 489–494.
  • Noel, N. K. et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci., 2014, 7, 3061–3068.

Abstract Views: 743

PDF Views: 174




  • Recent Advances in Perovskite-Based Solar Cells

Abstract Views: 743  |  PDF Views: 174

Authors

Seelam Prasanthkumar
Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Hyderabad 500 007, India
Lingamallu Giribabu
Inorganic and Physical Chemistry Division, CSIR–Indian Institute of Chemical Technology, Hyderabad 500 007, India

Abstract


Organic-inorganic halide perovskites have a significant impact on photovoltaic devices and the solar-to-power conversion efficiency is considerably high (~20.1%) compared to the present existing organic solar cells (OSCs) and dye sensitized solar cells (DSSCs). For the past 3 years, there has been tremendous improvement in photovoltaic efficiency of perovskites, i.e. ~9.7% in 2012 to 20.1% in 2015. Meanwhile, several fabrication approaches, inorganic and organic hole transport materials and device concepts have been developed for high-performing devices. Nevertheless, some issues have to be addressed to commercialize the pervoskite solar cells. Particularly, stability of these cells is not well documented in the literature so far and this is the noteworthy concern. In this review, fundamental aspects of the perovskite device and recent developments are illustrated to provide high-performance perovskite solar cells with durability.

Keywords


Hole Transport Material, Perovskite, Photovoltaic Efficiency, Solar Cells.

References





DOI: https://doi.org/10.18520/cs%2Fv111%2Fi7%2F1173-1181