The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Inactivation of an enzyme as it begins to unfold, along with the conformational perturbations which follow, can provide an insight into dynamics of the unfolding pathway. Urea gradient electrophoresis combined with zymography is a sensitive technique which provides a continuous visual profile of a proteolytic enzyme undergoing denaturation and inactivation simultaneously. Trypsin has been used as a reference protease to validate and standardize the method by correlating inactivation profile generated in zymography with a solution state assay. Stem bromelain, a cysteine endopeptidase was used as a case study to evaluate this methodology. The method highlighted the effect rendered by the substrate on the stability of the proteolytic domain of the enzyme, as it undergoes urea-induced unfolding. Transverse urea gradient zymography combined with molecular modelling of stem bromelain, where the disulphide bonds have been reduced, indicated that the evolutionary retention of Cys23-Cys63 could be attributed to localized stabilization imparted by this bond to the catalytic site. This method encompasses various dimensions to extend the understanding of structure-function relationship in denaturant-induced unfolding pathways of proteases.

Keywords

Protein Unfolding, Stem Bromelain, Urea Gradient, Zymography.
User
Notifications
Font Size