Open Access Open Access  Restricted Access Subscription Access

Effect of Confining Pressure on the Mechanical Properties of Thermally Treated Sandstone


Affiliations
1 State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
2 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
 

To understand the effect of confining pressure on the mechanical properties of thermally treated coarse sandstone, uniaxial and triaxial compression tests were conducted for six groups of thermally treated sandstone from Xujiahe Formation in southwestern China under confining pressures of 0-40 MPa. The test results indicate that 600°C is a critical threshold of the thermal damage of sandstone by SEM and mechanical tests. When temperature is below 600°C, few micro cracks are observed by SEM. Peak strength, elastic modulus, cohesion and internal friction angle remain constant or increase with increasing temperature and all these values decrease when temperature is above or equal to 600°C under different confining pressures. Under the uniaxial and low confining pressure (≤ 5 MPa), the failure mode shows single or multiple splitting planes and it is easier to generate complex cracks with increasing temperature. Under high confining pressure (10-40 MPa), the failure mode shows a simple shear plane after treatment at different temperatures, i.e. 25-1000°C. The results may provide guidance for rock engineering design after high temperature exposure.
User
Notifications
Font Size

  • Wong, T. F., Mech. Mater., 1982, 1, 3–17.
  • Wai, R. S. C. and Lo, K. Y., Can. Geotech. J., 1982, 19(3), 307–319.
  • Zhang, Z. X., Yu, J., Kou, S. Q. and Lindqvist, P. A., Int. J. Rock Mech. Min. Sci., 2001, 38(2), 211–225.
  • Kanagawa, K., Cox, S. F. and Zhang, S, Q., J. Geophys. Res. – Solid Earth, 2000, 105(B5), 1115–11126.
  • Baud, P., Wong, T. F. and Zhu, W., Int. J. Rock Mech. Min. Sci., 2014, 67(4), 202–211.
  • Misra, S. et al., J. Geophys. Res. – Solid Earth, 2014, 119(5), 3971–3985.
  • Zhang, L., Mao, X. and Lu, A., Sci. China Ser. E, 2009, 52(3), 641–646.
  • Liu, S. and Xu, J., Eng. Geol., 2015, 185, 63–70.
  • Chaki, S., Takarli, M. and Agbodjan, W. P., Constr. Build. Mater., 2008, 22(7), 1456–1461.
  • Liu, S. and Xu, J., Int. J. Rock Mech. Min. Sci., 2014, 71, 188–193.
  • Wu, G., Wang, Y., Swift, G. and Chen, J., Geotech. Geol. Eng., 2013, 31(2), 809–816.
  • Tian, H., Kempka, T., Xu, N.-X. and Ziegler, M., Rock Mech. Rock Eng., 2012, 45(6), 1113–1117.
  • P. G R, Viete, D. R., Chen, B. J. and Perera, M. S. A., Eng. Geol., 2012, 151, 120–127.
  • Klein, E., Baud, P., Reuschle, T. and Wong, T. F., Phys. Chem. Earth Part A, 2001, 26(1–2), 21–25.
  • Dillen, M. W. P., Cruts, H. M. A., Groenenboom, J., Fokkema, J. T. and Duijndam, A. J. W., Geophysics, 1999, 64(5), 1603–1607.
  • Saluja, S. S., Singh, D. P. and Kasiviswanadham, M., J. Mines, Met. Fuels, 1977, 25(5), 131–138.
  • Zhang, H., Kang, Y., Chen, J., Han, L. and Wang, Y., Chin. J. Rock Mech. Eng. (Suppl. 2), 2007, 26, 4227–4231.
  • Deutsch, The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014 Springer. Springer International Publishing, 2015.
  • Mao, H. J., Yang, C. H. and Liu, J., Chin. J. Rock Mech. Eng., 2006, 25(6), 1204–1209.
  • Yang, S. Q., Jiang, Y. Z., Xu, W. Y. and Chen, X. Q., Int. J. Solids Struct., 2008, 45(17), 4796–4819.
  • Wu, G., Xing, A. and Zhang, L., Chin. J. Rock Mech. Eng., 2007, 26(10), 2110–2116.

Abstract Views: 444

PDF Views: 149




  • Effect of Confining Pressure on the Mechanical Properties of Thermally Treated Sandstone

Abstract Views: 444  |  PDF Views: 149

Authors

Feng Xu
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
Chunhe Yang
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
Yintong Guo
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
Tongtao Wang
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
Lei Wang
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
Ping Zhang
State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China

Abstract


To understand the effect of confining pressure on the mechanical properties of thermally treated coarse sandstone, uniaxial and triaxial compression tests were conducted for six groups of thermally treated sandstone from Xujiahe Formation in southwestern China under confining pressures of 0-40 MPa. The test results indicate that 600°C is a critical threshold of the thermal damage of sandstone by SEM and mechanical tests. When temperature is below 600°C, few micro cracks are observed by SEM. Peak strength, elastic modulus, cohesion and internal friction angle remain constant or increase with increasing temperature and all these values decrease when temperature is above or equal to 600°C under different confining pressures. Under the uniaxial and low confining pressure (≤ 5 MPa), the failure mode shows single or multiple splitting planes and it is easier to generate complex cracks with increasing temperature. Under high confining pressure (10-40 MPa), the failure mode shows a simple shear plane after treatment at different temperatures, i.e. 25-1000°C. The results may provide guidance for rock engineering design after high temperature exposure.

References





DOI: https://doi.org/10.18520/cs%2Fv112%2Fi06%2F1101-1106