Open Access Open Access  Restricted Access Subscription Access

Understanding Deep Earth Dynamics:A Numerical Modelling Approach


Affiliations
1 Centre for Earth Sciences, Indian Institute of Science, Bengaluru 560 012, India
 

Enhancement in computing power and better data availability have paved the way for deciphering the earth's deeper dynamics and have provided viable explanations for various surface phenomena. Tools such as seismic tomography, numerical modelling and geophysical observations such as stresses, gravity anomalies, heat flow, etc. have helped us in addressing the mechanisms of plate driving forces, anomalous geoid variations, cratonic stability, topographic support, intraplate earthquakes and similar outstanding issues in geodynamics. Due to lack of direct observations from deep earth, numerical modelling has aided considerably in learning about subsurface processes. With better algorithms being developed everyday, it is the right time to tap their potential to push the frontiers of human knowledge.

Keywords

Geodynamics, Lithosphere Dynamics, Mantle Convection, Numerical Modelling, Seismic Tomography.
User
Notifications
Font Size

  • Dziewonski, A. M. and Anderson, D. L., Preliminary reference Earth model. Phys. Earth Planet. Inter., 1981, 25(4), 297–356.
  • Karato, S., Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett., 1993, 20(15), 1623–1626.
  • Grand, S. P., van der Hilst, R. D. and Widiyantoro, S., High resolution global tomography: a snapshot of convection in the Earth. Geol. Soc. Am. Today, 1997, 7(4), 1–7.
  • Fukao, Y., Widiyantoro, S. and Obayashi, M., Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys., 2001, 39(3), 291–323.
  • Zhao, D., Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Inter., 2004, 146(12), 3–34.
  • Simmons, N. A., Myers, S. C., Johannesson, G., Matzel, E. and Grand, S. P., Evidence for long-lived subduction of an ancient tectonic plate beneath the southern Indian Ocean. Geophys. Res. Lett., 2015, 42(21), 9270–9278.
  • French, S. W. and Romanowicz, B., Broad plumes ischolar_mained at the base of the Earth’s mantle beneath major hotspots. Nature, 2015, 525(7567), 95–99.
  • Woodhouse, J. H. and Dziewonski, A. M., Mapping the upper mantle: three-dimensional modeling of earth structure by inversion of seismic waveforms. J. Geophys. Res. B, 1984, 89(7), 5953–5986.
  • Romanowicz, B., The thickness of tectonic plates. Science, 2009, 324(5926), 474–476.
  • Ritsema, J., Deuss, A., van Heijst, H. J. and Woodhouse, J. H., S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normalmode splitting function measurements. Geophys. J. Inter., 2011, 184(3), 1223–1236.
  • Dziewonski, A. M., Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. B, 1984, 89(7), 5929–5952.
  • Burke, K., Steinberger, B., Torsvik, T. H. and Smethurst, M. A., Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett., 2008, 265(1), 49–60.
  • Richards, M. A. and Hager, B. H., Geoid anomalies in a dynamic Earth. J. Geophys. Res. B, 1984, 89(7), 5987–6002.
  • Forte, A. M. and Mitrovica, J. X., Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature, 2001, 410(6832), 1049–1056.
  • King, S. D. and Hager, B. H., Sub-ducted slabs and the geoid: 1. Numerical experiments with temperature-dependent viscosity. J. Geophys. Res. B, 1994, 99(10), 19843–19852.
  • Cadek, O. and Fleitout, L., Effect of lateral viscosity variations in the top 300 km on the geoid and dynamic topography. Geophys. J. Int., 2003, 152(3), 566–580.
  • Zhong, S. and Davies, G. F., Effects of plate and slab viscosities on the geoid. Earth Planet. Sci. Lett., 1999, 170(4), 487–496.
  • Moucha, R., Forte, A., Mitrovica, J. and Daradich, A., Lateral variations in mantle rheology: implications for convection related surface observables and inferred viscosity models. Geophys. J. Int., 2007, 169(1), 113–135.
  • Ghosh, A., Becker, T. and Zhong, S., Effects of lateral viscosity variations on the geoid. Geophys. Res. Lett., 2010, 37(1), L01301; doi:10.1029/2009GL040426.
  • Chase, C. G. and Sprowl, D. R., The modern geoid and ancient plate boundaries. Earth Planet. Sci. Lett., 1983, 62(3), 314–320.
  • Spasojevic, S., Gurnis, M. and Sutherland, R., Mantle upwellings above slab graveyards linked to the global geoid lows. Nature Geosci., 2010, 3(6), 435–438.
  • Sreejith, K., Rajesh, S., Majumdar, T., Rao, G. S., Radhakrishna, M., Krishna, K. and Rajawat, A., High-resolution residual geoid and gravity anomaly data of the northern Indian Ocean – an input to geological understanding. J. Asian Earth Sci., 2013, 62, 616–626.
  • Negi, J., Thakur, N. and Agrawal, P., Can depression of the coremantle interface cause coincident Magsat and geoidal lows of the Central Indian Ocean? Phys. Earth Planet. Inter., 1987, 45(1), 68–74.
  • Hide, R., Interaction between the Earth’s liquid core and solid mantle. Nature, 1969, 222, 1055–1056.
  • Hide, R. and Malin, S., Novel correlations between global features of the earth’s gravitational and magnetic fields. Nature, 1970, 230(11), 63.
  • Rajesh, S., Geoid and the regional density anomaly field in the Indian Plate. Himalayan Geol., 2009, 30(2), 187–192.
  • Mishra, D., Kumar, M. R. and Arora, K., Long wavelength satellite gravity and geoid anomalies over Himalaya and Tibet: lithospheric structures and seismotectonics of deep focus earthquakes of Hindu Kush–Pamir and Burmese arc. J. Asian Earth Sci., 2012, 48, 93–110.
  • Rao, B. P. and Kumar, M. R., Seismic evidence for slab graveyards atop the core–mantle boundary beneath the Indian Ocean geoid low. Phys. Earth Planet. Inter., 2014, 236, 52–59.
  • Airy, G. B., On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philos. Trans. R. Soc. London, 1855, 145, 101–104.
  • Pratt, J. H., On the attraction of the Himalaya Mountains, and of the elevated regions beyond them, upon the plumb-line in India. Philos. Trans. R. Soc. London, 1855, 145, 53–100.
  • Hager, B., Clayton, R., Richards, M., Comer, R. and Dziewonski, A., Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 1985, 313, 541–545.
  • Forte, A., Peltier, W., Dziewonski, A. and Woodward, R., Dynamic surface topography: a new interpretation based upon mantle flow models derived from seismic tomography. Geophys. Res. Lett., 1993, 20(3), 225–228.
  • Braun, J., The many surface expressions of mantle dynamics. Nature Geosci., 2010, 3(12), 825–833.
  • Sandwell, D. T. and MacKenzie, K. R., Geoid height versus topography for oceanic plateaus and swells. J. Geophys. Res. B, 1989, 94(6), 7403–7418.
  • Coblentz, D., Chase, C., Karlstrom, K. and van Wijk, J., Topography, the geoid, and compensation mechanisms for the southern Rocky Mountains. Geochem., Geophys., Geosyst., 2011, 12, Q04002; doi:10.1029/2010GC003459.
  • Panasyuk, S. V. and Hager, B. H., Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties. J. Geophys. Res. Solid Earth, 2000, 105(B12), 28199–28209.
  • Wang, Y., Huang, J., Zhong, S. and Chen, J., Heat flux and topography constraints on thermochemical structure below North China Craton regions and implications for evolution of cratonic lithosphere. J. Geophys. Res. B, 2016, 121(4), 3081–3098.
  • Boschi, L., Becker, T. and Steinberger, B., Mantle plumes: dynamic models and seismic images. Geochem., Geophys., Geosyst., 2007, 8, Q10006; doi:10.1029/2007GC001733.
  • Conrad, C. P. and Husson, L., Influence of dynamic topography on sea level and its rate of change. Lithosphere, 2009, 1(2), 110–120.
  • Lithgow-Bertelloni, C. and Silver, P. G., Dynamic topography, plate driving forces and the African supers well. Nature, 1998, 395(6699), 269–272.
  • Flament, N., Gurnis, M. and Müller, R. D., A review of observations and models of dynamic topography. Lithosphere, 2013, 5(2), 189–210.
  • Forsyth, D. W., Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res. B, 1985, 90(14), 12623–12632.
  • McKenzie, D. and Fairhead, D., Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies. J. Geophys. Res. B, 1997, 102(12), 27523–27552.
  • Molnar, P., England, P. C. and Jones, C. H., Mantle dynamics, isostasy, and the support of high terrain. J. Geophys. Res. B, 2015, 120(3), 1932–1957.
  • Colli, L., Ghelichkhan, S. and Bunge, H.-P., On the ratio of dynamic topography and gravity anomalies in a dynamic Earth. Geophys. Res. Lett., 2016, 2510–2516.
  • Ghosh, A., Holt, W. E., Flesch, L. M. and Haines, A. J., Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 2006, 34(5), 321–324.
  • King, S. D., Archean cratons and mantle dynamics. Earth Planet. Sci. Lett., 2005, 234(1), 1–14.
  • Polet, J. and Anderson, D. L., Depth extent of cratons as inferred from tomographic studies. Geology, 1995, 23(3), 205–208.
  • Artemieva, I. M. and Mooney, W. D., On the relations between cratonic lithosphere thickness, plate motions, and basal drag. Tectonophysics, 2002, 358(1), 211–231.
  • Coope, C. and Conrad, C. P., Does the mantle control the maximum thickness of cratons? Lithosphere, 2009, 1(2), 67–72.
  • Rudnick, R. L., McDonough, W. F. and O’Connell, R. J., Thermal structure, thickness and composition of continental lithosphere. Chem. Geol., 1998, 145(3), 395–411.
  • Singh, R. N. and Negi, J. G., High Moho temperature in the Indian shield. Tectonophysics, 1982, 82(3–4), 299–306.
  • Pearson, D., Carlson, R., Shirey, S., Boyd, F. and Nixon, P., Stabilisation of Archaean lithospheric mantle: a Re–Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet. Sci. Lett., 1995, 134(3), 341–357.
  • Pearson, D., Snyder, G. and Shireyf, S., Archaean Re–Os age for Siberian eclogites and constraints on Archaean tectonics. Nature, 1995, 374, 711–713.
  • Korenaga, J., Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci., 2013, 41, 117–151.
  • Lenardic, A. and Moresi, L.-N., Some thoughts on the stability of cratonic lithosphere: effects of buoyancy and viscosity. J. Geophys. Res. B, 1999, 104(6), 12747–12758.
  • Jordan, T. H., The continental tectosphere. Rev. Geophys., 1975, 13(3), 1–12.
  • Jordan, T. H., Composition and development of the continental tectosphere. Nature, 1978, 274(5671), 544–548.
  • Lenardic, A., Moresi, L.-N. and Mühlhaus, H., Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res. B, 2003, 108, 2303; doi:10.1029/2002JB001859.
  • Yoshida, M., Dynamic role of the rheological contrast between cratonic and oceanic lithospheres in the longevity of cratonic lithosphere: A three-dimensional numerical study. Tectonophysics, 2012, 532, 156–166.
  • Gung, Y., Panning, M. and Romanowicz, B., Global anisotropy and the thickness of continents. Nature, 2003, 422(6933), 707–711.
  • Rychert, C. A. and Shearer, P. M., A global view of the lithosphere– asthenosphere boundary. Science, 2009, 324(5926), 495–498.
  • Abt, D. L., Fischer, K. M., French, S. W., Ford, H. A., Yuan, H. and Romanowicz, B., North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. J. Geophys. Res. B, 2010, 115, B09301; doi:10.1029/2009JB006914..
  • Yuan, X., Kind, R., Li, X. and Wang, R., The S receiver functions: synthetics and data example. Geophys. J. Int., 2006, 165(2), 555–564.
  • Romanowicz, B., The thickness of tectonic plates. Science, 2009, 324(5926), 474–476.
  • Yuan, H. and Romanowicz, B., Lithospheric layering in the North American craton. Nature, 2010, 466(7310), 1063–1068.
  • Zhong, S., Yuen, D. A. and Moresi, L. N., Numerical methods for mantle convection. Treatise Geophys., 2007, 7, 227–252.
  • Wen, L. and Anderson, D. L., Layered mantle convection: a model for geoid and topography. Earth Planet. Sci. Lett., 1997, 146(3), 367–377.
  • Ghosh, A., Holt, W. and Wen, L., Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics. J. Geophys. Res. B, 2013, 118(1), 346–368.
  • Bird, P., Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults. J. Geophys. Res. B, 1998, 103(5), 10115–10129.
  • Bai, W., Vigny, C., Ricard, Y. and Froidevaux, C., On the origin of deviatoric stresses in the lithosphere. J. Geophys. Res. B, 1992, 97(8), 11729–11737.
  • Steinberger, B., Schmeling, H. and Marquart, G., Large-scale lithospheric stress field and topography induced by global mantle circulation. Earth Planet. Sci. Lett., 2001, 186(1), 75–91.
  • Ghosh, A., Holt, W., Wen, L., Haines, A. and Flesch, L., Joint modeling of lithosphere and mantle dynamics elucidating lithosphere– mantle coupling. Geophys. Res. Lett., 2008, 35, L16309; doi:10.1029/2008GL034365.
  • Ghosh, A. and Holt, W., Plate motions and stresses from global dynamic models. Science, 2012, 335(6070), 838–843.
  • Schulte, S. M. and Mooney, W. D., An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts. Geophys. J. Int., 2005, 161(3), 707–721.
  • Bollinger, L., Avouac, J. P., Cattin, R. and Pandey, M. R., Stress buildup in the Himalaya. J. Geophys. Res. B, 2004, 109(B11405); doi:10.1029/2003JB002911.
  • Scholz, C. H., The Mechanics of Earthquakes and Faulting, Cambridge University Press, 2002.
  • Johnston, A. C., Coppersmith, K. J., Kanter, L. R. and Cornell, C. A., The earthquakes of stable continental regions. Tech. Rep. TR-102261, Electric Power Research Institute (EPRI), Palo Alto, CA, 1994.
  • Craig, T. J. and Calais, E., Strain accumulation in the New Madrid and Wabash Valley seismic zones from 14 years of continuous GPS observation. J. Geophys. Res. B, 2014, 119(12), 9110–9129.
  • Boyd, O. S., Smalley, R. and Zeng, Y., Crustal deformation in the New Madrid seismic zone and the role of postseismic processes. J. Geophys. Res. B, 2015, 120(8), 5782–5803.
  • Nocquet, J.-M., Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics, 2012, 579, 220–242.
  • Saria, E., Calais, E., Altamimi, Z., Willis, P. and Farah, H., A new velocity field for Africa from combined GPS and DORIS space geodetic solutions: Contribution to the definition of the African reference frame (AFREF). J. Geophys. Res. B, 2013, 118(4), 1677–1697.
  • Tregoning, P., Burgette, R., McClusky, S., Lejeune, S., Watson, C. S. and McQueen, H., A decade of horizontal deformation from great earthquakes. J. Geophys. Res. B, 2013, 118(5), 2371–2381.
  • Calais, E., Camelbeeck, T., Stein, S., Liu, M. and Craig, T. J., A new paradigm for large earthquakes in stable continental plate interiors. Geophys. Res. Lett., 2016, 43(20), 10621–10637.
  • Rajendran, K., Rajendran, C., Thakkar, M. and Tuttle, M. P., The 2001 Kutch (Bhuj) earthquake: coseismic surface features and their significance. Curr. Sci., 2001, 80(11), 1397–1405.
  • Gupta, H. K., Rao, N. P., Rastogi, B. and Sarkar, D., The deadliest intraplate earthquake. Science, 2001, 291(5511), 2101–2102.
  • Gupta, H. K., The deadly Latur earthquake. Science, 1993, 262(5140), 1666–1667.
  • Liu, L. and Zoback, M. D., Lithospheric strength and intraplate seismicity in the New Madrid seismic zone. Tectonics, 1997, 16(4), 585–595.
  • McKenna, J., Stein, S. and Stein, C. A., Is the New Madrid seismic zone hotter and weaker than its surroundings? Geol. Soc. Am. Spec. Pap., 2007, 425, 167–175.
  • Holford, S., Hillis, R., Duddy, I., Green, P., Tassone, D. and Stoker, M., Paleothermal and seismic constraints on late Miocene– Pliocene uplift and deformation in the Torquay sub-basin, southern Australian margin. Aust. J. Earth Sci., 2011, 58(5), 543–562.
  • Talwani, P., Fault geometry and earthquakes in continental interiors. Tectonophysics, 1999, 305(1), 371–379.
  • Campbell, D. L., Investigation of the stress concentration mechanism for intraplate earthquakes. Geophys. Res. Lett., 1978, 5(6), 477–479.
  • Kenner, S. J. and Segall, P., A mechanical model for intraplate earthquakes: application to the New Madrid seismic zone. Science, 2000, 289(5488), 2329–2332.
  • Mooney, W. D., Ritsema, J. and Hwang, Y. K., Crustal seismicity and the earthquake catalog maximum moment magnitude (M cmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere. Earth Planet. Sci. Lett., 2012, 357, 78–83.
  • French, S. and Romanowicz, B., Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int., 2014, 199(3), 1303–1327.
  • Levandowski, W., Boyd, O. S. and Ramirez-Guzmán, L., Dense lower crust elevates long-term earthquake rates in the New Madrid seismic zone. Geophys. Res. Lett., 2016, 43(16), 8499-8510.
  • Wolin, E., Stein, S., Pazzaglia, F., Meltzer, A., Kafka, A. and Berti, C., Mineral, Virginia, earthquake illustrates seismicity of a passive aggressive margin. Geophys. Res. Lett., 2012, 39(2), L02305; doi:10.1029/2011GL050310.
  • Becker, T. W., Lowry, A. R., Faccenna, C., Schmandt, B., Borsa, A. and Yu, C., Western US intermountain seismicity caused by changes in upper mantle flow. Nature, 2015, 524(7566), 458–461.
  • Anderson, D. L., The thermal state of the upper mantle; no role for mantle plumes. Geophys. Res. Lett., 2000, 27(22), 3623–3626.
  • Anderson, D., The persistent mantle plume myth. Aust. J. Earth Sci., 2013, 60(6–7), 657–673.
  • Burke, K., Steinberger, B., Torsvik, T. H. and Smethurst, M. A., Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett., 2008, 265(1), 49–60.
  • Thorne, M. S., Garnero, E. J. and Grand, S. P., Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Plan. Inter., 2004, 146(1), 47–63.
  • Steinberger, B. and Torsvik, T. H., A geodynamic model of plumes from the margins of large low shear velocity provinces. Geochem., Geophys., Geosyst., 2012, 13(1), Q01W09; doi:10.1029/2011GC003808.
  • McNamara, A. K. and Zhong, S., Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 2005, 437(7062), 1136–1139.
  • Garnero, E. J., McNamara, A. K. and Shim, S.-H., Continentsized anomalous zones with low seismic velocity at the base of earth’s mantle. Nature Geosci., 2016, 481–489.
  • Dziewonski, A. M., Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. B, 1984, 89(7), 5929–5952.
  • Becker, T. W. and Boschi, L., A comparison of tomographic and geodynamic mantle models. Geochem., Geophys., Geosyst., 2002, 3, 1003; doi:10.1029/2001GC000168.
  • Simmons, N. A., Forte, A. M. and Grand, S. P., Joint seismic, geodynamic and mineral physical constraints on threedimensional mantle heterogeneity: implications for the relative importance of thermal versus compositional heterogeneity. Geophys. J. Int., 2009, 177(3), 1284–1304.
  • Garnero, E. J., Lay, T. and McNamara, A., Implications of lowermantle structural heterogeneity for the existence and nature of whole-mantle plumes. Geol. Soc. Am. Spec. Pap., 2007, 430, 79–101.
  • Nakagawa, T. and Tackley, P. J., Effects of low-viscosity postperovskite on thermo-chemical mantle convection in a 3-D spherical shell. Geophys. Res. Lett., 2011, 38, L04309; doi: 10.1029/2010GL046494.
  • Lay, T., Hernlund, J., Garnero, E. J. and Thorne, M. S., A postperovskite lens and D heat flux beneath the central Pacific. Science, 2006, 314(5803), 1272–1276.
  • Cobden, L., Thomas, C. and Trampert, J., Seismic detection of post-perovskite inside the earth. In The Earth’s Heterogeneous Mantle, Springer International Publishing, 2015, pp. 391–440.
  • Kuo, C. and Romanowicz, B., On the resolution of density anomalies in the earth’s mantle using spectral fitting of normalmode data. Geophys. J. Int., 2002, 150(1), 162–179.
  • Koelemeijer, P., Deuss, A., Ritsema, J. and van Heijst, H., Normal mode insights into the long wavelength velocity and density structure of the lowermost mantle. In AGU Fall Meeting Abs., 2014, vol. 1.
  • Nakagawa, T., Tackley, P. J., Deschamps, F. and Connolly, J. A., Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in earth’s mantle. Geochem., Geophys., Geosyst., 2009, 10, Q03004; doi:10.1029/2008GC002280.
  • Mulyukova, E., Steinberger, B., Dabrowski, M. and Sobolev, S. V., Survival of LLSVPs for billions of years in a vigorously convecting mantle: replenishment and destruction of chemical anomaly. J. Geophys. Res. B, 2015, 120(5), 3824–3847.
  • Tolstikhin, I., Kramers, J. and Hofmann, A., A chemical earth model with whole mantle convection: the importance of a core– mantle boundary layer (D?) and its early formation. Chem. Geol., 2006, 226(3), 79–99.
  • Labrosse, S., Hernlund, J. and Coltice, N., A crystallizing dense magma ocean at the base of the earth’s mantle. Nature, 2007, 450(7171), 866–869.
  • Lee, C. T. A., Luffi, P., Höink, T., Li, J., Dasgupta, R. and Hernlund, J., Upside-down differentiation and generation of a primordial lower mantle. Nature, 2010, 463(7283), 930–933.
  • Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. and Ashwal, L. D., Diamonds sampled by plumes from the core–mantle boundary. Nature, 2010, 466(7304), 352–355.
  • Garnero, E. J. and McNamara, A. K., Structure and dynamics of earth’s lower mantle. Science, 2008, 320(5876), 626–628.
  • Manglik, A. and Christensen, U., Effect of lithospheric ischolar_main on decompression melting in plume–lithosphere interaction models. Geophys. J. Int., 2006, 164(1), 259–270.
  • Ishii, M. and Tromp, J., Normal-mode and free-air gravity constraints on lateral variations in velocity and density of earth’s mantle. Science, 1999, 285(5431), 1231–1236.
  • Su, W. J. and Dziewonski, A. M., Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter., 1997, 100(1), 135–156.
  • Van der Hilst, R., Widiyantoro, S. and Engdahl, E., Evidence for deep mantle circulation from global tomography. Nature, 1997, 386, 578–584.
  • Cammarano, F., Goes, S., Vacher, P. and Giardini, D., Inferring upper-mantle temperatures from seismic velocities. Phys. Earth Planet. Inter., 2003, 138(3), 197–222.
  • Karato, S. I. and Karki, B. B., Origin of lateral variation of seismic wave velocities and density in the deep mantle. J. Geophys. Res. B, 2001, 106(10), 21771–21783.
  • Jordan, T., Continents as a chemical boundary layer. Philos. Trans. R. Soc. London, Ser. A, 1981, 301(1461), 359–373.
  • Robertson, G. and Woodhouse, J., Ratio of relative S to P velocity heterogeneity in the lower mantle. J. Geophys. Res. B, 1996, 101(9), 20041–20052.
  • Masters, G., Laske, G., Bolton, H. and Dziewonski, A., The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. Earth’s deep interior: mineral physics and tomography from the atomic to the global scale. Earth’s Deep Interior, 2000, 63–87.
  • Trampert, J., Deschamps, F., Resovsky, J. and Yuen, D., Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 2004, 306(5697), 853–856.
  • van der Hilst, R. D. and Kárason, H., Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: toward a hybrid convection model. Science, 1999, 283(5409), 1885–1888.
  • Ishii, M. and Tromp, J., Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys. Earth Planet. Inter., 2004, 146(1), 113–124.
  • Hager, B. H., Mantle viscosity: a comparison of models from postglacial rebound and from the geoid, plate driving forces, and advected heat flux. In Glacial Isostasy, Sea-level and Mantle Rheology, Springer, 1991, pp. 493–513.
  • Mitrovica, J. and Forte, A., New insights obtained from joint inversions for the radial profile of mantle viscosity. Phys. Chem. Earth, 1998, 23(9), 857–863.
  • Mitrovica, J. and Forte, A., A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett., 2004, 225(1), 177–189.
  • Pavlis, N. K., Holmes, S. A., Kenyon, S. C. and Factor, J. K., An earth gravitational model to degree 2160: EGM2008. EGU General Assembly, 2008, pp. 13–18.
  • Laske, G., Masters, G., Ma, Z. and Pasyanos, M., CRUST1.0: an updated global model of Earth’s crust. Geophys. Res. Abs., 2012, 14.
  • Amante, C. and Eakins, B. W., ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. National Geophysical Data Center, NESDIS, NOAA, US Dept Commerce, Boulder, CO, USA, 2009.
  • Conrad, C. P. and Lithgow-Bertelloni, C., Influence of continental ischolar_mains and asthenosphere on plate-mantle coupling. Geophys. Res. Lett., 2006, 33, L05312; doi:10.1029/2005GL025621.

Abstract Views: 219

PDF Views: 121




  • Understanding Deep Earth Dynamics:A Numerical Modelling Approach

Abstract Views: 219  |  PDF Views: 121

Authors

Srishti Singh
Centre for Earth Sciences, Indian Institute of Science, Bengaluru 560 012, India
Shubham Agrawal
Centre for Earth Sciences, Indian Institute of Science, Bengaluru 560 012, India
Attreyee Ghosh
Centre for Earth Sciences, Indian Institute of Science, Bengaluru 560 012, India

Abstract


Enhancement in computing power and better data availability have paved the way for deciphering the earth's deeper dynamics and have provided viable explanations for various surface phenomena. Tools such as seismic tomography, numerical modelling and geophysical observations such as stresses, gravity anomalies, heat flow, etc. have helped us in addressing the mechanisms of plate driving forces, anomalous geoid variations, cratonic stability, topographic support, intraplate earthquakes and similar outstanding issues in geodynamics. Due to lack of direct observations from deep earth, numerical modelling has aided considerably in learning about subsurface processes. With better algorithms being developed everyday, it is the right time to tap their potential to push the frontiers of human knowledge.

Keywords


Geodynamics, Lithosphere Dynamics, Mantle Convection, Numerical Modelling, Seismic Tomography.

References





DOI: https://doi.org/10.18520/cs%2Fv112%2Fi07%2F1463-1473