Open Access Open Access  Restricted Access Subscription Access

Manipulating Cold Atoms with Optical Fibres


Affiliations
1 Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhanager, Kolkata 700 064, India
 

In this article we present some demonstrations of atom-photon interactions at low photon level using optical fibres. We report an experiment on the interaction between cold atoms produced in a magneto optical trap and tapered optical nanofibre and discuss some applications of the same. We then expound our experimental plan to study nonlinear processes such as electromagnetically induced transparency in laser cooled atomic medium confined within a hollow core photonic crystal fibre. Possible applications of this system are also discussed.

Keywords

Anti-Helmholtz Coils, Atom–Photon Interactions, Cold Atoms, Magneto Optical Trap, Optical Fibres, Tapered Optical Nanofibre.
User
Notifications
Font Size

  • Chanelière, T., Matsukevich, D. N., Jenkins, S. D., Lan, S. Y., Kennedy, T. A. B. and Kuzmich, A., Storage and retrieval of single photons transmitted between remote quantum memories. Nature, 2005, 438, 833–836.
  • Eisaman, M. D., Andrè, A., Massou, F., Fleischhauer, M., Zibrov, A. S. and Lukin, M. D., Electromagnetically induced transparency with tunable single-photon pulses. Nature, 2005, 438, 837–841.
  • Choi, K. S., Deng, H., Laurat, J. and Kimble, H. J., Mapping photonic entanglement into and out of a quantum memory. Nature, 2008, 452, 67–71.
  • Clausen, C., Usmani, I., Bussières, F., Sangouard, N., Afzelius, M., de Riedmatten, H. and Gisin, N., Quantum storage of photonic entanglement in a crystal. Nature, 2011, 469, 508–511.
  • Saglamyurek, E. et al., Broadband waveguide quantum memory for entangled photons. Nature, 2011, 469, 512–515.
  • Hosseini, M., Sparkes, B. M., Campbell, G., Lam, P. K. and Buchler, B. C., High efficiency coherent optical memory with warm rubidium vapour. Nat. Commun., 2011, 2, 1–5.
  • Hosseini, M., Campbell, G., Sparkes, B. M., Lam, P. K. and Buchler, B. C., Unconditional room-temperature quantum memory. Nature Phys., 2011, 7, 794–798.
  • Reim, K. F. et al., Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout. Phys. Rev. Lett., 2012, 108, 263602-1–263602-5.
  • Bouwmeester, D., Ekert, A. K. and Zeilinger, A. (eds), The Physics of Quantum Information, Springer, New York, 2000, pp, 133–189.
  • Gisin, N., Ribordy, G., Tittel, W. and Zbinden, H., Quantum cryptography. Rev. Mod. Phys., 2002, 74, 145–195.
  • Kuzmich, A., Bowen, W. P., Boozer, A. D., Boca, A., Chou, C. W., Duan, L. M. and Kimble, H. J., Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature, 2003, 423, 731–734.
  • Sherson, J. F., Krauter, H., Olsson, R.K., Julsgaard, B., Hammerer, K., Cirac, I. and Polzik, E. S., Quantum teleportation between light and matter. Nature, 2006, 443, 557.
  • Knill, E., Laflamme, R. and Milburn, G. J., A scheme for efficient quantum computation with linear optics. Nature, 2001, 409, 46–52.
  • Aoki, T. et al., Observation of strong coupling between one atom and a monolithic microresonator. Nature, 2006, 443, 671–674.
  • Dayan, B., Parkins, A. S., Aoki, T., Ostby, E., Vahala, K. and Kimble, H., A photon turnstile dynamically regulated by one atom. Science, 2008, 319, 1062–1065.
  • Yang, W., Conkey, D. B., Wu, B., Yin, D., Hawkins, A. R. and Schmidt, H., Atomic spectroscopy on a chip. Nat. Photon., 2007, 1, 331–335.
  • Robinson, J. T., Chen, L. and Lipson, M., On-chip gas detection in silicon optical microcavities. Opt. Express, 2008, 16, 4296–4301.
  • Spillane, S. M., Pati, G. S., Salit, K., Hall, M., Kumar, P., Beausoleil, R. G. and Shahriar, M. S., Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys. Rev. Lett., 2008, 100, 233602-1–233602-4.
  • Nayak, K. P., LeKien, F., Morinaga, M. and Hakuta, K., Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber. Phys. Rev. A, 2009, 79, 021801-1–021801-4.
  • Vetsch, E., Reitz, D., Sagué, G., Schmidt, R., Dawkins, S. T. and Rauschenbeutel, A., Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber.
  • Phys. Rev. Lett., 2010, 104, 203603-1–203603-4.
  • Cregan, R., Mangan, B., Knight, J., Birks, T., Russell, P., Roberts, P. and Allan, D., Single-mode photonic band gap guidance of light in air. Science, 1999, 285, 1537–1539.
  • Kato, S. and Aoki, T., Strong coupling between a trapped single atom and an all-fiber cavity. Phys. Rev. Lett., 2015, 115, 093603-1– 093603-5.
  • Bures, J. and Ghosh, R., Power density of the evanescent field in the vicinity of a tapered fiber. J. Opt. Soc. Am. A, 1999, 16, 1992–1996.
  • Le Kien, F., Liang, J., Hakuta, K. and Balykin, V., Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber. Opt. Commun., 2004, 242, 445–455.
  • Tong, L., Lou, J. and Mazur, E., Single-mode guiding properties of sub-wavelength-diameter silica and silicon wire waveguides. Opt. Express, 2004, 12, 1025–1035.
  • Le Kien, F., Balykin, V. and Hakuta, K., Light-induced force and torque on an atom outside a nanofiber. Phys. Rev. A, 2006, 74, 033412-1–033412-8.
  • Le Kien, F., Gupta, S., Nayak, K. and Hakuta, K., Nanofibermediated radiative transfer between two distant atoms. Phys. Rev. A, 2005, 72, 063815-1–0633815-11.
  • Masalov, A. and Minogin, V., Pumping of higher-order modes of an optical nanofiber by laser excited atoms. Las. Phys. Lett., 2013, 10, 075203-1–075203-6.
  • Migdall, A., Prodan, J., Phillips, W., Bergeman, T. and Metcalf, H., First observation of magnetically trapped neutral atoms. Phys. Rev. Lett., 1985, 54, 2596–2599.
  • Chu, S., Bjorkholm, J., Ashkin, A. and Cable, A., Experimental observation of optically trapped atoms. Phys. Rev. Lett., 1986, 57, 314–317.
  • Morrissey, M. J., Deasy, K., Wu, Y., Chakrabarti, S. and Nic Chormaic, S., Tapered optical fibers as tools for probing magnetooptical trap characteristics. Rev. Sci. Inst., 2009, 80, 053102-1– 053102-5.
  • Russell, L., Gleeson, D. A., Minogin, V. G. and Nic Chormaic, S., Spectral distribution of atomic fluorescence coupled into an optical nanofibre. J. Phys. B: At. Mol. Opt. Phys., 2009, 42, 1850061–185006-9.
  • Russell, L., Deasy, K., Daly, M. J., Morrissey, M. J. and Nic Chormaic, S., Sub-doppler temperature measurements of lasercooled atoms using optical nanofibres. Meas. Sci. Technol., 2012, 23, 015201-1–015201-8.
  • Renn, M. J., Montgomery, D., Vdovin, O., Anderson, D. Z., Wieman, C. E. and Cornell, E. A., Laser-guided atoms in hollow-core optical fibers. Phys. Rev. Lett., 1995, 75, 3253–3256.
  • Ito, H., Nakata, T., Sakaki, K., Ohtsu, M., Lee, K. I. and Jhe, W., Laser spectroscopy of atoms guided by evanescent waves in micronsized hollow optical fibers. Phys. Rev. Lett., 1996, 76, 4500–4503.
  • Dall, R. G., Hoogerland, M. D., Baldwin, K. G. H. and Buckman, S. J., Guiding of metastable helium atoms through hollow optical fibres. J. Opt. B: Quantum Semiclassical Opt., 1999, 1, 396–401.
  • Müller, D., Cornell, E. A., Anderson, D. Z. and Abraham, E. R. I., Guiding laser-cooled atoms in hollow-core fibers. Phys. Rev. A, 2000, 61, 033411-1–033411-6.
  • Roberts, P. J. et al., Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express, 2005, 13, 236–244.
  • Will, S., Atom optical experiments with ultracold sodium atoms, Diploma thesis, Johannes Gutenberg-Universität Mainz, Germany, 2006.
  • Takekoshi, T. and Knize, R. J., Optical guiding of atoms through a hollow-core photonic band-gap fiber. Phys. Rev. Lett., 2007, 98, 210404-1–210404-4.
  • Bajcsy, M. et al., Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett., 2009, 102, 203902-1– 203902-4.
  • Slepkov, A. D., Bhagwat, A. R., Venkataraman, V., Londero, P. and Gaeta, A. L., Spectroscopy of Rb atoms in hollow-core fibers. Phys. Rev. A, 2010, 81, 053825-1–053825-7.
  • Hald, J., Petersen, J. C. and Henningsen, J., Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers. Phys. Rev. Lett., 2007, 98, 213902-1–213902-4.
  • Gayraud, N., Kornaszewski, Ł. W., Stone, J. M., Knight, J. C., Reid, D. T., Hand, D. P. and MacPherson, W. N., Mid-infrared gas sensing using a photonic bandgap fiber. Appl. Opt., 2008, 47, 1269–1277.
  • Griffiths, D. J., Introduction to Electrodynamics (ed. Alison Reeves), Prentice-Hall India Learning Private Limited Publishers, New Jersey 07458, 1999, pp. 215–220.

Abstract Views: 281

PDF Views: 72




  • Manipulating Cold Atoms with Optical Fibres

Abstract Views: 281  |  PDF Views: 72

Authors

Shrabana Chakrabarti
Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhanager, Kolkata 700 064, India

Abstract


In this article we present some demonstrations of atom-photon interactions at low photon level using optical fibres. We report an experiment on the interaction between cold atoms produced in a magneto optical trap and tapered optical nanofibre and discuss some applications of the same. We then expound our experimental plan to study nonlinear processes such as electromagnetically induced transparency in laser cooled atomic medium confined within a hollow core photonic crystal fibre. Possible applications of this system are also discussed.

Keywords


Anti-Helmholtz Coils, Atom–Photon Interactions, Cold Atoms, Magneto Optical Trap, Optical Fibres, Tapered Optical Nanofibre.

References





DOI: https://doi.org/10.18520/cs%2Fv112%2Fi07%2F1369-1374