Open Access Open Access  Restricted Access Subscription Access

Properties of Magnetic Shape Memory Alloys in Martensitic Phase


Affiliations
1 Department of Materials Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
 

The Heusler alloys that exhibit reversible martensitic transition show multifunctional properties including magnetic shape memory effect. The properties of two kinds of magnetic shape memory alloys are studied, where magnetic field-induced strain is driven by two different mechanisms. The properties differ in martensitic phase with composition and thus they are studied in martensitic phase. The crystal structure (Xray diffraction), magnetic behaviour (SQUID), transport analysis (four-probe method), magneto-transport trend (up to 8 T), magnetocaloric effect (around room-temperature), electronic structure (X-ray photoelectron spectroscopy and ab initio calculation), surface characterization (ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy) are discussed for the matensitic phase. Analysis of the properties reveals alloys with possible applicability at room temperature with low magnetic field.

Keywords

Magnetoresistance, Martensitic Transition, Shape Memory Alloys.
User
Notifications
Font Size

  • Humbeeck, J. V., Non-medical applications of shape memory alloys. Mater. Sci. Eng. A, 1999, 273–275, 134–148.
  • Sun, L. et al., Stimulus-responsive shape memory materials: a review. Mater. Des., 2012, 33, 577–640.
  • Petrini, L. and Migliavacca, F., Biomedical applications of shape memory alloys. J. Metall., 2011, 2011, 1–15.
  • Song, C., History and current situation of shape memory alloys devices for minimally invasive surgery. Open Med. Dev. J., 2010, 2, 24–31.
  • Morgan, N. B., Medical shape memory alloy applications – the market and its products. Mater. Sci. Eng. A, 2004, 378, 16–23.
  • Machado, L. G. and Savi, M. A., Medical applications of shape memory alloys. Braz. J. Med. Biol. Res., 2003, 36, 683–691.
  • Mantovani, D., Shape memory alloys: properties and biomedical applications. JOM, 2000, 52, 36–44.
  • Duerig, T., Pelton, A. and Stckel, D., An overview of nitinol medical applications. Mater. Sci. Eng. A, 1999, 273−275, 149–160.
  • Bil, C., Massey, K. and Abdullah, E. J., Wing morphing control with shape memory alloy actuators. J. Intell. Mater. Syst. Struct., 2013, 24, 879–898.
  • Hartl, D. J. and Lagoudas, D. C., Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. Part G, 2007, 221, 535–552.
  • McDonald, S. L., Shape memory alloy applications in space systems. Mater. Des., 1991, 12, 29–32.
  • Kheirikhah, M., Rabiee, S. and Edalat, M., A review of shape memory alloy actuators in robotics. In RoboCup 2010: Robot Soccer World Cup XIV (eds Ruiz-del-Solar, J., Chown, E. and Plger, P.), Springer, Berlin, 2011, pp. 206–217.
  • Sreekumar, M., Nagarajan, T., Singaperumal, M., Zoppi, M. and Molfino, R., Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind. Robot: Int. J., 2007, 34, 285–294.
  • Furuya, Y. and Shimada, H., Shape memory actuators for robotic applications. Mater. Des., 1991, 12, 21–28.
  • Wu, M. H. and Schetky, L. M., Industrial applications for shape memory alloys. In International Conference on Shape Memory and Superelastic Technologies, California, USA, 2000, pp. 171–182.
  • Zider, R. B. and Krumme, J. F., Eyeglass frame including shapememory elements. US Patents 4772112, CVI/Beta Ventures, Inc., California, USA, 1988.
  • Hautcoeur, A. and Eberthardt, A., Eyeglass frame with very high recoverable deformability. US Patents 5640217, Fergaflex, Inc., Montreal, Canada, 1997.
  • Furuya, Y., Design and material evaluation of shape memory composites. Intell. Mater. Syst. Struct., 1996, 7, 321–330.
  • Leo, D. J., Weddle, C., Naganathan, G. and Buckley, S. J., Vehicular applications of smart material systems. In Proceedings of the SPIE 3326, Smart Structures and Materials 1998: Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, 1998, pp. 106–116.
  • Stoeckel, D., Shape memory actuators for automotive applications. Mater. Des., 1990, 11, 302–307.
  • Butera, F., Coda, A. and Vergani, G., Shape memory actuators for automotive applications. In Nanotec IT Newsletter, AIRI/Nanotec IT, Roma, 2007, p. 1216.
  • Kohl, M., Shape Memory Microactuators (Microtechnology and MEMS), Springer-Verlag Berlin, 2010, 1st edn.
  • Kahny, H., Huffz, M. A. and Heuer, A. H., The TiNi shapememory alloy and its applications for MEMS. Micromech. Microeng., 1998, 8, 213–221.
  • Fujita, H. and Toshiyoshi, H., Micro actuators and their applications. Microelectron. J., 1998, 29, 637–640.
  • Langenhove, L. V. and Hertleer, C., Smart clothing: a new life. Int. J. Clothing Sci. Technol., 2004, 16, 63–72.
  • Hamzic, A., Asomoza, R. and Campbell, I. A., The transport properties of Heusler alloys: ‘ideal’ local moment ferromagnets. J. Phys. F, 1981, 11, 1441.
  • Kbler, J., Williams A. R. and Sommers, C. B., Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B, 1983, 28, 1745.
  • Karaca, H. E., Karaman, I., Basaran, B., Ren, Y., Chumlyakov, Y. I. and Maier, H. J., Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys: a new actuation mechanism with large work output. Adv. Funct. Mater., 2009, 19, 983.
  • Karaca, H. E., Karaman, I., Basaran, B., Chumlyakov, Y. I. and Maier, H. J., Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater., 2006, 54, 233.
  • Biswas, C., Rawat, R. and Barman, S. R., Large negative magnetoresistance in a ferromagnetic shape memory alloy: Ni2+xMn1–xGa. Appl. Phys. Lett., 2005, 86, 202508, 2005.
  • Singh Sandeep and Biswas, C., Magnetoresistance origin in martensitic and austenitic phases of Ni2Mn1+xSn1–x. Appl. Phys. Lett., 2011, 98, 212101.
  • Krenke, T., Acet, M., Wassermann, E. F., Moya, X., Maosa, L. and Planes, A., Ferromagnetism in the austenitic and martensitic states of NiMnIn alloys. Phys. Rev. B, 2006, 73, 174413.
  • Singh, Sandeep, Illya, G. and Biswas, C., Field-cooled and zeroeld cooled magnetoresistance behaviour of Ni2Mn1+xIn1–x alloys. J. Alloys Compd., 2014, 615, 994–997.
  • Singh, Sandeep, Pal, Soumyadipta and Biswas, C., Disorder induced resistivity anomaly in Ni2Mn1+xSn1–x. J. Alloys Compd., 2014, 616, 110–115.
  • Singh, Sandeep and Biswas, C., Resistivity behaviour of Ni2Mn1+xIn1–x magnetic shape memory alloys at low temperature. Intermetallics, 2016, submitted.
  • Chakrabarti, Aparna, Biswas, C., Banik, S., Dhaka, R. S., Shukla, A. K. and Barman, S. R., Influence of Ni doping on the electronic structure of Ni2MnGa. Phys. Rev. B, 2005, 72, 073103.
  • Singh, Sandeep, Ganesh, A., Biswas, D., Kalobaran, M. and Biswas, C., Electronic structure modification of Ni2Mn1.4Sn0.6 upon martensitic phase transition. AIP Conf. Proc., 2011, 1349, 849–850.
  • Maniraj, M., DSouza, S. W., Singh, Sandeep, Biswas, C., Majumdar, S. and Barman, S. R., Inverse photoemission and photoemission spectroscopic studies on sputter-annealed Ni–Mn–Sn and Ni–Mn–In surfaces. J. Electron Spectrosc. Relat. Phenom., 2014, 197, 106–111.
  • Singh, Sandeep, Illya, G. and Biswas, C., The influence of quench atomic disorder on the magnetocaloric properties of Ni–Co–Mn– In alloys. J. Alloys Compd., 2014, 601, 108–111.
  • Pal, Soumyadipta, Sagar, S., Pandey, S. K., Chhayabrita, M. and Mahadevan, P., Driving force for martensitic transformation in Ni2Mn1+xSn1–x. Phys. Rev. B, 2016, 94, 115143.
  • Pal, Soumyadipta, Mahadevan, P. and Biswas, C., Role of excess Mn for martensitic transformation in Ni2Mn1+xSn1–x: ab initio approach. AIP Conf. Proc., 2014, 1591, 58.
  • Sokolovskiy, V. V., Buchelnikov, V. D., Zagrebin, M. A., Entel, P., Sahoo, S. and Ogura, M., First-principles investigation of chemical and structural disorder in magnetic Ni2Mn1+xSn1–x Heusler alloys. Phys. Rev. B, 2012, 86, 134418.
  • Chatterjee, S., Giri, S., De, S. K. and Majumdar, S., Reentrantspinglass state in Ni2Mn1.36Sn0.64 shape-memory alloy. Phys. Rev. B, 2009, 79, 092410.
  • Umetsu, R. Y., Fujita, A., Ito, W., Kanomata, T. and Kainuma, R., Determination of the magnetic ground state in the martensite phase of Ni–Mn–Z (Z = In, Sn and Sb) off-stoichiometric Heusler alloys by nonlinear AC susceptibility. J. Phys.: Condens. Matter, 2011, 23, 326001.
  • Hurd, C. M., Shiozaki, I. and McAlister, S. P., Electrical and magnetic properties of Pd2MnIn, Pd2MnSn, Cu2MnAl and Cu2NiSn Heusler alloys, Phys. Rev. B, 1982, 26, 701.
  • McAlister, S. P., Shiozaki, I., Hurd, C. M. and Stager, C. V., Galvanomagnetic effects in the Ni2MnSn Heusler alloy. J. Phys. F, 1981, 11, 2129.
  • Zhou, Y., Jin, X., Xu, H., Kudryavtsev, Y. V., Lee, Y. P. and Rhee, J. Y., Influence of structural transition on transport and optical properties of Ni2MnGa alloy. J. Appl. Phys., 2002, 91, 9894.
  • Barandiarn, J. M., Chernenko, V. A., Lzpita, P., Gutirrez, J. and Feuchtwanger, J., Effect of martensitic transformation and magnetic field on transport properties of Ni–Mn–Ga and Ni–Fe–Ga Heusler alloys. Phys. Rev. B, 2009, 80, 104404.
  • Chatterjee, S., Giri, S., Majumdar, S. and De, S. K., Thermomagnetic irreversibility in Ni2Mn1.36Sn0.64 shape-memory alloy. Phys. Rev. B, 2008, 77, 224440.
  • Marcos, J., Maosa, Ll, Planes, A., Casanova, F., Batlle, X. and Labarta, A., Multiscale origin of the magnetocaloric effect in Ni–Mn–Ga shape-memory alloys. Phys. Rev. B, 2003, 68, 094401.
  • Krenke, T., Duman, E., Acet, M., Wassermann, E. F., Moya, X., Maosa, L. and Planes, A., Inverse magnetocaloric effect in ferromagnetic NiMnSn alloys. Nature Mater., 2005, 4, 450–454.
  • Sokolovskiy, V. V., Zagrebin, M. A. and Buchelnikov, V. D., Shape Memory Alloys: Properties, Technologies, Opportunities (ed. Natalia Resnina and Vasili Rubanik), 2015, p. 38.
  • Biswas, C., Electronic structure studies of metals and intermetallics, Ph D thesis, 2005.
  • Biswas, C., Banik, S., Shukla, A. K., Dhaka, R. S., Ganesan, V. and Barman, S. R., Surface composition and electronic structure of Ni2+xMn1–xGa studied by X-ray photoelectron spectroscopy. Surf. Sci., 2006, 600, 3749–3752.
  • Singh, Sandeep, Ganesh, A., Biswas, D., Kalobaran, M. and Chhayabrita, M., Electronic structure of Ni2Mn1+xSn1–x as a function of composition. AIP Conf. Proc., 2017.
  • Pal, Soumyadipta, Mahadevan, P. and Biswas, C., Site occupancy trend of Co in Ni2MnIn: ab initio approach. AIP Conf. Proc., 2015, 1665, 090020.
  • Biswas, C. and Barman, S. R., X-ray photoelectron spectroscopy study of sputter-annealed Ni2.1Mn0.9Ga surface. Appl. Surf. Sci., 2006, 252, 3380–3385.

Abstract Views: 300

PDF Views: 116




  • Properties of Magnetic Shape Memory Alloys in Martensitic Phase

Abstract Views: 300  |  PDF Views: 116

Authors

Chhayabrita Maji
Department of Materials Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India

Abstract


The Heusler alloys that exhibit reversible martensitic transition show multifunctional properties including magnetic shape memory effect. The properties of two kinds of magnetic shape memory alloys are studied, where magnetic field-induced strain is driven by two different mechanisms. The properties differ in martensitic phase with composition and thus they are studied in martensitic phase. The crystal structure (Xray diffraction), magnetic behaviour (SQUID), transport analysis (four-probe method), magneto-transport trend (up to 8 T), magnetocaloric effect (around room-temperature), electronic structure (X-ray photoelectron spectroscopy and ab initio calculation), surface characterization (ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy) are discussed for the matensitic phase. Analysis of the properties reveals alloys with possible applicability at room temperature with low magnetic field.

Keywords


Magnetoresistance, Martensitic Transition, Shape Memory Alloys.

References





DOI: https://doi.org/10.18520/cs%2Fv112%2Fi07%2F1390-1401