Open Access Open Access  Restricted Access Subscription Access

Peek into the World of Materials Using Thermopower and Xafs as Investigative Probes


Affiliations
1 Indian Institute of Technology Indore, Simrol, Indore 453 552, India
 

Over the last few decades, there has been growing interest for developing technologies aimed at providing cleaner and more sustainable energy sources. Great efforts are directed towards synthesis of newer functional materials and tailoring the existing ones with an aim to optimize their usability. As materials are being developed with various complexities in their physical properties and forms like single crystals, thin-films, nanostructure and composites, measurement of their basic physical properties is also getting equally challenging. This review deals with a brief summary of our efforts in developing the basic understanding of some functional materials, using experimental tools that are best known to us, viz. measurement of Seebeck coefficient and X-ray absorption fine structure spectroscopy (XAFS). In particular, we discuss the results of our investigation of magnetic shape memory alloy Ni2MnGa and multiferroic CdCr2Se4.

Keywords

Magnetic Shape Memory Alloys, XAFS, Thermopower Measurements, Spin–Phonon Coupling, Magnetic Semiconductors.
User
Notifications
Font Size

  • Goldsmid, J. H., Introduction to Thermoelectricity, Springer Series in Material Science, 2010, vol. 121.
  • Altenkirch, E., Elektrothermische Kalteerzeugung und reversible elektrische Heizung. Phys. Z., 1911, 12, 920.
  • Koningsberger, D. C. and Prins, R. (eds), X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES, Wiley-Interscience, 1988.
  • Rehr, J. J, Stern, E. A., Martin, R. L. and Davidson, E. R., Extended X-ray-absorption fine-structure amplitudes – wave function relaxation and chemical effects. Phys. Rev. B, 1978, 17, 560.
  • Ashley, C. A. and Doniach, S., Theory of extended X-ray absorption edge fine structure (EXAFS) in crystalline solids. Phys. Rev. B, 1975, 11(4), 1279.
  • Priolkar, K. R., Bhobe, P. A., Dias, S. S. and Paudel, R., Resistivity and thermopower of Ni2.19Mn0.81Ga alloy. Phys. Rev. B, 2004, 70, 132408.
  • Bhobe, P. A., Monteiro, J. H., Cascalheira, J. C., Mendiratta, S. K., Priolkar, K. R. and Sarode, P. R., Composition and temperature dependence of the thermoelectric power of Ni2+xMn1–xGa alloys. J. Phys.: Condens. Matter., 2006, 18, 10843.
  • Bhobe, P. A., Priolkar, K. R. and Sarode, P. R., Local atomic structure of martensitic Ni2+xMn1–xGa: an EXAFS study. Phys. Rev. B, 2006, 74, 224425.
  • Ye, M. et al., Role of electronic structure in martensitic phase transition of Ni2Mn1+xSn1–x studied by hard-X-ray photoelectron spectroscopy and ab initio calculation. Phys. Rev. Lett., 2010, 104, 176401.
  • D’Souza, S. W. et al., Coexistence of charge–density wave and ferromagnetism in Ni2MnGa. Phys. Rev. B, 2012, 85, 085123.
  • Bhobe, P. A., Priolkar, K. R. and Sarode, P. R., Factors influencing martensitic transformation in Ni50Mn35Sn15: an EXAFS study. J. Phys.: Condens. Matter., 2008, 20, 015219.
  • Bhobe, P. A., Priolkar, K. R. and Sarode, P. R., Local atomic arrangement and martensitic transformation in Ni50Mn35In15: an EXAFS study. J. Phys. D: Appl. Phys., 2008, 41, 0450004.
  • Priolkar, K. R., Bhobe, P. A. and Sarode, P. R., Hybridization effects in Ni–Mn based shape memory alloys: XAFS study. Adv. Mater. Res., 2008, 52, 155.
  • Webster, P. J., Ziebeck, K. R. A., Town, S. L. and Peak, M. S., Magnetic order and phase transformation in Ni2MnGa. Philos. Mag., 1984, 49, 295.
  • Brown, P. J., Crangle, J., Kanomata, T., Matsumoto, M., Neumann, K.-U., Ouladdiaf, B. and Ziebeck, K. R., The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J. Phys.: Condens. Matter., 2002, 14, 10159.
  • Vasil’ev, A. N. et al., Structural and magnetic phase transitions in shape-memory alloys Ni2+xMn1–xGa. Phys. Rev. B, 1999, 59, 1113.
  • Kübler, J., Williams, A. R. and Sommers, C. B., Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B, 1983, 28, 1745.
  • Martynov, V. V. and Kokorin, V. V., The crystal structure of thermally – and stress-induced martensites in Ni2MnGa single crystals. J. Phys. III France, 1992, 2, 739.
  • Zayak, A. T., Entel, P., Rabe, K. M., Adeagbo, W. A. and Acet, M., Anomalous vibrational effects in nonmagnetic and magnetic Heusler alloys. Phys. Rev. B, 2005, 72, 054113.
  • Khovailo, V. V., Takagi, T., Bozhko, A. D., Matsumoto, M., Tani, J and Shavrov, V. G., Premartensitic transition in Ni2+xMn1–xGa Heusler alloys. J. Phys.: Condens. Matter., 2001, 13, 9655.
  • Hemberger, J., Lunkenheimer, P., Fichtl, R., Krug von Nidda, H. A., Tsurkan, V. and Loidl, A., Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2Se4. Nature, 2005, 434, 364.
  • Lunkenheimer, P., Fichtl, R., Hemberger, J., Tsurkan, V. and Loidl, A., Relaxation dynamics and colossal magnetocapacitive effect in CdCr2Se4, Phys. Rev. B, 2005,72, 060103(R).
  • Weber, S., Lunkenheimer, P., Fichtl, R., Hemberger, J., Tsurkan, V. and Loidl, A., Colossal magnetocapacitance and colossal magnetoresistance in HgCr2S4. Phys. Rev. Lett., 2006, 96, 157202.
  • Hemberger, J., Lunkenheimer, P., Fichtl, R., Weber, S., Tsurkan, V. and Loidl, A., Multiferroic behaviour in CrCr2X4 (X = S, Se), Physica B, 2006, 378, 363.
  • Sun, C. P. et al., Colossal electroresistance and colossal magnetoresistance in spinel multiferroic CdCr2Se4. Appl. Phys. Lett., 2010, 96, 122109.
  • Catalan Gustau, and Scott James F., Magnetoelectrics: is CdCr2Se4a multiferroicrelaxor? Nature, 2007, 448, E4–E5.
  • Hemberger, J., Lunkenheimer, P., Fichtl, R., Krug von Nidda, H. A., Tsurkan, V. and Loidl, A., Magnetoelectrics: is CdCr2Se4a multiferroicrelaxor? (reply). Nature, 2007, 448, E5–E6.
  • Catalan, G., Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett., 2006, 88, 102902.
  • Scott, J. F., Electrical characterization of magnetoelectrical materials. J. Mater. Res., 2007, 22, 2053.
  • Pintilie, L. and Alexe, M., Ferroelectric-like hysteresis loop in nonferroelectric systems. Appl. Phys. Lett., 2005, 87, 112903.
  • Oliveira, G. N. P. et al., Dynamic off-centering of Cr3+ ions and short-range magneto-electric clusters in CdCr2Se4. Phys. Rev. B, 2012, 86, 224418.
  • Behera, P., Suchismita and Bhobe, P. A., Crystal structure and magnetic property correlation in Cd1–xMxCr2Se4 (M = Sb, Sn, In), J. Magn. Magn. Mater., 2015, 394, 200.
  • Behera, P., Suchismita, Bhobe, P. A., Sathe, V. G. and Nigam, A. K., Local lattice distortions and magnetic properties of CdCr2Se4xSnx. J. Appl. Phys., 2016, 120, 045107.
  • Behera, P., Suchismita, Bhobe, P. A., Sathe, V. G. and Nigam, A. K., Effect of disorder on spin–phonon coupling of Cd1xSnxCr2Se4 for (0 < x < 0.1), under review, 2017.

Abstract Views: 235

PDF Views: 120




  • Peek into the World of Materials Using Thermopower and Xafs as Investigative Probes

Abstract Views: 235  |  PDF Views: 120

Authors

Preeti A. Bhobe
Indian Institute of Technology Indore, Simrol, Indore 453 552, India

Abstract


Over the last few decades, there has been growing interest for developing technologies aimed at providing cleaner and more sustainable energy sources. Great efforts are directed towards synthesis of newer functional materials and tailoring the existing ones with an aim to optimize their usability. As materials are being developed with various complexities in their physical properties and forms like single crystals, thin-films, nanostructure and composites, measurement of their basic physical properties is also getting equally challenging. This review deals with a brief summary of our efforts in developing the basic understanding of some functional materials, using experimental tools that are best known to us, viz. measurement of Seebeck coefficient and X-ray absorption fine structure spectroscopy (XAFS). In particular, we discuss the results of our investigation of magnetic shape memory alloy Ni2MnGa and multiferroic CdCr2Se4.

Keywords


Magnetic Shape Memory Alloys, XAFS, Thermopower Measurements, Spin–Phonon Coupling, Magnetic Semiconductors.

References





DOI: https://doi.org/10.18520/cs%2Fv112%2Fi07%2F1402-1412