Open Access Open Access  Restricted Access Subscription Access

Development of Nanoporous Aerogel-Based Thermal Insulation Products:'Make in India' Initiative


Affiliations
1 Centre for Nanomaterials, Advanced Research Centre for Powder Metallurgy and New Materials, Balapur PO, Hyderabad 500 005, India
 

The technology of manufacturing a silica aerogel thermal insulation product has been developed with the objective of indigenization under the 'Make in India' initiative. This world class product is now ready for commercial production. It possesses all the features and properties required for any ideal industrial thermal insulation material such as low thermal conductivity, light weight, good compressive strength, moisture, fire, corrosion and chemical resistance, antifungal, low shrinkage, sound-proof, non-toxic and ecofriendly. The increasingly gaining attention towards this highly efficient thermal insulation material is a hope to significantly contribute in achieving targets of energy conservation and saving.


Keywords

Aerogel, Energy Conservation, Industrial Applications, Silica, Thermal Insulation.
User
Notifications
Font Size

  • Kistler, S. S., Coherent expanded aerogels and jellies. Nature, 1931, 127, 741.
  • Pekala, R. W., Alviso, C. T. and LeMay J. D., Organic aerogels: microstructural dependence of mechanical properties in compression. J. Non-Cryst. Solids, 1990, 125, 67–75.
  • Gavillon, R. and Budtova, R., Aerocellulose: new highly porous cellulose prepared from cellulose – NaOH aqueous solutions. Biomacromolecules, 2008, 9, 269–277.
  • Abecassis-Wolfovich, M., Rotter, H., Landau, M. V., Korin, E., Erenburg, A. I., Mogilyansky, D. and Gartstein, E., Texture and nanostructure of chromia aerogels prepared by urea-assisted homogeneous precipitation and low-temperature supercritical drying. J. Non-Cryst. Solids, 2003, 318, 95–111.
  • Long, J. W., Logan, M. S., Carpenter, E. E. and Rolison, D. R., Synthesis and characterization of Mn–FeOx aerogels with magnetic properties. J. Non-Cryst. Solids, 2004, 350, 182–188.
  • Krompiec, S., Mrowiec-Biało, J., Skutil, K., Dukowicz, A., Pajazk, L. and Jarzezbski, A. B., Nickel–alumina composite aerogel catalysts with a high nickel load: a novel fast sol–gel synthesis procedure and screening of catalytic properties. J. Non-Cryst. Solids, 2003, 315, 297–303.
  • Huang, R., Hou, L., Zhou, B., Zhao, Q. and Ren, S., Formation and characterization of tin oxide aerogel derived from sol–gel process based on tetra(n-butoxy)tin(IV). J. Non-Cryst. Solids, 2005, 351, 23–28.
  • Tang, P. E., Sakamoto, J. S., Baudrin, E. and Dunn, B., V2O5 aerogel as a versatile host for metal ions. J. Non-Cryst. Solids, 2004, 350, 67–72.
  • Kalebaila, K. K., Georgiev, D. G. and Brock, S. L., Synthesis and characterization of germanium sulfide aerogels. J. Non-Cryst. Solids, 2006, 352, 232–240.
  • Mohanan, J. L. and Brock, S. L., A new addition to the aerogel community: unsupported CdS aerogels with tunable optical properties. J. Non-Cryst. Solids, 2004, 350, 1–8.
  • Saliger, R., Fischer, U., Herta, C. and Fricke, J., High surface area carbon aerogels for supercapacitors. J. Non-Cryst. Solids, 1998, 225(1), 81–85.
  • Gesser, H. D. and Goswami, P. C., Aerogels and related porous materials. Chem. Rev., 1989, 89, 765–788.
  • Sun, H., Xu, Z. and Gao, C., Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater., 2013; doi:10.1002/adma/201204576.
  • Hüsing, N. and Schubert, U., Ultra light and highly compressible graphene aerogels. Angew. Chem., Int. Ed., 1998, 37, 22–45.
  • Gustav, N., Maria, P. F. R., Sreenath, B., Marco, M. and Raffaele, M., Amyloid template gold aerogels. Adv. Mater., 2015; doi: 10.1002/adma.201503465.
  • Hrubesh, L. W., Aerogel applications. J. Non-Cryst. Solids, 1998, 225, 335–342.
  • Fricke, J. and Tillotson, T., Aerogels – production, characterization and applications. Thin Solid Films, 1997, 297, 212–223.
  • Pajonk, G. M., Silica aerogel. Appl. Catal., 1991, 72(2), 217–266.
  • Soleimani, D. A. and Abbasi, M. H., Silica aerogels; synthesis, properties and characterization. J. Mater. Process. Tech., 2008, 199, 10–26.
  • Fricke, J. (ed.), Aerogel, Springer Proceedings in Physics, 1986.
  • Aegerter, M. A., Leventis, N. and Koebel, M. M. (eds), Aerogel Handbook, Springer, USA, 2011.
  • Lu, X., Caps, R., Fricke, J., Alviso, C. T. and Pekala, R. W., Correlation between structure and thermal conductivity of organic aerogels. J. Non-Cryst. Solids, 1995, 188, 226–234.
  • Zeng, S. Q., Hunt, A. and Greif, R., Transport properties of gas in silica aerogel. J. Non-Cryst. Solids, 1995, 186, 264–270.
  • Mahadik, D. B., Venkateswara Rao, A., Kumar, R., Ingale, S. V., Wagh, P. B. and Gupta, S. C., Reduction of process time by mechanical shaking of the ambient pressure dried TEOS based silica aerogel granules. J. Porous Mater, 2012, 19, 87–94.
  • Smith, D. M., Maskara, A. and Boes, U., Aerogel microparticles from oil-in-oil emulsion systems. J. Non-Cryst. Solids, 1998, 225, 254–259.
  • Hong, S. K., Yoon, M. Y. and Hwang, H. J., Synthesis of spherical silica aerogel powder by emulsion polymerization technique. J. Ceramic Process. Res., 2012, 13(1), 145–148.
  • Hebalkar, N. et al., Study of correlation of structural and surface properties with electrochemical behaviour in carbon aerogels. J. Mater. Sci., 2005, 40(14), 3777–3782.
  • Lombard, L. P., Ortiz, J. and Pout, C., A review on buildings energy consumption information. Energy Build., 2008, 40, 394–398.
  • Buratti, C. and Moretti, E., Experimental performance evaluation of aerogel glazing systems. Appl. Energy, 2012, 97, 430–437.
  • Ihara, T., Grynning, S., Gao, T., Gustavsen, A. and Jelle, B. P., Impact of convection on thermal performance of aerogel granulate glazing systems. Energy Build., 2015, 88, 165–173.
  • Berardi, U., The development of a monolithic aerogel glazed window for an energy retrofitting project. Appl. Energy, 2015, 154, 603–615.
  • Schultz, J. M. and Jensen, K. I., Evacuated aerogel glazings. Vacuum, 2008, 82, 723–729.
  • Gibiat, V., Lefeuvre, O., Woignier, T., Pelous, J. and Phalippou, J., Acoustic properties and potential applications of silica aerogels. J. Non-Cryst. Solids, 1995, 186, 244–255.
  • Forest, L., Gibiat, V. and Hooley, A., Impedance matching and acoustic absorption in granular layers of silica aerogels. J. NonCryst. Solids, 2001, 5, 285–230.
  • Caponi, S., Fontana, A., Montagna, M., Pilla, O., Rossi, F., Terki, F. and Woignier, T., Acoustic attenuation in silica porous systems. J. Non-Cryst. Solids, 2003, 322, 29–34.
  • Scholtens, B. E., Fesmire, J. E., Sass, J. P. and Augustynowicz, S. D., Cryogenic thermal performance testing of bulk-fill and aerogel insulation materials. Adv. Cryogenic Engg., AIP Conf. Proc., 2008, 53, 152–159.
  • Coffman, B. E., Fesmire, J. E., Augustynowicz, S. D., Gould, G. and White, S., Aerogel blanket insulation materials for cryogenic applications. Adv. Cryogenic Eng., 2010, 1218, 913–920.
  • Fesmire, J. E. and Sass, J. P., Aerogel insulation applications for liquid hydrogen launch vehicle tanks. Cryogenics, 2008; doi: 10.1016/j.cryogenics.2008.03.014.
  • Bheekhun, N., Talib, R. A. and Hassan, M. R., Aerogels in aerospace: an overview. Adv. Mater. Sci. Eng., 2013, Article ID 406065.
  • Fesmire, J., Aerogel insulation systems for space launch applications. Cryogenics, 2006, 46, 111–117.
  • Nuckols, M. L. et al. (eds), Design and evaluation of cold water diving garments using super-insulating aerogel fabrics. In Proceedings of the American Academy of Underwater Sciences, 28th Symposium, Dauphin, Island, 2009, pp. 237–244.

Abstract Views: 323

PDF Views: 123




  • Development of Nanoporous Aerogel-Based Thermal Insulation Products:'Make in India' Initiative

Abstract Views: 323  |  PDF Views: 123

Authors

Neha Hebalkar
Centre for Nanomaterials, Advanced Research Centre for Powder Metallurgy and New Materials, Balapur PO, Hyderabad 500 005, India

Abstract


The technology of manufacturing a silica aerogel thermal insulation product has been developed with the objective of indigenization under the 'Make in India' initiative. This world class product is now ready for commercial production. It possesses all the features and properties required for any ideal industrial thermal insulation material such as low thermal conductivity, light weight, good compressive strength, moisture, fire, corrosion and chemical resistance, antifungal, low shrinkage, sound-proof, non-toxic and ecofriendly. The increasingly gaining attention towards this highly efficient thermal insulation material is a hope to significantly contribute in achieving targets of energy conservation and saving.


Keywords


Aerogel, Energy Conservation, Industrial Applications, Silica, Thermal Insulation.

References





DOI: https://doi.org/10.18520/cs%2Fv112%2Fi07%2F1413-1420